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a b s t r a c t

In this short note we show that a system M = (E, r) with a
ground set E of size m and (rank) function r : 2E

→ Z≥0
satisfying r(S) ≤ min(r(E), |S|) for every set S ⊆ E, the Tutte
polynomial

TM (x, y) :=

∑
S⊆E

(x − 1)r(E)−r(S)(y − 1)|S|−r(S),

written as TM (x, y) =
∑

i,j tijx
iyj, satisfies that for any integer

h ≥ 0, we have
h∑

i=0

h−i∑
j=0

(
h − i
j

)
(−1)jtij = (−1)m−r

(
h − r
h − m

)
,

where r = r(E), and we use the convention that when h < m,
the binomial coefficient

( h−r
h−m

)
is interpreted as 0.

This generalizes a theorem of Brylawski on matroid rank
functions and h < m, and a theorem of Gordon for h ≤ m with
the same assumptions on the rank function.

The proof presented here is significantly shorter than the
previous ones. We only use the fact that the Tutte polynomial
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TM (x, y) simplifies to (x−1)r(E)y|E| along the hyperbola (x−1)(y−

1) = 1.
© 2022 The Author(s). Published by Elsevier Ltd. This is an open

access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

For a graph G = (V , E) with v(G) vertices and e(G) edges, the Tutte polynomial TG(x, y) is defined
as

TG(x, y) =

∑
A⊆E

(x − 1)k(A)−k(E)(y − 1)k(A)+|A|−v(G),

where k(A) denotes the number of connected components of the graph (V , A), see [5]. There are
many excellent surveys about the properties of the Tutte polynomial and its applications [1–3,6].

In this paper, we concentrate on Brylawski’s identities concerning the Tutte polynomial. Written
as a usual bivariate polynomial TG(x, y) =

∑
i,j tijx

iyj, the coefficients tij encode the number of certain
spanning trees, namely spanning trees with internal activity i and external activity j with respect to
a fixed ordering of the edges, for details see [5]. It is not hard to prove that t00 = 0 and t10 = t01 if
the graph G has at least 2 edges. In general, Brylawski [1] proved that a collection of linear relations
hold true between the coefficients of the Tutte polynomial. Namely, he proved that if 0 ≤ h < e(G),
then

h∑
i=0

h−i∑
j=0

(
h − i
j

)
(−1)jtij = 0.

In particular, the third relation gives that if e(G) ≥ 3, then t20−t11+t02 = t10. Note that Brylawski [1]
proved these identities not only for the Tutte polynomial of a graph, but for the Tutte polynomial
of an arbitrary matroid M . The Tutte polynomial TM (x, y) of a matroid M = (E, r) is defined by

TM (x, y) =

∑
S⊆E

(x − 1)r(E)−r(S)(y − 1)|S|−r(S),

where r(S) is the rank of a set S ⊆ E. The Tutte polynomial of a graph G simply corresponds to the
cycle matroid M of the graph G. Note that the rank function r : 2E

→ Z≥0 of a matroid satisfies the
following axioms:

(R1) for any A ⊆ E we have r(A) ≤ |A|,
(R2) (submodularity) for any A, B ⊆ E we have

r(A ∩ B) + r(A ∪ B) ≤ r(A) + r(B),

(R3) (monotonicity) for any A ⊆ E and x ∈ E we have

r(A) ≤ r(A ∪ {x}) ≤ r(A) + 1.

Gordon [4] calls a function r : 2E
→ Z≥0 a rank function on a ground set E if it satisfies r(A) ≤

min(r(E), |A|) for every set A ⊆ E. He showed that for a system M = (E, r) the coefficients of TM (x, y)
satisfy Brylawski’s identities if r is a rank function without the assumptions of submodularity and
monotonicity. He also extended Brylawski’s identities to the case h = |E|.

Here we extend the work of Gordon and Brylawski for h > |E|, and also simplify the proof
significantly. We only use the special form of the polynomial, namely that it simplifies to (x −

1)r(E)y|E| along the hyperbola (x − 1)(y − 1) = 1. We use exactly the same assumptions on the
function r : 2E

→ Z as Gordon. Our generalized Brylawski’s identities are the following.
≥0
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Theorem 1.1 (Generalized Brylawski’s Identities). Let M = (E, r), where E is a set, and r : 2E
→ Z≥0

s a function on the subsets of E satisfying r(S) ≤ min(r(E), |S|) for every set S ⊆ E. Let

TM (x, y) =

∑
S⊆E

(x − 1)r(E)−r(S)(y − 1)|S|−r(S)

be the Tutte polynomial of the system M = (E, r). Let m denote the size of E, and let r = r(E). The
coefficients tij of Tutte polynomial TM (x, y) =

∑
i,j tijx

iyj satisfy the following identities. For any integer
h ≥ 0, we have

h∑
i=0

h−i∑
j=0

(
h − i
j

)
(−1)jtij = (−1)m−r

(
h − r
h − m

)
,

with the convention that when h < m, the binomial coefficient
( h−r
h−m

)
is interpreted as 0.

In particular, by specializing Theorem 1.1 for the cycle matroid of a graph G we get the following.

Theorem 1.2 (Generalized Brylawski’s Identities for Graphs). Let G be any graph with n vertices, m edges
and c connected components. Let TG(x, y) =

∑
i,j tijx

iyj be the Tutte polynomial of the graph G. Then for
any integer h ≥ 0, we have

h∑
i=0

h−i∑
j=0

(
h − i
j

)
(−1)jtij = (−1)m−n+c

(
h − n + c
h − m

)
,

with the convention that when h < m, the binomial coefficient
(h−n+c

h−m

)
is interpreted as 0.

2. Proof of Theorem 1.1

This entire section is devoted to the proof of Theorem 1.1.
Let r = r(E) and m = |E|. By definition,

TM (x, y) =

∑
S⊆E

(x − 1)r(E)−r(S)(y − 1)|S|−r(S).

Let us introduce a new variable z, and plug in x =
z

z−1 and y = z. Then

TM

(
z

z − 1
, z
)

=

∑
S⊆E

(z − 1)|S|−r
= (z − 1)−rzm =

zm

(z − 1)r
.

ince TM (x, y) =
∑

i,j tijx
iyj, we have

TM

(
z

z − 1
, z
)

=

∑
i,j

tij

(
z

z − 1

)i

z j =
zm

(z − 1)r
.

ence∑
i,j

ti,jz i+j(z − 1)r−i
= zm.

ote that if i > r , then tij = 0 as r(S) ≥ 0 for every set S. Hence, both sides are polynomials in z,
so we can compare the coefficients of zk.∑

i,j

ti,j(−1)r−k+j
(

r − i
k − (i + j)

)
= δk,m, (1)

where δk,m is 1 if k = m, and 0 otherwise. This is not yet exactly Brylawski’s identity, but taking
appropriate linear combinations of these equations yields Brylawski’s identities. Let

Ch,k = (−1)k
(
h − r

)
.

h − k
3
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Then
h∑

k=0

Ch,k

⎛⎝∑
i,j

ti,j(−1)r−k+j
(

r − i
k − (i + j)

)⎞⎠ = Ch,m.

hen

Ch,m =

h∑
k=0

Ch,k

⎛⎝∑
i,j

ti,j(−1)r−k+j
(

r − i
k − (i + j)

)⎞⎠
=

h∑
k=0

(−1)k
(
h − r
h − k

)⎛⎝∑
i,j

ti,j(−1)r−k+j
(

r − i
k − (i + j)

)⎞⎠
=

∑
i,j

ti,j(−1)r+j

(
h∑

k=0

(
h − r
h − k

)(
r − i

k − (i + j)

))

=

∑
i,j

ti,j(−1)r+j
(

h − i
h − (i + j)

)
=

∑
i,j

(
h − i
j

)
ti,j(−1)r+j.

ence∑
i,j

(
h − i
j

)
ti,j(−1)j = (−1)m−r

(
h − r
h − m

)
.

emark 2.1. Once one conjectures Theorem 1.2, then it can be proved by the deletion–contraction
identities via simple induction on h even for matroids. The more general Theorem 1.1 can be proved
y certain recursions akin to deletion–contraction too, as was shown by Gordon [4], but seems to
e considerably more work than the proof presented in this paper.
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