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Abstract

An automatonA is called a retractable automaton if, for every subau-
tomatonB of A, there is at least one homomorphism ofA onto B which
leaves the elements ofB fixed (such homomorphism is called a retract ho-
momorphism ofA ontoB). We say that a retractable automatonA=(A,X,δ)
is Boolean-type if there exists a family{λB | B is a subautomaton ofA} of
retract homomorphismsλB of A such that, for arbitrary subautomataB1 and
B2 of A, the conditionB1 ⊆ B2 impliesKerλB2 ⊆ KerλB1. In this paper we
describe the Boolean-type retractable state-finite automata without outputs.

1 Introduction and motivation

Let A = (A,X, δ) be an automaton without outputs. A subautomatonB of A is
called a retract subautomaton if there is a homomorphism ofA onto B which
leaves the elements ofB fixed. A homomorphism with this property is called a
retract homomorphism ofA ontoB.

In [5], A. Nagy introduced the notion of the retractable automaton. An au-
tomatonA (without outputs) is called a retractable automaton if every subautoma-
ton of A is a retract subautomaton. He proved (in Theorem 3 of [5]) that if the
latticeL(A) of all congruences of an automatonA is complemented thenA is a
retractable automaton. He also defined the notion of the Boolean-type retractable
automaton. We say that a retractable automatonA=(A,X,δ) is Boolean-type if
there exists a family{λB | B is a subautomaton ofA} of retract homomorphisms
λB of A such that, for arbitrary subautomataB1 andB2 of A, the conditionB1 ⊆ B2

impliesKerλB2 ⊆ KerλB1. He proved (in Theorem 5 of [5]) that if the latticeL(A)
of all congruences of an automatonA is a Boolean algebra thenA is a Boolean-
type retractable automaton.
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In [5], A. Nagy investigated the not necessarily state-finite Boolean-type re-
tractable automata containing traps (a statec is called a trap of an automaton
A=(A,X,δ) if δ(c, x) = c for every x ∈ X). He proved that every Boolean-
type retractable automaton containing traps has a homomorphic image which is
a Boolean-type retractable automaton containing exactly one trap. Moreover, he
gave a complete description of Boolean-type retractable automata containing ex-
actly one trap.

In [2], the authors defined the notion of the strongly retract extension of au-
tomata. They proved that every state finite Boolean-type retractable automaton
without outputs is a direct sum of Boolean-type retractableautomata whose prin-
cipal factors form a tree. Moreover, a state-finite automaton A is a Boolean-
type retractable automaton whose principal factors form a tree if and only if it
is a strongly retract extension of a strongly connected subautomaton ofA by
a Boolean-type retractable automaton containing exactly one trap (which is de-
scribed in [5]).

In [5] and [2], some theorem gives only necessary conditions for specialre-
tractable or Boolean-type retractable state-finite automata without outputs. Paper
[6] is the first one which gives a complete description of state-finite retractable au-
tomata without outputs. Using the results of [6], we give a complete description
of Boolean-type retractable state-finite automata withoutoutputs.

2 Basic notations

By an automaton without outputs we mean a system (A,X, δ) where A and X are
non-empty sets, andδ maps from the Cartesian productA × X to A. We will
refer to A, X andδ as the state set, the input set and the transition function ofA,
respectively. An automatonA is said to be state-finite, if the set A is finite. In this
paper by an automaton we always mean a state-finite automatonwithout outputs.
We will follow the definitions and notations of [6].

An automatonB=(B,X,δB) is called a subautomaton of an automatonA = (A,X, δ)
if B is a subset of A andδB is the restriction ofδ to B× X. A subautomatonB of
an automatonA contained by every subautomaton ofA is called the kernel ofA.

By a homomorphism of an automaton (A,X, δ) into an automaton (B,X, γ) we
mean a mapφ of the setA into the setB such thatφ(δ(a, x)) = γ(φ(a), x) for all
a ∈ A andx ∈ X.

A congruence of an automaton (A,X, δ) is an equivalenceα of the setA such

2



that, for alla, b ∈ Aandx ∈ X, the assumption (a, b) ∈ α implies (δ(a, x), δ(b, x)) ∈ α.
A congruence classα containinga ∈ A will be denoted by [a]α. The kernel of a
homomorphismφ : (A,X, δ) 7→ (B,X, γ), which is denoted byKerφ, is defined as
the following relation ofA: Kerφ ≔ {(a, b) ∈ A× A : φ(a) = φ(b)}. It is clear that
Kerφ is a congruence on A.

We will denote the lattice of all congruences of an automatonA by L(A). For
everyα, β ∈ L(A), α ∧ β ≔ α ∩ β andα ∨ β = (α ∪ β)T where

(α ∪ β)T = (α ∪ β) ∪ ((α ∪ β) ◦ (α ∪ β)) ∪ . . .

is the transitive closure ofα ∪ β (here◦ denotes the usual operation on the semi-
group of all binary relations onA (see [3]) ).

Let B=(B,X,δB) be a subautomaton of an automatonA=(A,X, δ). The relation
̺B = {(b1, b2) ∈ A × A : b1 = b2 or b1, b2 ∈ B} is a congruence onA. This
congruence is called the Rees congruence onA defined byB. The̺B-classes ofA
areB itself and every one-element set{a} with a ∈ A \ B.

3 Retractable automata

Definition 1 A subautomatonB of an automatonA=(A,X, δ) is called a retract
subautomaton if there exist a homomorphismλB of A onto B which leaves the
elements of B fixed. An automaton is called retractable if itsevery subautomaton
is retract. [5]

Theorem 1 A Rees-congruence̺B defined by a subautomatonB=(B,X, δB) of an
automatonA=(A,X, δ) has a complement in the lattice(L(A),∨,∧) if and only if
B is a retract subautomaton.

Proof Let A=(A,X, δ) be an automaton. Assume thatB is a subautomaton ofA
such that the Rees congruence̺B has a complement inL(A). By the proof of
Theorem 3 of [5], B is a retract subautomaton ofA. Conversely, assume thatB is
a retract subautomaton ofA. We will show that the kernel of a retract homomor-
phism ofA ontoB is the a complement of the Rees congruence̺B defined byB.
We show this by proving that, for every statesa , b of A, we have (a, b) < ηB∧̺B

and (a, b) ∈ ηB∨ ̺B (hereλB denotes the corresponding retract homomorphism of
A ontoB andηB ≔ KerλB). Let a, b be arbitrary elements inA with the condition
a , b.
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• Casea, b ∈ B.

Then (a, b) < ηB⇒ (a, b) < ηB ∩ ̺B = ηB ∧ ̺B.
Furthermorea̺Bb⇒ (a, b) ∈ ̺B ∪ ηB ⊆ ̺B ∨ ηB.

• Casea ∈ A \ B, b ∈ B.

In this case, it follows that (a, b) < ̺B thus (a, b) < ηB ∩ ̺B = ηB ∧ ̺B.
Now assume thatλB(a) = λB(b). In this case (a, b) ∈ ηB is true by definition which
implies (a, b) ∈ ηB ∪ ̺B ⊆ ηB ∨ ̺B.
Otherwise:λB(a) , λB(b) ⇒ ∃c ∈ B : λB(a) = λB(c) becauseλB maps onto every

element B. Thus (a, c) ∈ ηB and (c, b) ∈ ̺B, this implies (a, b) ∈ (̺B ∪ ηB)T =

̺B ∨ ηB by definition.

• Casea, b ∈ A \ B.

(a, b) < ̺B ⇒ (a, b) < ̺B ∩ ηB = ̺B ∧ ηB. SinceλB mapsA onto B, thus exists
suchc andd elements ofB thatλB(a) = λB(c) andλB(b) = λB(d) holds. From
(a, c) ∈ ηB, (c, d) ∈ ̺B, (b, d) ∈ ηB follows (a, b) ∈ (̺B ∪ ηB)T = ̺B ∨ ηB. �

4 Boolean-type retractable automata

Definition 2 We say that a retractable automatonA = (A,X, δ) is Boolean-type if
there exists a family{λB | B is a subautomaton ofA} of retract homomorphismλB

of A such that, for arbitraryB1 andB2 subautomata ofA, the condition B1 ⊆ B2

implies KerλB2 ⊆ KerλB1.

In the next, if we suppose thatA is a Boolean-type retractable automaton and
C is a subautomaton ofA, thenλC will denote the retract homomorphism ofA
ontoC belonging to a fix family{λB | B is a subautomaton ofA} of retract homo-
morphismsλB of A satisfying the conditions of Definition2.

In this section we shall discuss Boolean-type retractable state-finite automata
without outputs. We describe these automata using the concepts and constructions
of [6].

Definition 3 We say that an automatonA = (A,X, δ) is a direct sum of automata
{A i = (Ai ,X, δi) (i ∈ I) } (indexed with the set I) if Ai ∩ A j = ∅ for every i, j ∈ I
with i , j, and moreover A= ∪

i∈I
Ai.
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Theorem 2 ([6]) For a state-finite automatonA = (A,X, δ) the following state-
ments are equivalent:

(i) A is retractable.

(ii) A is the direct sum of finitely many state-finite retractable automaton, which
contain kernels being isomorphic to eachother. �

The next lemma will be used in the proof of Theorem3 several times.

Lemma 1 If D ⊆ B are subautomaton of a Boolean-type retractable automaton
A such thatλB(a) ∈ D for some a∈ A thenλB(a) = λD(a).

Proof. Let c = λB(a). As c ∈ D ⊆ B, we haveλB(c) = c. Thusa andc are in the
sameKerλB-class ofA. As everyKerλB-class is in aKerλD-class, we have thata
andc are in the sameλD-class and soλD(a) = λD(c). As c ∈ D, we haveλD(c) = c
and soλD(a) = λD(c) = c = λB(a).

Theorem 3 For a state-finite automatonA = (A,X, δ) the following statements
are equivalent:

(i) A is a Boolean-type retractable automaton.

(ii) A is the direct sum of finitely many state-finite Boolean-type retractable au-
tomata containing kernels being isomorphic to each other.

Proof (i) 7→ (ii): Let A be a Boolean-type, retractable, state-finite automaton.
Since A is state-finite and retractable, then by Theorem2 A is a direct sum
of finitely many, state-finite, retractable automataA i (i ∈ I ) containing kernels
being isomorphic to each other. Leti0 ∈ I be an arbitrary fixed index. Let
{λB | B is a subautomaton ofA} be a family of retract homomorphisms such
that B1 ⊆ B2 implies KerλB2 ⊆ KerλB1. It is clear thatAi0 is a subautomaton
of A. Consider thoseλC retract homomorphisms which fulfilsC ⊆ Ai0, we shall
denote these with{ΛC | C ⊆ Ai0}. Since allC subautomata ofA that hasC ⊆ Ai0

are also subautomata ofA i0, therefore the family{ΛC} clearly fulfils the condition
KerΛC2 ⊆ KerΛC1 for all C1 ⊆ C2 ⊆ Ai0.

(ii) 7→ (i): Assume that the automatonA is a direct sum of Boolean-type re-
tractable automataA i (i ∈ I = {1, 2, . . . , n}) whose kernelsT i are isomorphic
to each other. Let (·)ϕi,i denote the identical mapping ofTi (i = 1, . . . , n). For
arbitraryi = 1, . . .n − 1, let (·)ϕi,i+1 denote the corresponding isomorphism ofTi

onto Ti+1. For arbitraryi, j ∈ I with i < j, let (·)Φi, j = ϕi,i+1 ◦ · · · ◦ ϕ j−1, j. For
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arbitraryi, j ∈ I with i > j, let (·)Φi, j = ϕ
−1
i−1,i ◦ · · · ◦ ϕ

−1
i,i+1. It is clear thatΦi, j is an

isomorphism ofTi ontoT j. Moreover, for everyi, j, k ∈ I , Φi, j ◦ Φ j,k = Φi,k.
Let B be a subautomaton ofA. Let B denote the set of all indexes from

1, 2, . . . , n which satisfyBi = B∩ Ai , ∅. If i ∈ B thenTi ⊆ Bi. Let iB = minB.
We give a retract homomorphismΛB of A ontoB. If i ∈ B then letΛB(a) =

λBi(a) for everya ∈ Ai. If i ∈ I \ B (that is,Bi = ∅) then letΛB(a) = (λTi (a))Φi,iB.
It is easy to see thatΛB is a retract homomorphism ofA ontoB.

We show that the set{ΛB | B is a subautomaton ofA} satisfies the condition
that, for every subautomatonD ⊆ B, KerΛB ⊆ KerΛD. Let D ⊆ B be arbitrary
subautomata ofA. We note thatD ⊆ B andiB ≤ iD. Assume

ΛB(a) = ΛB(b)

for somea ∈ Ai andb ∈ A j.
Case 1:i ∈ D. In this caseiD ≤ i. We have two subcases. Ifj ∈ B then

λBi(a) = ΛB(a) = ΛB(b) = λBi(b)

and soj = i. From this it follows that

λDi(a) = λDi (b)

and so
ΛD(a) = λDi (a) = λDi(b) = ΛD(b).

If j ∈ I \ B then

λBi(a) = ΛB(a) = ΛB(b) = (λT j (b))Φ j,iB ∈ TiB ⊆ DiB

and soi = iB ≤ iD. This and the aboveiD ≤ i together implyi = iB = iD. Then By
Lemma1,

ΛD(a) = λDi (a) = λBi(a).

As
ΛD(b) = (λT j (b))Φ j,iD ,

we have
ΛD(a) = λBi(a) = (λT j (b))Φ j,iB = (λT j (b))Φ j,iDΛD(b).

Case 2:i < D, but i ∈ B. If j ∈ B then

λBi(a) = ΛB(a) = ΛB(b) = λBi(b)

6



and soj = i. ThenΛD(a) = ΛD(b) (see the first subcase of Case 1). Ifj < B then

λBi(a) = ΛB(a) = ΛB(b) = (λT j (b))Φ j,iB

and soi = iB. ThusλBi (a) ∈ Ti ⊆ Di and so (by Lemma1)

λBi(a) = λDi (a) = λTi(a).

If iD = iB(= i) then

ΛD(a) = λDi (a) = λBi(a) = (λT j (b))Φ j,iB = (λT j (b))Φ j,iD = ΛD(b).

If iD > iB(= i) thenAi ∩ D = ∅ and so

ΛD(a) = (λTi(a))Φi,iD

and
ΛD(b) = (λT j (b))Φ j,iD .

As
λTi(a) = λBi (a) = (λT j (b))Φ j,iB,

we have
ΛD(b) = (λT j (b))Φ j,iD = (λT j (b))(Φ j,iB ◦ ΦiB,iD) =

= ((λT j (b))Φ j,iB)ΦiB,iD = (λTi (a))ΦiB,iD = (λTi (a))Φi,iD = ΛD(a).

Case 3:i < B. If j ∈ B then we can prove (as in the second subcases of Case
1 and Case 2) thatΛD(a) = ΛD(b). Consider the case whenj < B. Then

(λTi (a))Φi,iB = ΛB(a) = ΛB(b) = (λT j (b))Φ j,iB.

Hence

ΛD(a) = (λTi (a))Φi,iD = (λTi(a))(Φi,iB ◦ ΦiB,iD) = ((λTi (a))Φi,iB)ΦiB,iD =

= ((λT j (b))Φ j,iB)ΦiB,iD = (λT j (b))(Φ j,iB ◦ΦiB,iD) = (λT j (b))Φ j,iD = ΛD(b).

In all cases, we have thatΛB(a) = ΛB(b) impliesΛD(a) = ΛD(b) for every
a, b ∈ A. Consequently

KerΛB ⊆ KerΛD.

HenceA is a Boolean-type retractable automaton. �

By Theorem3, we can focus our attention on a Boolean-type retractable automa-
ton containing a kernel. In our investigation two notions will play important role.
These notions are the dilation of automata and the semi-connected automata.
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Definition 4 Let B be an arbitrary subautomaton of an automatonA = (A,X, δ).
We say thatA is a dilation ofB if there exists a mappingφdil(·) of A onto B that
leaves the elements of B fixed, and fulfilsδ(a, x) = δB(φdil(a), x) for all a ∈ A and
x ∈ X. This fact will be denoted by: (A,X,δ;B,φdil). ([5])

If a is an arbitrary element of anA automaton, then letR(a) denote the subau-
tomaton generated by the elementa (the smallest subautomaton containinga). It
is easy to see that

R(a) = {δ(a, x) : x ∈ X∗},

whereX∗ is the free monoid overX. Let us define the following relation:

R ≔ {(a,b)∈ A× A : R(a) = R(b)}.

It is evident thatR is an equivalence relation. TheR class containing a particulara
element is denoted byRa. The setR(a)\Ra is denoted byR[a]. It is clear thatR[a]
is either empty set or a subautomaton ofA. R{a} = R(a)/ρR[a] factor automaton is
called a principal factor ofA. If R[a] is an empty set, then considerR{a} asR(a).
[6]

An A automaton is said to be strongly connected if, for anya, b ∈ A elements,
there exist a wordp ∈ X+ such thatδ(a, p) = b; (X+ is the free semigroup over
X). Remark: for a wordp = x1x2 . . . xn and an elementa the transition function is
defined as the following:

δ(a, p) = δ (. . . δ(δ(a, x1), x2) . . . xn) .

An automaton is called strongly trap connected if it contains exactly one trap and,
for everya ∈ A \ {trap} andb ∈ A, there is a wordp ∈ X+ such thatδ(a, p) = b.

An automaton is said to be semi-connected if its every principal factor is either
strongly connected or strongly trap connected. ([6])

Theorem 4 ([6]) A state-finite automaton without outputs is a retractableau-
tomaton if and only if it is a dilation of a semi-connected retractable automaton.
�

The next theorem is the extension of Theorem4.

Theorem 5 A state-finite automaton without outputs is a Boolean-type retractable
automaton if and only if it is a dilation of a semi-connected Boolean-type re-
tractable automaton.
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Proof. Let A be a Boolean-type retractable state- finite automaton without out-
puts. Then, by Theorem4, A is a dilation of the retractable semi-connected au-
tomatonC. For a subautomatonB of C, let λ′B denote the restriction ofλB to C.
It is easy to see thatC is a Boolean-type retractable automaton with the family
{λ′B | B is a subautomaton of ofC}.

Conversely, let the automatonA=(A,X,δ;B,φdil) be a dilation of the automaton
B=(B,X,δB). Assume thatB is Boolean-type retractable with the family
{λC | C is a subautomaton ofB}. Since all subautomata ofA are subautomata of
B, it is clear that, for every subautomatonC of A, λC ◦ φdil is a retract homomor-
phism ofA ontoC. Moreover,A is a Boolean-type retractable automaton with the
family {λC ◦ φ | C is a subautomaton ofA}. �

By Theorem5 and Theorem3, we can concentrate our attention on semi-
connected automata containing kernels.

Definition 5 Let (T,≤) be a partially ordered set, in which every two element
subset has a lower bound, and every non-empty subset of T having an upper
bound contains a maximal element. Consider the operation onT which maps a
couple(t1, t2) ∈ T × T to the (unique) greatest upper bound of the set{t1, t2}. T is
a semilattice under this operation. This semilattice is called a tree. It is clear that
every finite tree has a least element. ([7])

If a non-trivial state-finite automatonA contains exactly one trapa0 thenA0

will denote the setA \ a0. If A is a trivial automaton, then letA0 = A. On the
setA0 × X we consider a partial (transition) functionδ0 which is defined only on
couples (a, x) for which δ(a, x) ∈ A0; in this caseδ0(a, x) = δ(a, x). We shall say
that (A0,X,δ0) is the partial automaton derived from the automatonA.

If A0 andB0 are partial automata, then a mappingφ of A0 into B0 is called a
partial homomorphism ofA0 into B0 if, for everya ∈ A0 andx ∈ X, the condition
δA(a, x) ∈ A0 impliesδB(φ(a), x) ∈ B0 andδB(φ(a), x) = φ(δ(a, x)).

Construction ([6]) Let (T,≤) be a finite tree with the least elementi0. Let i ≻ j
(i, j ∈ T) denote the fact thati ≥ j and for allk ∈ T, the conditioni ≥ k ≥ j
implies i = k or j = k. Let A i = (Ai ,X, δi), i ∈ T be a family of pairwise disjoint
automata satisfying the following conditions:

(i) A i0 is strongly connected andA i is strongly trap connected for everyi ∈
T, i , i0.

9



(ii) Let φi,i denote the identical mapping ofA i. Assume that, for everyi, j ∈
T, i ≻ j, there exist a homomorphismφi, j which mapsA0

i into A0
j such that

(iii) for every i ≻ j there exist elementsa ∈ A0
i andx ∈ X such thatδi(a, x) < A0

i ,
δ j(φi, j(a), x) ∈ A0

j .

For arbitrary elementsi, j ∈ T with i ≥ j, we define a partial homomorphism
Φi, j of A0

i into A0
j as follows:Φi,i = φi,i and, if i > j such thati ≻ k1 ≻ . . . kn ≻ j,

then let
Φi, j = φkn, j ◦ φkn−1,kn ◦ · · · ◦ φk1,k2 ◦ φi,k1.

(We note that ifi ≥ j ≥ k are arbitrary elements ofT, thenΦi,k = Φ j,k ◦Φi, j.)
Let A = ∪

i∈T
A0

i . Define a transition functionδ′ : A × X 7→ A as follows. If

a ∈ A0
i andx ∈ X then let

δ′(a, x) = δi′[a,x](Φi,i′[a,x](a), x),

wherei′[a, x] denotes the greatest element of the set{ j ∈ T : δ j(Φi, j(a), x) ∈ A0
j }.

It is clear thatA = (A,X, δ′) is an automaton which will be denoted by (Ai ,X, δi; φi, j,T).

Theorem 6 ([6]) A state-finite automaton without outputs is a semi connected
retractable automaton containing a kernel if and only if it is isomorphic to an
automaton(Ai ,X, δi; φi, j,T) defined in the Construction. �

Remark 1 By the proof of Theorem 7 of [6] if R is a subautomaton of an au-
tomaton (Ai ,X, δi; φi, j,T) constructed as above, then there is an idealΓ ⊆ T such
thatR= ∪

j∈Γ
A0

j . As T is a tree

π : i 7→ max{γ ∈ Γ : γ ≤ i}

is a well defined mapping of T ontoΓ which leaves the elements ofΓ fixed. λR

defined byλR(a) = Φi,π(i)(a) (a ∈ A0
i ) is a retract homomorphism ofA onto R.

([6]) This fact will be used in the proof of the next Theorem.

Theorem 7 A state-finite automaton without outputs is a semi-connected Boolean-
type retractable automaton containing a kernel if and only if it is isomorphic to
an automaton(Ai ,X, δi; φi, j,T) defined in the Construction.
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Proof Let A be a state-finite automaton without outputs which contains akernel.
Assume thatA is also semi-connected and Boolean-type retractable. Then, by
Theorem6, A is isomorphic to an automatonA=(Ai ,X, δi; φi, j,T) which is defined
in the Construction.

The main part of the proof is to show that every automatonA=(Ai ,X, δi; φi, j,T)
constructed as above is Boolean-type retractable. According to Theorem6 the
automatonA=(Ai ,X, δi; φi, j,T) is retractable. LetB be a subautomaton ofA. By
Remark1 there is an idealΓ ⊆ T such thatB = ∪

j∈Γ
A0

j . LetπB : i 7→ {γ ∈ Γ : γ ≤ i}.

For everya ∈ A j( j ∈ T) let λB(a) ≔ Φ j,π( j)(a). Using also Remark1, it is easy
to see thatλB is a retract homomorphism ofA ontoB. Let B1 andB2 be arbitrary
subautomata withB1 ⊆ B2. We will show thatKerλB2 ⊆ KerλB1. Assumeλ2(a) =
λ2(b) for somea, b ∈ A. According to Remark1, λB1 = ΦπB2( j),πB1( j)◦Φ j,πB2( j). Thus

λB1(a) = (ΦπB2(i),πB1(i) ◦ Φ j,πB2(i))(a) = (ΦπB2(i),πB1(i) ◦ λB2)(a) =

= (ΦπB2(i),πB1(i) ◦ λB2)(b) = (ΦπB2(i),πB1(i) ◦ Φ j,πB2(i))(b) = λB1(b).

ConsequentlyKerλB2 ⊆ KerλB1. HenceA=(Ai ,X, δi; φi, j,T) is a Boolean-type
retractable automaton with the family{λB | B is a subautomaton ofA}. �
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