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CUBE TERM BLOCKERS WITHOUT FINITENESS

KEITH A. KEARNES AND ÁGNES SZENDREI

Abstract. We show that an idempotent variety has a d-dimensional cube term if
and only if its free algebra on two generators has no d-ary compatible cross. We
employ Hall’s Marriage Theorem to show that a variety of finite signature whose
fundamental operations have arities n1, . . . , nk has a d-dimensional cube term if

and only if it has one of dimension d = 1 +
∑

k

i=1
(ni − 1). This lower bound on

dimension is shown to be sharp. We show that a pure cyclic term variety has a cube
term if and only if it contains no 2-element semilattice. We prove that the Maltsev
condition “existence of a cube term” is join prime in the lattice of idempotent
Maltsev conditions.

1. Introduction

This note concerns a recently identified Maltsev condition, which promises to be
significant. It is called “existence of a cube term”.

We begin by discussing relations. A binary cross on a set A is a subset of A2 of
the form (U0 × A) ∪ (A× U1), where U0 and U1 are nonempty proper subsets of A.

A

A

U0

U1

If U0 = U1, the cross is called symmetric. If |U0| = |U1| = 1, the cross is called
thin. The sequence (U0, U1) is called the base (sequence) for the cross. If the cross is
symmetric, i.e., if the base has the form (U, U), then we also refer to U as the base.

2010 Mathematics Subject Classification. Primary: 08B05; Secondary: 08A30, 08B20.
Key words and phrases. cube term, cyclic term, Maltsev condition, idempotent variety, compat-

ible cross.
This material is based upon work supported by the National Science Foundation grant no. DMS

1500254 and the Hungarian National Foundation for Scientific Research (OTKA) grant no. K104251
and K115518.

1

http://arxiv.org/abs/1609.02605v1


2 KEITH A. KEARNES AND ÁGNES SZENDREI

The definition of a cross makes sense for higher arity relations, i.e. a d-ary cross is
a subset of Ad of the form

(U0 × A× · · · × A) ∪ (A× U1 × · · · × A) ∪ · · · ∪ (A×A× · · · × Ud−1)

where U0, . . . , Ud−1 are nonempty proper subsets of A. For d = 1 this means that a
1-ary cross is a nonempty proper subset of A. The definitions of symmetric cross,
thin cross, and base for a d-ary cross are the expected ones. The arity of a cross is
also called its dimension.

Our use in this paper of the notion of a cross follows the earlier use of crosses in
the 1987 paper [15], which concerns the description of the maximal, locally closed
subclones of the clone of all idempotent operations on a given set. In [15], symmetric
and asymmetric thin crosses play a central role, although they are just called ‘crosses’.
In the current paper, we need to consider arbitrary (‘thick’) crosses as well.

Now we turn to cube terms. Let V be a variety and let F = FV(x, y) be the V-free
algebra generated by the set {x, y}. Since F has an automorphism that switches x
and y, it follows that exactly one of the following two conditions holds: (i) the set
{x, y}d−{y} generates y, where y = (y, y, . . . , y) is the constant tuple with range {y},
or (ii) different subsets of {x, y}d generate different subalgebras of Fd. For condition
(i) to hold, V must have a term c which applied to elements of {x, y}d − {y} yields
y, i.e.,

(1.1) V |= c(z1, z2, . . .) = y with all zi in {x, y}d − {y}.

This is a vector identity. By considering this single vector identity coordinatewise,
this means that V satisfies d identities of the form

(1.2) c(. . . , x, . . .) = y

where the only variables that appear in the identity are x and y, and for each place
of c there is an identity that has x in that place. For example, if V has a term c
satisfying

c

([
x
y

]

,

[
x
x

]

,

[
y
x

])

=

[
y
y

]

, or equivalently, both of

{
c(x, x, y) = y
c(y, x, x) = y,

then c is a term of the desired type for d = 2, which is called a Maltsev term.
A term c satisfying the condition described in (1.1) is called a d-dimensional cube

term or just d-cube term for V. Equivalently, c is a d-cube term if d identities of the
type in (1.2) suffice to establish the condition in (1.2) for each place of c. Clearly, a
d-cube term for a variety V is automatically a d′-cube term for all d′ ≥ d.

Cube terms were introduced in [4] as part of an investigation of finite algebras
with few subalgebras of powers. Terms of equal strength, called parallelogram terms,
were discovered independently and at the same time in the study of finitely related
clones, [9]. Cube terms and their equivalents have played roles in [8] in the study
of constraint satisfaction problems, in [1, 2, 9] in the study of finitely related clones,



CUBE TERM BLOCKERS 3

in [10, 13] in natural duality theory, and in [5] concerning the subpower membership
problem.

Theorem 2.1 of [12] gives a method for recognizing if a finite idempotent algebra
has no cube term. Namely, a finite idempotent algebra fails to have a d-cube term
for any d if and only if it has a cube term blocker. A cube term blocker of a finite
idempotent algebra A is defined to be a pair (U,B) of nonempty subuniverses of A,
with U ( B, such that U serves as a base for a compatible, symmetric, d-ary cross
of B for every d. It follows that a finite idempotent algebra A fails to have a d-cube
term for any d if and only if some subalgebra B ≤ A has compatible symmetric
crosses of every arity.

The result of [12] does not help if one wants to show that A has no d-cube term
for a fixed d. The result also does not help if A is infinite. But Lemma 2.8 of [11]
shows that an idempotent variety V fails to have a Maltsev term (i.e. a 2-cube term)
if and only if the free V-algebra on 2 generators has a compatible 2-ary cross. Here
V need not satisfy any finiteness hypothesis, but the cross involved turns out to be
asymmetric, while the notion of a cube term blocker involves symmetric crosses only.
Furthermore, Lemma 2.8 of [11] is a result about 2-cube terms only.

The current paper may be viewed as establishing a generalization of both Theo-
rem 2.1 of [12] and Lemma 2.8 of [11]. We will prove that an idempotent variety V fails
to have a d-cube term if and only if the free V-algebra on 2 generators, F = FV(x, y),
has a compatible d-ary cross. We will also show that an idempotent variety V fails to
have a d-cube term for every d if and only if F has a nonempty proper subuniverse
U that serves as a base for symmetric crosses of all arities, i.e. (U, F ) is a cube term
blocker of F. The message to take away from this is that to avoid cube terms of a
fixed dimension one should work with a not-necessarily-symmetric cross of that di-
mension, but to avoid cube terms of all dimensions it suffices to work with symmetric
crosses or cube term blockers.

This note evolved in response to a question we learned from Cliff Bergman, which
we state and answer in Section 5. Section 3 contains our proof that F = FV(x, y) has
compatible crosses of all arities if and only if F has a subuniverse U such that (U, F )
is a cube term blocker. In Section 4 we develop a tight lower bound on the minimal
dimension of a cube term for idempotent varieties of finite signature. In Section 6 we
use our results to establish that the Maltsev condition “existence of a cube term” is
join prime in the lattice of idempotent Maltsev conditions.

2. Cube terms and crosses

A nonempty subset B of a product A0 × · · · × Ad−1 is a block if it is a product
subset: B = B0 × · · · × Bd−1 with Bi ⊆ Ai for all i. A block is full in the i-th
coordinate if Bi = Ai. Thus, for any sequence (U0, . . . , Ud−1) of nonempty proper
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subsets of A, the cross

Cross(U0, . . . , Ud−1) = (U0 × A× · · · ×A) ∪ · · · ∪ (A× · · · × A× Ud−1)

= B0 ∪ · · · ∪Bd−1

on A is defined to be a subset of Ad that is a union of d blocks B0, . . . , Bd−1 where
Bi is full in all coordinates except the i-th.

If t is an operation on a set A and U ⊆ A, then t is U-absorbing in its i-th variable
if

t(A,A, . . . , U
︸︷︷︸

i

, . . . , A) ⊆ U.

An operation t on a set A is idempotent if t(a, a, . . . , a) = a for all a ∈ A.

Lemma 2.1. Let A be a set with nonempty proper subsets U , U0, . . . , Ud−1, and let
t be an n-ary idempotent operation on A.

(1) If t is compatible with Cross(U0, . . . , Ud−1) and π ∈ Sd is a permutation, then
t is compatible with Cross(Uπ(0), . . . , Uπ(d−1)). If (i0, . . . , ie−1) is a subsequence
of (0, . . . , d− 1), then t is also compatible with Cross(Ui0 , . . . , Uie−1

).
(2) If t is compatible with Cross(U0, . . . , Ud−1), then each Ui is a subuniverse of

(A, t).
(3) t is compatible with Cross(U0, . . . , Ud−1) if and only if

(∗) for every function

m : {0, . . . , n− 1} → {0, . . . , d− 1}

there is some i ∈ im(m) such that

(2.1) aj ∈ Ui for all j ∈ m−1(i) =⇒ t(a0, . . . , an−1) ∈ Ui.

(4) If t is compatible with Cross(U0, . . . , Ud−1), and n ≤ d, then for all except
possibly n− 1 choices of j < d it is the case that t is Uj-absorbing in one of
its variables.

(5) The following are equivalent for t:
(i) t is compatible with the d-ary symmetric cross Cross(U, . . . , U) for some

d ≥ n.
(ii) t is U-absorbing in one of its variables.
(iii) t is compatible with the d-ary symmetric cross Cross(U, . . . , U) for every

d ≥ 1.

Proof. For the first statement in (1) observe that Cross(Uπ(0), . . . , Uπ(d−1)) differs from
Cross(U0, . . . , Ud−1) by a permution of coordinates. Therefore the desired conclusion
follows from the fact that if we permute the coordinates of a subuniverse of (A; t)d

we again get a subuniverse of (A; t)d.
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For the second statement in (1), choose a0 /∈ U0. Since t is idempotent, the
singleton {a0} is a subuniverse of (A; t). Hence

{a0} × Cross(U1, . . . , Ud−1) = Cross(U0, . . . , Ud−1) ∩ ({a0} ×Ad−1)

is a subuniverse of (A; t)d. It follows that Cross(U1, . . . , Ud−1) is a subuniverse of
(A; t)d−1. Similarly, Cross(U0, . . . , Ui−1, Ui+1, . . . , Ud−1) is a subuniverse of (A; t)d−1

for all i < d. Repeating this procedure for every i not occurring in (i0, . . . , ie−1) we
get that Cross(Ui0 , . . . , Uie−1

) is a subuniverse of (A; t)e, that is, t is compatible with
Cross(Ui0 , . . . , Uie−1

).
Item (2) is the special case e = 1 of the second statement in (1).
For item (3), assume first that (∗) fails. Then there is a function

m : {0, . . . , n− 1} → {0, . . . , d− 1}

such that for every i ∈ im(m) the implication in (2.1) fails. Choose witnessing
elements: i.e. choose, for each i ∈ im(m) = {i0, . . . , ie−1}, elements ai,j ∈ A (j < n)
satisfying ai,j ∈ Ui for all j ∈ m−1(i) such that t(ai,0, . . . , ai,n−1) /∈ Ui. The columns
of the matrix [ak,ℓ] lie in Cross(Ui0 , . . . , Uie−1

), because every j < n belongs to m−1(i)
for some i ∈ im(m) = {i0, . . . , ie−1}, and hence by construction, the j-th column
of [ak,ℓ] has i-th entry ai,j ∈ Ui. However, by construction, the column obtained by
applying t to the rows of this matrix does not lie in Cross(Ui0 , . . . , Uie−1

). Thus, t is not
compatible with Cross(Ui0 , . . . , Uie−1

), so it is not compatible with Cross(U0, . . . , Ud−1)
either, according to item (1).

Conversely, assume that t is not compatible with Cross(U0, . . . , Ud−1). Then we
can select elements from this relation and allow them to serve as columns for a d×n
matrix [ai,j] where (i) for each column j, there is a row index i (=: m(j)) such that
ai,j ∈ Ui and (ii) the value obtained by applyig t to the i-th row fails to belong to Ui

for every i. This yields a function m witnessing that (∗) fails.
For item (4), define a bipartite graph with one part X = {x0, . . . , xn−1}, other part

equal to d := {0, . . . , d − 1}, and edge relation containing exactly those pairs (xi, j)
where t is not Uj-absorbing in variable xi.

Claim 2.2. There is no matching from X to d. (A matching from X to d is a subset
of the edge set that is an injective function X → d.)

Proof of Claim 2.2. Assume that there is a matching µ : X → d. By item (1) we may
reorder the Uj ’s so that µ(xi) = i is the matching. It follows that for every i < n,
t is not Ui-absorbing in its i-th variable, so there must exist ui,i ∈ Ui and elements
ai,k ∈ A such that

t(ai,0, ai,1, . . . , ui,i, . . . , ai,n−1) /∈ Ui.
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There also exist aj /∈ Uj for every j < d. These ingredients yield a situation

(2.2) t



























u0,0

a1,0
...

an−1,0

an
...

ad−1














,














a0,1
u1,1
...

an−1,1

an
...

ad−1














, · · · ,














a0,n−1

a1,n−1
...

un−1,n−1

an
...

ad−1



























=














/∈ U0

/∈ U1
...

/∈ Un−1

an(/∈ Un)
...

ad−1(/∈ Ud−1)














.

The operands are in Cross(U0, . . . , Ud−1), but the value is not, a contradiction. ⋄

By the Marriage Theorem, there is a subset Y ⊆ X such that the set K ⊆ d of
elements adjacent to elements of Y satisfies |K| < |Y | ≤ n. Thus, Y 6= ∅ and the set
K has size at most n− 1; moreover, if j ∈ d−K then no element of Y is adjacent to
j. Hence t is Uj-absorbing in its variables in Y .

For item (5), the implication (iii) ⇒ (i) is a tautology, and the implcation (i) ⇒ (ii)
follows from the statement in (4) we just proved.

To establish the remaining implication (ii) ⇒ (iii) assume without loss of generality
that t is U -absorbing in its first variable, and consider the d-ary symmetric cross
Cross(U, . . . , U) for some d ≥ 1. Let [ai,j ] be a d × n matrix of element of A whose
columns are in Cross(U, . . . , U). In particular, the first column lies in Cross(U, . . . , U),
so ai,0 ∈ U for some i < d. Since t is U -absorbing in its first variable, we get
that t(ai,0, . . . , ai,n−1) ∈ U . Hence the column obtained by applying t to the rows
of the matrix [ai,j] lies in Cross(U, . . . , U). This proves that t is compatible with
Cross(U, . . . , U). �

Corollary 2.3. Let A be an idempotent algebra. If A has a d-cube term, then A

has no compatible cross of dimension d or larger.

Proof. Let c be a d-cube term for A, and assume A has an e-dimensional compatible
cross Cross(U0, . . . , Ue−1) with d ≤ e. By Lemma 2.1 (4) there exists j < d such that
c is Uj-absorbing in one of its variables. This contradicts the cube identities (see
(1.1) or (1.2)). �

Our goal in this section is to characterize idempotent varieties which have no d-cube
term (for a fixed d ≥ 2) or have no cube term (of any dimension). In Theorem 2.4
below the first property will be characterized by the existence of a d-dimensional
cross, while the second one will be characterized by the existence of a specific in-
finite system of crosses, which we call a ‘cross sequence’. A cross sequence for an
idempotent algebra A is an ω-sequence (U0, U1, . . .) of proper nonempty subsets of
A such that Cross(Ui0 , . . . , Uik−1

) is a compatible relation of A for every finite sub-
sequence (Ui0 , . . . , Uik−1

) of (U0, U1, . . .). A cross sequence (U0, U1, . . .) is proper if
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⋂

i<ω Ui 6= ∅ and
⋃

i<ω Ui 6= A. It follows from Lemma 2.1(1) that any subsequence
and any reordering of a (proper) cross sequence is again a (proper) cross sequence.

Theorem 2.4. Let V be an idempotent variety, let F = FV(x, y) be the V-free algebra
over the free generating set {x, y}, and let d be a positive integer.

(1) V has no d-cube term iff F has a compatible d-dimensional cross.
(2) V has no cube term of any dimension iff F has a proper cross sequence iff F

has a cross sequence.

We will prove the two statements of Theorem 2.4 simultaneously. In Theorem 2.5
a uniform formulation of these two statements is based on the observation that for
any variety V, the condition ‘V has no d-cube term’ for a fixed d is equivalent to

V has no e-cube term for any e < δ

for δ = d+1, while the condition ‘V has no cube term of any dimension’ is equivalent
to the same displayed condition for δ = ω.

For 0 < δ ≤ ω, let

δ− :=

{

δ − 1 if δ < ω,

ω if δ = ω.

Theorem 2.5. Let V be an idempotent variety, let F = FV(x, y) be the free V-
algebra generated by {x, y}, and let 2 ≤ δ ≤ ω. The variety V fails to have a d-cube
for any d < δ if and only if there is a δ−-sequence, σ = (U0, U1, . . .) = (Ui)i<δ− , of
subuniverses of F such that

(1) x ∈ Ui and y /∈ Ui for every i < δ−, and
(2) Cross(Ui0 , . . . , Uik−1

) is a compatible relation of F for every finite subsequence
(Ui0 , . . . , Uik−1

) of σ.

Proof. The “if” assertion follows from Corollary 2.3: if F has compatible crosses of
every arity < δ, then it cannot have a d-cube term for any d < δ.

For the converse, assume that V has no d-cube term for any d < δ. This implies,
in particular, that V is nontrivial.

Recursively define the sequence σ = (U0, U1, . . .) = (Ui)i<δ− with Ui ≤ F, according
to the following rule: for i < δ−, Ui is chosen to be a subuniverse maximal for the
properties that

(i) x ∈ Ui, and
(ii) y /∈ 〈Cross(U0, U1, . . . , Ui, {x}, . . . , {x})〉Fk for any k with i < k < δ.

It is possible to make these choices, for the following reasons. The fact that V does not
have a d-cube term for any d < δ means exactly that y /∈ 〈Cross({x}, {x}, . . . , {x})〉Fk

for every k < δ. Thus the subuniverse {x} satisfies all the properties required of U0,
except that it need not be maximal among the subuniverses satisfying (i) and (ii)
for i = 0. But the union of a chain of subuniverses of F satisfying (i) and (ii) for
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a given i again satisfies these conditions for that i, so {x} can be extended to a
maximal subuniverse U0 satisfying (i) and (ii) for i = 0. Similarly, if 0 < i < δ−

and U0, . . . , Ui−1 have been chosen, then condition (ii) for i− 1 guarantees that {x}
satisfies all the properties required of Ui except maximality. Extend {x} to a maximal
Ui, etc.

Observe that y /∈ Ui for any i < δ−, since otherwise {x, y} ⊆ Ui, leading to F = Ui,
leading to Cross(U0, . . . , Ui) = F i+1, contradicting item (ii) above. Hence item (1) of
the theorem statement holds for σ = (U0, U1, . . .) = (Ui)i<δ− .

Our remaining task is to show that Cross(Ui0 , . . . , Uik−1
) is a compatible relation of

F for every finite subsequence (Ui0 , . . . , Uik−1
) of σ. Every finite subsequence of σ is a

subsequence of an initial segment of σ, therefore, in view of Lemma 2.1 (1), it suffices
to prove that Cross(U0, . . . , Ud−1) is a compatible relation of F for every d < δ. We
will do this simultaneously for every d with an indirect argument. Assume that there
is some d < δ and some element

(2.3) p = (p0, . . . , pd−1) ∈ 〈Cross(U0, . . . , Ud−1)〉Fd − Cross(U0, . . . , Ud−1).

Necessarily pi /∈ Ui for any i < d. There is no harm in assuming that, among all
possible choices of d and p, we have chosen those such that pi 6= y holds in the fewest
number of coordinates. That is, we assume that (2.3) holds and also that for no e < δ
do we have q ∈ 〈Cross(U0, . . . , Ue−1)〉Fe −Cross(U0, . . . , Ue−1) with q differing from y

in strictly fewer coordinates than p.
Since p ∈ 〈Cross(U0, . . . , Ud−1)〉Fd, there exists a term s and there exist elements

b0, . . . ,bm−1 ∈ Cross(U0, . . . , Ud−1) such that s(b0, . . . ,bm−1) = p. Observe that one
may lengthen all tuples involved by adding some number of y’s (say g with d+g < δ)
to the end in order to obtain

(2.4) s













b0

y
...
y






, . . . ,







bm−1

y
...
y













=







p

y
...
y






.

The columns appearing as arguments to s in (2.4) belong to

Cross(U0, . . . , Ud−1, Vd, . . . , Vd+g−1)

for any choice of (∅ 6=) Vi ⊂ F .
There must exist some coordinate of p that is not y, else condition (ii) from the

definition of σ is violated when k = d. Let i be the first coordinate of p where pi 6= y;
hence i < d. Since pi /∈ Ui, the subuniverse U ′

i = 〈Ui ∪ {pi}〉F properly extends
Ui. By the maximality of Ui, there must exist some k with i < k < δ such that
y ∈ 〈Cross(U0, . . . , U

′
i , {x}, . . . , {x})〉Fk .
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To understand how y could be generated, observe that since

Cross(U0, . . . , U
′
i , {x}, . . . , {x})

= B0(U0) ∪ · · · ∪Bi−1(Ui−1) ∪ Bi(U
′
i) ∪ Bi+1({x}) ∪ · · · ∪ Bk−1({x}),

we get that 〈Cross(U0, . . . , U
′
i , {x}, . . . , {x})〉Fk equals the subalgebra join

B0(U0) ∨ · · · ∨Bi−1(Ui−1) ∨ Bi(U
′
i) ∨ Bi+1({x}) ∨ · · · ∨ Bk−1({x}).

However Bi(U
′
i) = F i×U ′

i ×F k−i−1 is generated by {x, y}i× (Ui∪{pi})×{x, y}k−i−1,
and all elements of this product set already belong to Cross(U0, . . . , Ui, {x}, . . . , {x})
except the tuple (y, . . . , y, pi, y, . . . , y). Hence 〈Cross(U0, . . . , U

′
i , {x}, . . . , {x})〉Fk is

generated by

Cross(U0, . . . , Ui, {x}, . . . , {x}) ∪ {(y, . . . , y, pi, y, . . . , y)}.

Since y is generated by this set, there is a term t and elements (columns) ci ∈
Cross(U0, . . . , Ui, {x}, . . . , {x}) ⊆ F k such that

(2.5) t














c0, . . . , cn−1,














y
...
y
pi
y
...
y



























=














y
...
y
y
y
...
y














= y.

Lengthen these tuples, by adding y’s at the end, to some length e satisfying max{k, d} ≤
e < δ (hence the columns have length at least d). Equation (2.5) still holds. Write
the extension of ci as c

′
i, and note that

c′i ∈ Cross(U0, . . . , Ui, {x}, . . . , {x}) (⊆ F e)

where there may be more {x}’s than before.
Let ε = (ε0, . . . , εe−1) be the endomorphism of Fe defined coordinatewise as follows:

(a) εj : F → F is the identity if 0 ≤ j ≤ i (≤ d) or d ≤ j < e, and
(b) εj : F → F : x 7→ x, y 7→ pj if i < j < d.

Observe that εmaps Cross(U0, . . . , Ui, {x}, . . . , {x}) into itself. Indeed, ε(Bj(Uj)) ⊆
Bj(Uj) for j ≤ i because εj = id, while ε(Bj({x})) ⊆ Bj({x}) for j > i because εj
fixes x.
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Applying ε to (2.5) yields

(2.6) t




















ε(c′0), . . . , ε(c
′
n−1),




















y
...
y
pi
pi+1
...

pd−1

y
...
y







































=




















y
...
y
y

pi+1
...

pd−1

y
...
y




















=: q.

By the choice of i, the last argument of t in (2.6) is the column (p, y, . . . , y). Therefore,
the expression for q in (2.6) can be rewritten as

(2.7) t






ε(c′0), . . . , ε(c

′
n−1), s













b0

y
...
y






, . . . ,







bm−1

y
...
y



















= q

using (2.4). The columns, ε(c′u) and (bv, y, . . . , y) all belong to Cross(U0, . . . , Ue−1),
but qj /∈ Uj for any j. Hence (2.7) asserts that

q ∈ 〈Cross(U0, . . . , Ue−1)〉Fe − Cross(U0, . . . , Ue−1)

with q differing from the constant y-tuple in strictly fewer coordinates than p. This
is so because q differs from p only in that it may have more y’s at the end and
qi = y while pi 6= y. This conclusion contradicts the choice of p. This proves that
Cross(U0, . . . , Ud−1) is a compatible relation of F for every d < δ. �

Proof of Theorem 2.4. For item (1), we assume first that V has no d-cube term.
Hence, V has no e-cube term for any e < d + 1. It follows from Theorem 2.5 (for
δ = d + 1) that there is a sequence (U0, . . . , Ud−1) of subuniverses of F such that
x ∈

⋂

i<d Ui, y /∈
⋃

i<d Ui, and Cross(U0, . . . , Ud−1) is a compatible relation of F.
Conversely, if F has a compatible d-dimensional cross, then, by Corollary 2.3, F

has no d-cube term. Hence V has no d-cube term.
For item (2), let us assume first that V has no cube term. Applying Theorem 2.5

(for δ = ω) we conclude that there is an ω-sequence, σ = (U0, U1, . . . ), of subuniverses
of F such that σ is a proper cross sequence for F satisfying x ∈

⋂

i<ω Ui and y /∈
⋃

i<ω Ui.
If F has a proper cross sequence, then F has a cross sequence. Finally, if F

has a cross sequence, then F has compatible crosses of arbitrarily high dimensions.
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Therefore, by Corollary 2.3, F has no cube term of any dimension. Hence V has no
cube term of any dimension either, completing the proof. �

3. Producing symmetric crosses

We have shown in Theorem 2.4 (2) that an idempotent variety V fails to have a
cube term if and only if its 2-generated free algebra F has a proper cross sequence. In
this section we will use a combinatorial argument to show that this cross sequence can
be converted to a constant cross sequence (U, U, U, . . .). This produces a nonempty
proper subuniverse U of F that is the base of a compatible symmetric d-ary cross for
every d. In fact, our construction of ‘symmetrizing’ a proper cross sequence works
for any idempotent algebra, as the theorem below shows.

Theorem 3.1. The following are equivalent for an idempotent algebra A.

(1) A has a proper cross sequence.
(2) A has a nonempty proper subuniverse U such that (U,A) is a cube term blocker

for A. (That is, U is a base for compatible symmetric d-ary crosses of A for
all d.)

Proof. The implication (2) ⇒ (1) is clear from the definitions: If (U,A) is a cube
term blocker of A, then the d-ary cross Cross(U, . . . , U) is a compatible relation of A
for every d, so the constant ω-sequence (U, U, . . .) is a proper cross sequence for A.

To prove the reverse implication (1) ⇒ (2), assume that σ = (U0, U1, . . .) is a proper

cross sequence for A. We shall prove that if U :=
⋃∞

i=0

(
⋂∞

j=i Uj

)

, then (U, F ) is a

cube term blocker of A. Note that
∞⋂

j=0

Uj ⊆
∞⋂

j=1

Uj ⊆ · · · ⊆
∞⋂

j=i

Uj ⊆
∞⋂

j=i+1

Uj ⊆ · · · ⊆
∞⋃

j=0

Uj ,

so U :=
⋃∞

i=0

(
⋂∞

j=i Uj

)

is the union of an increasing ω-sequence of subuniverses

of A. It follows that U is a subuniverse of A. Moreover, since the cross sequence
σ = (U0, U1, . . . ) is proper, we have

⋂∞

j=0 Uj 6= ∅ and
⋃∞

j=0Uj 6= A. This implies that
U is a nonempty proper subuniverse of A.

The nontrivial part of the proof, therefore, is the argument that U is a base for
symmetric crosses of all arities. To see that this is so, choose an arbitrary term
operation t(x0, . . . , xn−1) of A and as in the proof of Lemma 2.1 (4), use it to define
a bipartite graph as follows: the vertices of the two parts are X = {x0, . . . , xn−1},
the set of variables of t, and ω, the set indexing the terms of the cross sequence
σ = (U0, U1, . . . ); the edges of the graph are the pairs (xi, j) such that t is not
Uj-absorbing in variable xi.

Claim 3.2. There is no matching from X to ω.
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Proof of Claim 3.2. Suppose that there is a matching µ : X → ω. Since a reordering
of finitely many terms of σ produces a new cross sequence for A and leaves the set
U unchanged, we may assume without loss of generality that µ(xi) = i for all i < n.
This mean that for every i < n the term t is not Ui-absorbing in variable xi, so for
every i < n there must exist ui,i ∈ Ui and elements ai,k ∈ A such that

t(ai,0, ai,1, . . . , ui,i, . . . , ai,n−1) /∈ Ui.

There also exist aj /∈ Uj for every j < d. Now the same calculation (2.2) as in the
proof of Lemma 2.1 (4) yields that t is not compatible with Cross(U0, . . . , Ud−1). This
contradicts our assumption that (U0, U1, . . . ) is a cross sequence for A, and hence
proves the claim. ⋄

Since X is finite, the Marriage Theorem holds in this situation. It asserts that,
since there is no matching from X to ω, there is a subset Y ⊆ X such that the
set K ⊆ ω of elements adjacent to elements of Y satisfies |K| < |Y | ≤ |X| = n.
Therefore Y 6= ∅, the set K has size at most |Y | − 1 ≤ n− 1, and if xj ∈ Y then for
all ℓ ∈ ω −K we have that t is Uℓ-absorbing in variable xj .

It follows that if xj ∈ Y then t is (
⋂∞

j=i Uj)-absorbing in variable xj for all but

finitely many i, and hence that t is
(⋃∞

i=0(
⋂∞

j=i Uj)
)
-absorbing in variable xj . This

proves that every term operation t of A has a variable xj in which t is U -absorbing.
By Lemma 2.1 (5), this is equivalent to the statement that all term operations of A
are compatible with all symmetric crosses with base U . �

In Theorem 2.4 (2) we characterized the idempotent varieties that fail to have cube
terms. Using Theorem 3.1 we can strengthen this characterization as follows.

Theorem 3.3. Let V be an idempotent variety, and let F = FV(x, y) be the V-free
algebra over the free generating set {x, y}. The following conditions are equivalent.

(1) V has no cube term.
(2) F has a nonempty proper subuniverse U such that (U, F ) is a cube term blocker

for F. (That is, U is a base for compatible symmetric d-ary crosses of F for
all d.)

Proof. Combine Theorem 3.1 for A = F with Theorem 2.4. �

As we mentioned in the introduction, cube term blockers were intorduced in [12]
to prove that a finite idempotent algebra A fails to have a d-cube term for any d if
and only if A has a cube term blocker (U,B), or equivalently, some subalgebra B of
A has compatible symmetric crosses with base U of every arity.

Next we show how to derive this theorem of [12] from the results of our paper.

Lemma 3.4. In any given signature, the class of idempotent algebras with no cube
term blockers is closed under the formation of homomorphic images, subalgebras and
finite products.
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Proof. We prove that the nonexistence of cube term blockers is preserved under ho-
momorphic images, subalgebras, and finite products by arguing the contrapositive.

If ϕ : A → C is a surjective homomorphism and (U,B) is a cube term blocker of
C, then it is easy to see that (ϕ−1(U), ϕ−1(B)) is a cube term blocker of A. This can
be done by checking that the inverse image, under ϕ, of each compatible symmetric
cross Cross(U, . . . , U) of B is a compatible relation of the subalgebra ϕ−1(B) of A,
and is equal to the symmetric cross Cross

(
ϕ−1(U), . . . , ϕ−1(U)

)
.

If C ≤ A and (U,B) is a cube term blocker of C, then it is also a cube term blocker
of A.

Before turning to products, first note that if (U,B) is a cube term blocker of A,
and V is a subuniverse of A, then (U ∩V,B ∩V ) is a cube term blocker for A unless
U ∩ V = ∅ or U ∩ V = B ∩ V .

Now, to prove the statement for products, we assume that (U,B) is a cube term
blocker of A × C, and explain how to find a cube term blocker for either A or C.
Choose (a, c) ∈ B − U , and let πA, πC be the coordinate projections of A × C. If
πA(U) 6= πA(B), then (πA(U), πA(B)) is a cube blocker of A, and we are done.
Otherwise πA(U) = πA(B), hence a ∈ πA(B) = πA(U), implying the existence of
an element (a, d) ∈ U . Now we let V = {a} × C and apply the observation of the
previous paragraph: Since ∅ 6= U ∩ V 6= B ∩ V , the pair (U ∩ V,B ∩ V ) is a cube
term blocker for A×C. We further have that

∅ 6= πC(U ∩ V ) 6= πC(B ∩ V ),

since d ∈ πC(U ∩V ) and c ∈ πC(B∩V )−πC(U ∩V ). Hence (πC(U ∩C), πC(B∩V ))
is a cube term blocker for C. �

Corollary 3.5. If A is a finite idempotent algebra, then the following are equivalent:

(1) A has no cube term.
(2) V(A) has no cube term.
(3) FV(A)(x, y) has a cube term blocker.
(4) A has a cube term blocker.

Proof. (1) ⇒ (2) is clear, because a cube term for V(A) would be a cube term for
A. The implication (2) ⇒ (3) follows from Theorem 3.3. For (3) ⇒ (4) we prove the
contrapositive. If A has no cube term blocker, then by Lemma 3.4 and by the fact
that FV(A)(x, y) lies in HSPfin(A) when A is finite, we get that FV(A)(x, y) has no
cube term blocker. Finally, (4) ⇒ (1) follows from Corollary 2.3. �

4. The influence of finite signature

By a signature we mean a pair τ = (O, arity) where O is a set of operation symbols
and arity : O → ω is a function assigning arity. We consider only idempotent varieties,
so we may and do consider only signatures where arity(f) ≥ 2 for all f ∈ O. We will
call such signatures “suitable for idempotent varieties”.
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In this section we consider only finite signatures, which are those where |O| < ω.
For such a signature τ we define

|τ | = max
f∈O

(
arity(f)

)
and ‖τ‖ = 1 +

∑

f∈O

(
arity(f)− 1

)
.

It is easy to see that |τ | = ‖τ‖ if there is only one operation in the signature, while
|τ | < ‖τ‖ if there is more than one.

Now let us consider an idempotent variety V of finite signature τ , and let F =
FV(x, y) be the V-free algebra generated by {x, y}. The main results of this section
are the following:

• If F has a compatible cross of arity ‖τ‖ or more, then it has compatible crosses
of all arities. Equivalently, if V has a cube term, then it has a ‖τ‖-cube term
(Theorem 4.1).

• For any suitable finite signature τ there exists an example for V where F has
a compatible cross of arity ‖τ‖− 1, but no compatible crosses of higher arity.
Equivalently, for any suitable finite signature τ there exists an example for
V such that V has a ‖τ‖-cube term, but has no d-cube term for d < ‖τ‖
(Example 4.4).

For symmetric crosses the corresponding statements are as follows:

• If F has a compatible symmetric cross of arity |τ | or more, then it has com-
patible symmetric crosses of all arities (Corollary 4.3).

• For any suitable finite signature there exists an example where F has a com-
patible symmetric cross of arity |τ | − 1, but no compatible symmetric crosses
of higher arity (Example 4.8).

By adding operations to a signature one can make ‖τ‖ large while |τ | remains
small. Thus one can create varieties with cube terms where the least dimension of
a cube term is much greater than the arities of the symmetric crosses of F. These
results show that we can’t use only symmetric crosses to characterize the existence
or nonexistence of cube terms of a fixed dimension.

Theorem 4.1. Let V be an idempotent variety of finite signature τ . If V has no
‖τ‖-cube term, then it has no cube term at all.

In particular, if the signature of V consists of a single binary operation symbol,
then either V has a Maltsev term or it has no cube term at all.

Proof. In the second statement, our assumption on the signature τ forces that ‖τ‖= 2.
Hence the claim is an easy consequence of the first statement of the theorem and the
fact that a variety has a Maltsev term if and only if it has a 2-cube term.

To prove the first statement, assume that V is an idempotent variety of finite
signature τ , and let F = FV(x, y). We know from Theorem 2.4 (1) that for every
d ≥ 1,

V has no d-cube term ⇔ F has a compatible d-ary cross.
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We also know from Theorem 3.3, from the definition of a cube term blocker, and
from Corollary 2.3 that

V has no cube term
Thm 3.3
⇔

F has a cube term blocker (U, F ) where
U is a nonempty proper subuniverse of F

Cor 2.3 ⇑ m def

F has compatible crosses
of all arities

⇐
U is the base for compatible symmetric

crosses of F of all arities;

hence all four conditions displayed here are equivalent. Therefore it suffices to prove
the first statement of Theorem 4.1 in the following equivalent formulation.

Claim 4.2. Let V be an idempotent variety of finite signature τ , and let F = FV(x, y)
be the V-free algebra over the free generating set {x, y}. If F has a compatible cross
of arity ≥ ‖τ‖, then F has a nonempty proper subuniverse U such that (U, F ) is a
cube term blocker for F. (That is, U is a base for compatible symmetric crosses of F
of all arities.)

Proof of Claim 4.2. Assume that F has a compatible d-ary cross Cross(U0, . . . , Ud−1)
where d ≥ ‖τ‖. Let f0, . . . , fk−1 be the operation symbols of τ , and let arity(fi) = ni

(i < k). So, d ≥ ‖τ‖ = 1 +
∑k−1

i=0 (ni − 1). Applying Lemma 2.1 (4) to the basic
operations f0, . . . , fk−1 of F we see that for each i < k there exists a subset Ki of
d := {0, . . . , d− 1} such that |Ki| ≤ ni−1 and fi has a Uj-absorbing variable for every

j ∈ d−Ki. Since |d−
⋃k−1

i=0 Ki| ≥ d−
∑k−1

i=0 (ni − 1) ≥ 1, we obtain that there exists
at least one j ∈ d such that every fi (i < k) has a Uj-absorbing variable. It follows
from Lemma 2.1 (5) that every fi (i < k) is compatible with the symmetric crosses
Cross(Uj , . . . , Uj) of all arities. Hence, the symmetric crosses Cross(Uj , . . . , Uj) of all
arities are compatible relations of F. Equivalently, (Uj , F ) is a cube term blocker for
F. ⋄

This finishes the proof of Theorem 4.1. �

The analog of Claim 4.2 for symmetric crosses can be proved similarly.

Corollary 4.3. Let V be an idempotent variety of finite signature τ , and let F =
FV(x, y) be the V-free algebra with free generators x, y. If F has a compatible sym-
metric cross Cross(U, . . . , U) of arity ≥ |τ |, then (U, F ) is a cube term blocker for F.
(That is, U is a base for compatible symmetric crosses of F of all arities.)

Proof. Assume that F has a compatible symmetric d-ary cross Cross(U, . . . , U) where
d ≥ |τ |. As before, let f0, . . . , fk−1 be the operation symbols of τ , and let arity(fi) = ni

(i < k). So, d ≥ ni for all i. It follows from Lemma 2.1 (4) that every basic operation
f0, . . . , fk−1 of F has a U -absorbing variable. Hence, by Lemma 2.1 (5), f0, . . . , fk−1

are compatible with the symmetric crosses Cross(U, . . . , U) of all arities. Thus, the
symmetric crosses Cross(U, . . . , U) of all arities are compatible relations of F, or
equivalently, (U, F ) is a cube term blocker for F. �
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Example 4.4. Our goal in this example is to show that the bound in Theorem 4.1
is sharp. That theorem shows that if an idempotent variety of finite signature τ has
a d-cube term for some d, then it has one for d = ‖τ‖. In this example we construct,
for any suitable finite signature τ , an idempotent variety that has a ‖τ‖-cube term,
but no d-cube term for d < ‖τ‖.

If one revisits the definition of “d-cube term”, one sees that the concept of a 1-cube
term is degenerate: the only varieties with 1-cube terms are varieties of 1-element
algebras, and for these varieties any term without nullary symbols is a 1-cube term.
As noted earlier, a variety has a 2-cube term if and only if it has a Maltsev term.
Thus the simplest nondegenerate example to be exhibited is that of a nontrivial
variety with a Maltsev term in a signature τ satisfying ‖τ‖ = 2. If τ is suitable
for idempotent varieties, then ‖τ‖ = 2 implies exactly that τ is a signature with
one operation, which is binary. For this signature, take as an example the variety
generated by 〈Z3; f(x, y)〉 where f(x, y) = 2x + 2y. This variety is nontrivial, has
‖τ‖ = 2, and has a Maltsev term m(x, y, z) := f(f(x, z), y) = x+ 2y + z.

The cases where ‖τ‖ > 2 will be handled by a uniform construction. Suppose that
τ has m operation symbols. Set ni = arity(fi), 1 ≤ i ≤ m, and set n := ‖τ‖ − 1 =
∑m

i=1(ni − 1). If

C1 = {1, 2, · · · , (n1 − 1)},

C2 = {(n1 − 1) + 1, (n1 − 1) + 2, · · · , (n1 − 1) + (n2 − 1)},

...

Cj =
{( j−1

∑

i=1

(ni − 1)
)

+ 1, · · · ,
( j
∑

i=1

(ni − 1)
)}

,

...

Cm =
{(m−1∑

i=1

(ni − 1)
)

+ 1, · · · , n
}

,

then {C1, . . . , Cm} is a partition of [n] := {1, . . . , n} whose cells that are in 1–1
correspondence with the operation symbols: Ci ↔ fi. Moreover, |Ci| = arity(fi)− 1.
The elements of [n] are going to be coordinates in a product algebra. To describe
the construction of the algebra we will use the terminology that an element j ∈ [n]
belongs to fi, (or fi belongs to j) if j ∈ Ci.

The universe of the product algebra will be A = {0, 1}n. We will explain how to
interpret each symbol fi on this set, by describing its behavior in each coordinate. We
need some terminology to do this. Let ∨ (join) and ∧ (meet) be the lattice operations
on {0, 1} for the order 0 < 1. In any given coordinate we will interpret fi as either:
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(1) the ni-ary join on {0, 1}:

fi(x1, . . . , xni
) =

∨

1≤j≤ni

xj ,

or
(2) the “canonical” ni-ary near-unanimity operation on {0, 1}, namely

fi(x1, . . . , xni
) =

∨

1≤j<k≤ni

(xj ∧ xk).

(This operation is a near-unanimity operation only when ni > 2, but we shall
use the terminology even when ni = 2. In this situation fi(x1, x2) = x1 ∧ x2.)

We interpret fi on A = {0, 1}n by stipulating that it acts coordinatewise, and that
it acts like the canonical ni-ary near-unanimity operation in the coordinates that
belong to fi and like the ni-ary join operation in the coordinates that do not belong
to fi.

The set A equipped with the operations f1, . . . , fm just defined is the algebra we call
A. Each fi is idempotent on A, since join, meet and near-unanimity are idempotent.
Therefore, the set Uj ⊆ A = {0, 1}n consisting of all n-tuples with 1 in the j-th
coordinate is a nonempty proper subuniverse of A for each j between 1 and n.

Claim 4.5. Cross(U1, . . . , Un) is a compatible (‖τ‖ − 1)-ary cross of A.

Proof of Claim 4.5. It is only the n > 1 case of the claim that is interesting, and we
are in that case since ‖τ‖ > 2 and n = ‖τ‖ − 1.

Elements of A = {0, 1}n will be represented by rows of length n consisting of 0’s
and 1’s. The elements of Cross(U1, . . . , Un) are n-tuples of elements of A, so could
be represented by columns of length n, where each entry in the column is a row of
length n. But instead of doing this, we drop parentheses and consider elements of
Cross(U1, . . . , Un) to be n× n matrices of 0’s and 1’s. For such a matrix to belong to
this relation we must have the first row in U1 or the second row in U2, etc. Since a
row of length n belongs to Ui if and only if it has a 1 in the i-th place, it follows that
an n× n matrix belongs to Cross(U1, . . . , Un) exactly if it has a 1 somewhere on the
diagonal.

The operations ofA act coordinatewise on the columns in a relation, and, in a given
coordinate, act coordinatewise on rows. Thus, the operations ofA act coordinatewise
on matrices. We must show that if fi is one of the operations of A and M1, . . . ,Mni

∈
Cross(U1, . . . , Un), then fi(M1, . . . ,Mni

) ∈ Cross(U1, . . . , Un).
Suppose that some Mk has a 1 on its diagonal in the j, j-th entry, where j does

not belong to fi. Then, as fi acts as ni-ary join in the j, j-position, it follows that
fi(M1, . . . ,Mni

) has a 1 in its j, j-th entry, so fi(M1, . . . ,Mni
) ∈ Cross(U1, . . . , Un).

Now suppose that each Mk only has 1’s in entries j, j where j does belong to fi.
Since there are ni arguments of fi, and only ni − 1 distinct j’s that belong to fi, it
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must be that there are two matrices Mk and Mℓ, 1 ≤ k < ℓ ≤ ni which both have 1
in the j, j-position for some j belonging to fi. Since fi acts like the canonical ni-ary
near unanimity operation in position j, j, it follows that fi(M1, . . . ,Mni

) has a 1 in
its j, j-th entry, so fi(M1, . . . ,Mni

) ∈ Cross(U1, . . . , Un). These arguments establish
the claim. ⋄

Claim 4.6. A has a cube term.

Proof of Claim 4.6. The fact that the operations of A are defined coordinatewise on
{0, 1}n implies that A is a product of its 2-element coordinate factor algebras. Thus,
to prove this claim, it is enough to show that each coordinate factor of A has a cube
term. That this is enough follows from our Corollary 3.5, combined with Lemma 3.4,
or from Corollary 2.5 of [12]. Namely, each result implies that if each algebra in a
finite family has a cube term, then the product also has a cube term.

But it is easy to see that each coordinate factor of A has a cube term (in fact, a
near-unanimity term). To see this, consider the j-th coordinate factor algebra and
suppose that fi belongs to j. If arity(fi) > 2, then fi interprets as the canonical ni-ary
near-unanimity operation in the j-th coordinate and we are done. If arity(fi) = 2, then
fi interprets as binary meet in the j-th coordinate and fi belongs to no coordinate
other than j. Since n = ‖τ‖ − 1 > 1, there exists some coordinate different from j.
Hence there must exist some fk 6= fi belonging to a coordinate other than j. In this
case, fk will interpret as nk-ary join in the j-th coordinate. With join coming from
fk and meet coming from fi one can construct a ternary near-unanimity operation
in coordinate j. ⋄

Claim 4.6 shows that A has a d-cube term for some d. Hence, we can use Theo-
rem 4.1 to conclude thatA has a ‖τ‖-cube term. On the other hand, by Corollary 2.3,
Claim 4.5 prevents A from having a d-cube term for any d < ‖τ‖. This proves all
required properties of A. �

Remark 4.7. Example 4.4 was discovered with the help of UACalc, a universal
algebra calculator. After including it here we learned that the preprint [6] by Camp-
enella, Conley and Valeriote contains essentially the same example. We are informed
that they also discovered the example with the help of UACalc. The purpose of the
example in their paper is roughly the same as ours (i.e., lower bounds for dimension
estimates), except our application is to cube terms and their application is to near
unanimity terms.

Example 4.8. In this example our goal is to show that the bound in Corollary 4.3
is sharp. Accordingly, we want to construct, for any suitable finite signature τ , an
idempotent variety V such that the free algebra F = FV(x, y) has a compatible
symmetric cross of arity |τ | − 1, but no compatible symmetric crosses of higher arity.

If τ is suitable for idempotent varieties and |τ | = 2, then τ is a signature with
binary operation symbols only, say f1, . . . , fm. In this case we can choose V to be
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the variety generated by an algebra 〈Z3; f1, . . . , fm〉 where f1(x, y) = 2x+2y and for
2 ≤ i ≤ m, fi is interpreted as a projection. Since V has a Maltsev term, F has
no compatible symmetric crosses of arity ≥ 2. However, Cross({x}) is a compatible
symmetric cross of F of arity 1.

Let us assume from now on that |τ | ≥ 3, and let f1, . . . , fm denote the opera-
tion symbols in τ where fi is ni-ary (1 ≤ i ≤ m). We may assume without loss
of generality that n1 ≥ · · · ≥ nm, so |τ | = n1 (≥ 3). Now consider an algebra
B = 〈{0, 1}; f1, . . . , fm〉 where f1 is interpreted on {0, 1} as the “canonical” n1-ary
near-unanimity operation (see the definition in Example 4.4), and for 2 ≤ i ≤ m,
fi is interpreted as a projection. Let V be the variety generated by B, and let
F = FV(x, y). Since V has an n1-ary near-unanimity operation, we know from Corol-
lary 2.3 that F has no compatible crosses of arity ≥ n1 = |τ |. On the other hand,
since the (n1 − 1)-ary cross Cross({1}, . . . , {1}) = {0, 1}n1−1 \ {(0, . . . , 0)} is a com-
patible relation of B, its inverse image under the homomophism F → B sending x
to 1 and y to 0 is a compatible symmetric cross of F of arity n1 − 1 = |τ | − 1.

5. A fact about cyclic term varieties

This note emerged in response to a question we learned from Cliff Bergman: Sup-
pose that C2 is the variety defined with one binary operation and axiomatized by the
identities

(1) w(x, x) = x, and
(2) w(x, y) = w(y, x).

Is it true that every subvariety of C2 either contains the 2-element semilattice or is
congruence permutable?

Bergman’s question arose out of a certain line of investigation into constraint satis-
faction problems. Namely, it is of interest to understand whether the algebras in the
pure cyclic term varieties have tractable CSP’s. The d-ary pure cyclic term variety
Cd is defined with one d-ary operation satisfying

(1) w(x, x, . . . , x) = x, and
(2) w(x1, x2, . . . , xd) = w(x2, x3, . . . , x1).

If one could show that each finite algebra in each variety Cd has tractable associated
CSP’s, then one would have solved the Feder–Vardi Conjecture.

Bergman and David Failing showed in [3] that if V is a subvariety of C2 that is
the join of a congruence permutable variety and the variety of semilattices, then the
finite algebras in V have tractable associated CSP’s. So, Bergman was really asking
whether this theorem applied to every subvariety of C2 that is a join of the variety of
semilattices and a disjoint subvariety. When Bergman asked the question, he men-
tioned that an affirmative answer was supported by extensive computer computations
performed by Bergman, William DeMeo, and Jiali Li.
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Here we explain why the answer to Bergman’s question is affirmative, even with
2 replaced by d. That is, we explain why a subvariety of the d-ary pure cyclic term
variety either contains a 2-element semilattice or else has a d-cube term. For this,
define a 2-element semilattice in Cd to be an algebra with 2-element universe, say
{0, 1} and operation defined by

w(x1, . . . , xd) =

{

1 if x1 = x2 = · · · = xd = 1;

0 else.
(5.1)

More generally, a 2-element semilattice for a variety V is one in which, for every d,
each d-ary fundamental operation satisfies (5.1).

Theorem 5.1. A subvariety of the pure d-ary cyclic term variety either has a d-cube
term or contains a 2-element semilattice. A finite algebra in the pure d-ary cyclic
term variety either has a d-cube term or has a 2-element semilattice section.

One should note that a 2-element semilattice has no d-cube term for any d, so the
two cases described in the theorem are complementary.

Proof. Let V be a subvariety of the pure d-ary cyclic term variety. If V does not
have a d-cube term, then by Theorem 2.4 (1) the free algebra F = FV(x, y) has a
compatible d-ary cross. But the signature τ of V satisfies d = ‖τ‖, so Claim 4.2 shows
that F has a cube term blocker of the form (U, F ). It follows from Lemma 2.1 (5) that
the cyclic term of the variety must be U -absorbing in at least one of its variables, so
by cyclicity this term is U -absorbing in all of its variables. This implies that (i) the
congruence θ on F generated by U×U is the union of U×U and the equality relation,
and (ii) if t ∈ F \ U is chosen arbitrarily, then S = U ∪ {t} is a subuniverse of F.
The algebra S/θ|S must then be a 2-element semilattice in V.

For the second statement, assume that A is a finite algebra in the pure d-ary cyclic
term variety and that A does not have a d-cube term. Then V(A) cannot have a
d-cube term, so by Theorem 4.1, V(A) cannot have a cube term at all. Therefore
Corollary 3.5 guarantees that A has a cube term blocker, say (U,B). Now construct
a 2-element semilattice from this blocker in the same manner one was constructed
from the blocker (U, F ) in the preceding paragraph. It will be a section of A. �

What matters to us in Theorem 5.1 is that the d in “d-ary cyclic term” agrees
with the d in “d-cube term”; that is, the theorem establishes the existence of a cube
term under some condition, and bounds its index. If one is not concerned with such a
bound, then one can establish a result about varieties with many cyclic fundamental
operations, namely:

Theorem 5.2. Let V be an idempotent variety whose fundamental operations each
satisfy cyclic identities. That is, for each fundamental operation w(x1, . . . , xn) it is
the case that V |= w(x1, x2, . . . , xn) = w(x2, x3, . . . , x1). Then V either has a cube
term or contains a 2-element semilattice.
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Proof. Let F = FV(x, y). If V has no cube term, then by Theorem 3.3 there is a cube
term blocker (U, F ) for F. By repeating the argument in the first paragraph of the
proof of Theorem 5.1 we find that V contains a 2-element semilattice. �

6. Generic crosses

In this section we focus on idempotent varieties of finite type. We show that if a
nontrivial member of such a variety has a compatible d-ary cross, then some countably
infinite algebra A in the variety has a ‘generic’ compatible d-ary cross. By a ‘generic
cross’ we mean a cross Cross(U1, . . . , Un) where the sets U1, . . . , Un are as independent
as possible. Specifically, when Cross(U1, . . . , Un) is a cross on a countably infinite set
A, we call Cross(U1, . . . , Un) generic if every nonzero Boolean combination of the sets
U1, . . . , Un is countably infinite.

Theorem 6.1. If X is an idempotent variety of finite type and some member of
X has a compatible d-ary cross, then some countably infinite member of X has a
compatible d-ary generic cross.

Proof. If some member of X has a compatible d-ary cross, then by Corollary 2.3, X
cannot have a d-cube term. Hence Theorem 3.3 implies that the algebra F = FX (x, y)
must have a compatible d-ary cross, say

Cross(U1, . . . , Ud) = B1 ∪ · · · ∪Bd

where Bi = F × · · · × F × Ui × F × · · · × F is full in all coordinates except the ith.
Here F need not be infinite, and this cross need not be generic, so we modify the
situation as follows.

Let A ∈ X be a countably infinite algebra. Now define

F = Fd ×A,

U1 = B1 ×A,

...

Ud = Bd ×A.

It is easy to see that F is countably infinite and that each Ui is a nonempty proper
subuniverse of F .

Claim 6.2. Cross(U1, . . . ,Ud) is a compatible generic d-ary cross of F .

Proof of Claim 6.2. We first argue that Cross(U1, . . . ,Ud) is compatible, i.e. a sub-
universe of Fd. For this we consider F = Fd ×A to have d+ 1 coordinates, so

Fd = Fd ×A× Fd ×A× · · · × Fd ×A

has d(d+ 1) coordinates. Notice that all coordinate algebras in this direct represen-
tation of Fd are F except those whose coordinates lie in the arithmetical progression
d+ 1, 2(d+ 1), · · · , d(d+ 1), in which case the coordinate algebras are A.
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There is a projection homomorphism π : Fd → Fd which projects onto the coordi-
nates in the arithmetic progression 1, (d+1)+ 2, 2(d+1)+ 3, · · · , (d− 1)(d+1)+ d,
which projects onto the first coordinate of the first block of d+ 1 factors of Fd, the
second factor of the second block of d+ 1 factors, etc. It is not hard to verify that

Cross(U1, . . . ,Ud) = π−1
(
Cross(U1, . . . , Ud)

)
,

thereby establishing that Cross(U1, . . . ,Ud) is compatible.
To show that Cross(U1, . . . ,Ud) is generic, it suffices to show that any intersection

Uε1
1 ∩ · · · ∩ Uεd

d contains infinitely many elements, where εi = ±1 for each i and
U+1
1 = U1 while U

−1
1 = F \U1. Observe that a (d+1)-tuple (u1, . . . , ud, a) belongs to

the set Uε1
1 ∩ · · · ∩ Uεd

d exactly when ui ∈ Ui if εi = +1, ui ∈ F \ Ui if εi = −1, and
a ∈ A. Such choices are possible since Ui is a nonempty proper subuniverse of F for
each i and A is nonempty. If we fix the ui’s and let the last coordinate a range over
the infinite set A we obtain infinitely many elements in Uε1

1 ∩ · · · ∩ Uεd
d . ⋄

This completes the proof of Theorem 6.1. �

Corollary 6.3. The class of varieties having a d-cube term represents a join-prime
filter in the lattice of idempotent Maltsev conditions.

Proof. If not, then there are idempotent varieties X and Y that do not have a d-cube
term, but their coproduct X ⊔Y does have a d-cube term. But if X ⊔Y has a d-cube
term, then so must X ′ ⊔Y ′ for some finitely presentable varieties X ′ interpretable in
X and Y ′ interpretable in Y . Replacing X and Y by X ′ and Y ′ we may assume that
X and Y are finitely presentable, in particular of finite type.

We prove the corollary by arguing that if X and Y have finite type and no d-cube
term, then X ⊔ Y has no d-cube term.

By Theorem 6.1 there exist countably infinite algebras A ∈ X and B ∈ Y which
have generic compatible d-ary crosses, say Cross(U1, . . . , Ud) and Cross(V1, . . . , Vd).
By genericity, it is possible to find a bijection α : A → B such that α(Ui) = Vi for all
i. There is a unique X -structure B′ on B that makes α : A → B′ an isomorphism.
Thus Cross(V1, . . . , Vd) = α(Cross(U1, . . . , Ud)) is a compatible cross of B′. Since it
is also a compatible cross of B ∈ Y , the algebra on B obtained by merging B and
B′ is a model of the identities of X ⊔ Y which has a compatible d-ary cross. This is
enough to show that X ⊔ Y has no d-cube term. �

Remark 6.4. The results in this section were discovered during the 2016 ‘Alge-
bra and Algorithms’ workshop after hearing a talk by Matthew Moore on the join-
primeness among idempotent linear Maltsev conditions of the condition expressing
the existence of a cube term. Later, Jakub Opršal pointed us to his preprint [14]
where he proves our Corollary 6.3 (among other things). Opršal told us that he
learned of our characterization of cube terms in terms of crosses from a talk of Szen-
drei at the AAA90 conference in Novi Sad in 2015, and then developed a similar
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characterization of his own which allowed him to prove Corollary 6.3. His discovery
of Corollary 6.3 predates ours. His argument depends on an analogue of Theorem 6.1,
which he proves for varieties in arbitrary languages. Our proof also works for arbi-
trary languages, but we decided not to change ours after learning about Opršal’s
work.
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