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1 Introduction

In the previous paper[1], the present authors studied the proposal[2] that a d+ 1 dimen-

sional induced metric can be constructed from a d dimensional field theory using gradient

flow[3–6], applying the method to the O(N) ϕ4 model. We have shown that in the large

N limit the induced metric becomes classical and describes Euclidean Anti-de-Sitter (AdS)

space in both ultra-violet (UV) and infra-red (IR) limits of the flow direction. The method

proposed in Ref. [2] may provide an alternative way to understand the AdS/CFT (or more

generally Gravity/Gauge theory) correspondence[7], and the result in Ref. [1] might be

related to the correspondence between O(N) vector models in d-dimensions and (generalized)

gravity theories in d+ 1 dimensions[8].

To further investigate a possible connection between Ref. [1] and Ref. [8] at the quantum

level, one must calculate, for example, the anomalous dimension of the O(N) invariant

operator φ2(x), which requires the next-to-leading order (NLO) of the 1/N expansion for

the flow equation to evaluate necessary quantum corrections. Since the method employed in

Refs. [1, 2] is a specific one adopted for the large N limit, some systematic way to solve the

flow equation in the 1/N expansion is needed.

In this paper, we employ the Schwinger-Dyson equation (SDE) to solve the flow equation

in the 1/N expansion for the O(N) invariant ϕ4 model in d dimensions. Using this method

we explicitly calculate the 2-pt and 4-pt functions at the NLO.

As the first application of the NLO calculations, we define a running coupling from the

connected 4-pt function of flowed fields, which runs with the flow time t such that t = 0

corresponds to the UV limit while t = ∞ is the IR limit. This property establishes that the

flow equation can be interpreted as a renormalization group transformation. In particular at

d = 3, we show that the running coupling so defined has not only the asymptotic free UV

fixed point but also a Wilson-Fisher IR fixed point for the massless case.

As the second application, we investigate the NLO correction to the induced metric in

3 + 1 dimensions from the massless scalar model in 3 dimensions. In the massless limit, the

whole 4-dimensional space becomes AdS at the leading order, as shown in Ref. [1]. The NLO

corrections give a small perturbation to the metric, which makes the space asymptotically

AdS in UV (t = 0) and IR (t = ∞) limits only. A remarkable thing is that, while the NLO

corrections do not change the AdS radius in the UV limit, the AdS radius is reduced by

the NLO correction in the IR limit, which corresponds to the Wilson-Fisher IR fixed point

of the original theory. In other words, a nontrivial fixed point in the field theory leads

to a change of the AdS radius in the geometry at the NLO. The induced metric at NLO

2



describes a 4-dimensional space connecting one asymptotically AdS space at UV to an other

asymptotically AdS space at IR, which have different radii.

This paper is organized as follows. In Sec. 2, we first introduce the O(N) invariant ϕ4

model in d dimensions. We then formulate the Schwinger-Dyson equation (SDE) for the

flowed fields, and solve it to derive 2-pt and 4-pt functions of flowed fields at the NLO. In

Sec. 3, we define a running coupling from the connected 4-pt function of flowed fields and

investigate its behavior as a function of the flow time t. In Sec. 4, we study the induced

metric from the 3 dimensional massless scalar model at the NLO. We finally give a summary

of this paper in Sec. 5. We collect all technical details in appendices. In appendix A, using

the SDE, we present results at the NLO in the 1/N expansion of the d dimensional theory

necessary for the main text. We also perform the renormalization of the d dimensional theory

at the NLO, and explicitly calculate renormalization constants for various d. In appendix B,

we give detailed derivations of solutions to the SDE for the flow fields at the NLO. We

explicitly evaluate 2-pt and 4-pt functions of the flowed field in appendix C while we derive

the induced metric in appendix D, for the massless scalar theory in 3 dimensions.

2 1/N expansion of the flow equation in d+ 1 dimensions

2.1 Model in d dimensions

In this paper, we consider the N component scalar ϕ4 model in d dimensions, defined by

the action

S(µ2, u) = N

∫
ddx

[
1

2
∂kϕ(x) · ∂kϕ(x) +

µ2

2
ϕ2(x) +

u

4!

(
ϕ2(x)

)2
]
, (1)

where ϕa(x) is an N component scalar field, ( · ) indicates an inner product of N compo-

nent vectors such that ϕ2(x) ≡ ϕ(x) · ϕ(x) =∑N
a=1 ϕ

a(x)ϕa(x), µ2 is the bare scalar mass

parameter, and u is the coupling constant of the ϕ4 interaction, whose canonical dimension

is 4− d. While it is consistent to take u as N independent, as will be seen later, the mass

parameter µ2 is expanded as

µ2 = µ20 +
1

N
µ21 + · · · , (2)

where µ2i is cut-off dependent in order to make the physical mass finite order by order in the

1/N expansion.
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This model describes the free massive scalar at u = 0, while it is equivalent to the non-

linear σ model (NLSM) in the u→ ∞ limit, whose action is obtained from eq. (1) as

S(λ) =
N

2λ

∫
ddx ∂kσ(x) · ∂kσ(x), σ2(x) = 1, (3)

with the replacement

σa(x) =
√
λϕa(x), λ = lim

u→∞
− u

6µ2
. (4)

Some regularization which preserves O(N) symmetry is assumed in this paper, so that we

can always make formal manipulations without worrying about divergences.1 Calculations

of 2-pt and 4-pt functions at the next-to-leading order (NLO) of the 1/N expansion in d

dimensions will be given in appendix A.

2.2 Flow equation in the 1/N expansion

In this paper, we consider the flow equation, given by

∂

∂t
φa(t, x) = − 1

N

δS(µ2f , uf )

δϕa(x)

∣∣∣∣∣
ϕ→φ

=
(
�− µ2f

)
φa(t, x)− uf

6
φa(t, x)φ2(t, x), (5)

φa(0, x) = ϕa(x),

where µ2f and uf can be different from µ2 and u in the original d dimensional theory. As in

the case of d dimensions, uf is kept fixed and N independent, whereas µ2f is adjusted as

µ2f = m2
f − uf

6
Z(mf ), Z(mf ) ≡

∫
Dq

1

q2 +m2
f

, Dq ≡ ddq

(2π)d
, (6)

where mf is a renormalized mass. The flow with µf = µ and uf = u is called gradient flow,

as it is given by the gradient of the original action.

In the case of the free flow (uf = 0), the solution is easily given by

φa(t, x) = et(�−µ2

f )ϕa(x). (7)

We therefore consider the interacting flow (uf 6= 0) hereafter unless otherwise stated.

1 We will call the infinite cutoff (Λ → ∞) limit the ’continuum limit’.
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The above flow equation leads to the Schwinger-Dyson equation (SDE)[9] as

〈Df
zφ

a(z)O〉 = −uf
6
〈φa(z)φ2(z)O〉, Df

z ≡ ∂

∂t
− (�− µ2f ), (8)

where z = (t, x), O is an arbitrary operator and the expectation value 〈O〉 should be

calculated in d dimensions as

〈O(ϕ)〉 ≡ 1

Z

∫
[Dϕ]O(ϕ)e−S(µ2,u), Z =

∫
[Dϕ] e−S(µ2,u). (9)

If we take O =

2n−1∏

i=1

φai(zi) the SDE becomes

Df
z Γ

aa1···a2n−1

2n (z, z1, · · · , z2n−1) = − uf
6N2

∑

b

Γ
abba1···a2n−1

2n+2 (z, z, z, z1, · · · , z2n−1), (10)

where Γn is the n-point function, defined by

Γa1···an
n (z1, · · · , zn) = Nn−1〈

n∏

i=1

φai(zi)〉 ≡ Γn[12 · · ·n], (11)

which is analogous to the d dimensional counterpart in eq. (A3). We consider only the

symmetric phase in this paper, where Γ2n−1 = 0 for all positive integers n.

We consider the next-to-leading order of the 1/N expansion, so that the following two

SDE’s need to be considered.

Df
1 Γ2[12] = − uf

6N2

∑

b

Γ4[1bb2], (12)

Df
1 Γ4[1234] = − uf

6N2

∑

b

Γ6[1bb234], (13)

where zb = z1, so that the sum over b runs over the O(N) index only.

The connected part of 4- and 6- pt functions are introduced as

Γ4[1234] = K4[1234] +N {Γ2[12]Γ2[34] + Γ2[13]Γ2[24] + Γ2[14]Γ2[23]} , (14)

Γ6[123456] = K6[123456] +N {Γ2[12]K4[3456] + 14 perms.}

+ N2 {Γ2[12]Γ2[34]Γ2]56] + 14 perms.} . (15)

Furthermore decompositions in O(N) indices are given by

Γ2[12] = δa1a2Γ(z1, z2), (16)

K4[1234] = δa1a2δa3a4K(z1, z2; z3, z4) + 2 perms., (17)

K6[123456] = δa1a2δa3a4δa5a6H(z1, z2; z3, z4; z5, z6) + 14 perms., (18)

where Γ(z1, z2), K(z1, z2; z3, z4) and H(z1, z2; z3, z4; z5, z6) are invariant under the exchange

of arguments such that z2i−1 ↔ z2i or (z2i−1, z2i) ↔ (z2j−1, z2j).
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By expanding Γ, K and H as

Γ =
∞∑

i=0

Γi

N i
, K =

∞∑

i=0

Ki

N i
, H =

∞∑

i=0

Hi

N i
, (19)

the above two SDE are reduced to

Df
1Γ0(12) = −uf

6
Γ0(12)Γ0(11) (20)

at the LO of the 1/N expansion, and

Df
1Γ1(12) = −uf

6
[K0(12; 11) + Γ0(12)Γ1(11) + Γ1(12)Γ0(11) + 2Γ0(12)Γ0(11)] , (21)

Df
1K0(12; 34) = −uf

6
[Γ0(12)K0(11; 34) + Γ0(11)K0(12; 34) + 2Γ0(12)Γ0(13)Γ0(14)] (22)

at the NLO.

2.3 Solutions to the flowed SDE at NLO

The solutions to the SDE at NLO are summarized below. Details of calculations can be

found in appendix B.

At the NLO, the 2-pt function is given by

〈φa1(z1)φa2(z2)〉 =
δa1a2
N

Z(mf )√
ζ(t1)ζ(t2)

∫
Dp

e−p2(t1+t2)eip(x1−x2)

p2 +m2

[
1 +

1

N
G1(t1, t2|p)

]
, (23)

where ζ(t) is defined in eq. (B7), and the NLO contribution G1(t1, t2|p) is given in

appendix B.3.2. In the continuum limit, ζ(t) approaches to ζ0(t) and is finite as long as

t > 0, where

ζ0(t) ≡
∫

Dp
e−2p2t

p2 +m2
=

e2tm
2

md−2

(4π)d/2
Γ(1− d/2, 2tm2) (24)

with the incomplete gamma function Γ(a, x), while Z(mf ) diverges at d > 1.

The leading contribution of the connected 4-pt function appearing at the NLO of the

1/N expansion can be obtained as

〈φa1(z1)φa2(z2)φa3(z3)φa4(z4)〉c =
1

N3
[δa1a2δa3a4K0(12; 34) + 2 permutations] , (25)

where

K0(12; 34) =

∫
dP4 g(12; 34|12; 34), dP4 ≡

4∏

j=1

Dpj

√
Z(mf )

ζ(tj)

eipjxje−p2j tj

p2j +m2
, (26)

g(12; 34|12; 34) = X(23|12; 34) +X(13|21; 34) +X(24|12; 43) +X(14|21; 43)

+ Y (2|12; 34) + Y (1|21; 34) + Y (3|43; 12) + Y (4|34; 12)

+ Z(|12; 34). (27)
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Here the variables to the left of the vertical line refer to flow times and those to the right

refer to momenta. Explicitly we have in the continuum or NLSM limits

X(t1, t2|12; 34) = δ̂(p22 +m2)(p23 +m2)

∫ t1

0
ds1

∫ t2

0
ds2 e

s1(p
2
2−p21)es2(p3−p24)ω(s1, s2|p34), (28)

Y (t|21; 34) = δ̂(p21 +m2)

∫ t

0
ds es(p

2
1−p22)ψ(s|34), (29)

Z(|12; 34) = −δ̂ 2

6/u+B(0|p34)
, (30)

where δ̂ ≡ (2π)dδ(p1 + p2 + p3 + p4), p34 = p3 + p4,

B(t|Q) =

∫
Dq1Dq2

e−t(q21+q22)

(q21 +m2)(q22 +m2)
(2π)dδ(q12 −Q), q12 = q1 + q2, (31)

and thus B(0|Q) = B(Q2), defined in appendix A. Here ψ and ω satisfy

ρ(t|34) +
∫ t

0
dsK(t, s|p34)ψ(s|34) = 0, (32)

ρ(t1, t2|Q)− 2

∫ t1

0
ds1K(t1, s1|Q)

∫ t2

0
ds2K(t2, s2|Q)ω(s1, s2|Q) = 0, (33)

where

K(t, s|Q) =

∫
Dq1Dq2 (2π)

dδ(q12 −Q)
e−(t+s)q21−(t−s)q22

q21 +m2
, (34)

ρ(t|34) = e−t(p23+p24) − B(t|p34)
6/u+B(0|p34)

, (35)

ρ(t1, t2|Q) = B(t1 + t2|Q)−
B(t1|Q)B(t2|Q)
6/u+B(0|Q) . (36)

The derivation of these results is given in appendix B.

3 Running coupling from flowed fields

3.1 Definitions

Using the connected 4-pt functions g ≡ δ̂ĝ for the flow fields given in eq. (25), we define

the t-dependent dimensionless coupling as

g(t) = −3ĝ(t, t; t, t|{p}sym)t2−d/2, (37)

where {p}sym is given by p2i t = 3∆/4 (i = 1 ∼ 4) and p212t = p234t = ∆ (pij = pi + pj), which

is the symmetric point for d > 2, and t2−d/2 is introduced to make the coupling dimension-

less. Here ∆ is an arbitrary dimensionless constant but we can take ∆ = 1 without loss of
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generality by the rescaling t→ ∆t. Explicitly we have

ĝ(t, t; t, t|{p}sym) = 4X̂(t, t|{p}sym) + 4Ŷ (t|{p}sym) + Ẑ(|{p}sym), (38)

where we remove δ̂ by defining O = δ̂Ô for O = g,X, Y, Z, and

X̂(t1, t2|12; 34) = (p22 +m2)(p23 +m2)

∫ t1

0
ds1

∫ t2

0
ds2 e

s1(p
2
2−p21)es2(p

2
3−p24)ω(s1, s2|p34), (39)

Ŷ (t|12; 34) = (p22 +m2)

∫ t

0
ds es(p

2
2−p21)ψ(s|34), (40)

Ẑ(|12; 34) = −1

3

u

1 + u
6B(0|p34)

. (41)

3.2 Free flow

For simplicity, we first consider the free flow, where ĝ(t, t; t, t|{p}sym) = Ẑ(|{p}sym).
Taking ∆ = 1, the running coupling is given by

g(t) =
ut2−d/2

1 +
u

6
B (1/t)

, (42)

where B(p2) = B(0|p).

3.2.1 d = 2

In 2-dimensions, we obtain

g(t) =
ut

1 +
ut

6π
√
1 + 4m2t

tanh−1

(
1√

1 + 4m2t

) , (43)

which behaves in the UV limit (t→ 0) and IR limit (t→ ∞) as

g(t) ≃





ut

1− ut log(m2t)/(12π)
→ 0, t = 0

ut

1 + u/(24πm2)
→ ∞, t = ∞

. (44)

In the massless limit m2 → 0, we have

g(t) ≃ − 12π

log(m2t)
→ 0. (45)

8



3.2.2 d = 3

At d = 3, the running coupling is given by

g(t) =
u
√
t

1 +
u
√
t

24π
arctan

(
1√
4m2t

) , (46)

which behaves as

g(t) ≃





u
√
t

1 + u
√
t/48

→ 0, t = 0

u
√
t

1 + u/(48πm)
→ ∞, t = ∞

. (47)

In the massless limit, we have

g(t) =
u
√
t

1 + u
√
t/48

=

{
→ 0, t→ 0

→ 48, t→ ∞
, (48)

which correspond to the asymptotic free UV fixed point and the Wilson-Fisher IR fixed

point, respectively.

3.2.3 d ≥ 4

Since B(Q2) diverges as Λd−4 (log Λ at d = 4) at d ≥ 4, the running coupling vanishes as

the cut-off is removed (Λ → ∞). Thus the theory is trivial in the continuum limit at d ≥ 4.

3.3 Interacting flow in the massless limit at d = 3

3.3.1 Massless limit

We next consider the interacting flow case, where we need to evaluate X̂ and Ŷ , which

are difficult to calculate in general. We therefore consider the massless limit.2 In this limit,

the kernel function is reduced to

K(t, s|{p}sym.) = Dd/2−1k0(Dt,Ds), (49)

where

k0(w, v) =
ev−ww1−d/2

2d−1(2π)d/2

∫ 1

0
dz zd/2−2 exp

[
(w − v)2z

2w

]
, (50)

and we regard D ≡ Q2 = ∆/t as an independent variable. Here the z integral is convergent

for d > 2 while the bubble integral B(0|Q) is finite for d < 4. We thus concentrate on the

d = 3 case hereafter.

2 We will indicate the massless limit by a subscript 0.
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In this limit, we obtain (see appendix C for details)

Ẑ(|{p}sym.) = −16
√
D

ū(D)

1 + ū(D)
, ū(D) ≡ u

48
√
D
, (51)

Ŷ (t|{p}sym.) =
3

4

√
D

{
ξ
(1)
0 (∆)− 8ξ

(2)
0 (∆)

ū(D)

1 + ū(D)

}
, (52)

X̂(t, t|{p}sym.) =
9

16

√
D

{
Ξ0(∆)− 4{ξ(2)0 (∆)}2 ū(D)

1 + ū(D)

}
, (53)

where

ξ
(i)
0 (∆) =

∫ ∆

0
dw φ

(i)
0 (w), i = 1, 2, (54)

Ξ0(∆) =

∫ ∆

0
dw

∫ ∆

0
dvΩ0(w, v), (55)

and φ
(i)
0 and Ω0 are solutions to the integral equations

e−3w/2 +

∫ w

0
dv k0(w, v)φ

(1)
0 (v) = 0, (56)

b0(w) +

∫ w

0
dv k0(w, v)φ

(2)
0 (v) = 0, (57)

b0(w + v)− 2

∫ w

0
dx k0(w, x)

∫ v

0
dy k0(v, y) Ω0(x, y) = 0, (58)

where b0(w) is the massless bubble integral given by eq. (C3). These equations can be

solved numerically, and at ∆ = 1, for example, we have ξ
(1)
0 (1) = −14.8440(1), ξ

(2)
0 (1) =

−1.60557(1) and Ξ0(1) = 16.6753(1).

3.3.2 Running coupling and β function

Using the above results, the running coupling at d = 3 is given by

g0(µ) = G1 +G2
ū(∆)

√
t

1 + ū(∆)
√
t
, ū(∆) =

u

48
√
∆
, (59)

where µ = 1/
√
t and

G1 = −9
√
∆

[
ξ
(1)
0 (∆) +

3

4
Ξ0(∆)

]
, G2 = 48

√
∆

[
1 +

3

4
ξ
(2)
0 (∆)

]2
≥ 0. (60)

With the numerical values given above we obtain G1 = 21.0378(1) and G2 = 2.00105(1) at

∆ = 1. 3

3 It turns out that G2(∆) has only one zero at ∆ = 0.36228(1).
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We then calculate the β function for g0(µ) as

β(g0) ≡ µ
∂

∂µ
g0(µ) =

(g0(µ)−G1 −G2)(g0(µ)−G1)

G2
, (61)

which becomes zero at g0(µ) = G1 and g0(µ) = G1 +G2. The coupling g0(µ) near G1 behaves

as

g0(µ)−G1 ≃ CUV
u

µ
→ 0, µ→ ∞, CUV =

[
1 +

3

4
ξ
(2)
0 (∆)

]2
, (62)

approaching to the UV fixed point from above, while near G1 +G2 we have the IR fixed

point as

g0(µ)−G1 −G2 ≃ −CIR
µ

u
→ 0, µ → 0, CIR =

{
48
√
∆

[
1 +

3

4
ξ
(2)
0 (∆)

]}2

, (63)

where the coupling approaches from below to the Wilson-Fisher fixed point in the 3 dimen-

sional scalar theory. Note that the derivative of the β function with respect to g0 at the fixed

point becomes

β′(g0) ≡
dβ(g0)

dg0
=

{
−1, g0 = G1

1, g0 = G1 +G2

, (64)

which should be compared with the same quantities calculated for the standard running

coupling in the 3 dimensional massless theory in Ref. [10], where β′(0) = −1 (UV) and

β′(48) = 1 (IR). The derivative of the β function at the fixed point gives the anomalous

dimension of the operator conjugate to the coupling in the conformal theory at the fixed

point, and thus is universal. Our flow coupling indeed satisfies this condition and the deriva-

tives at the two fixed points agree with those for the conventional definition of the coupling.

This establishes that our flow coupling gives a good definition of the running coupling of

the theory. The scaling dimension γ of the operator conjugate to the running coupling g0 is

given by γ = d+ β′(g0), so that γUV = 2 and γIR = 4 in this model. Interestingly γUV = 2

corresponds to the canonical dimension of the ϕ4 operator in 3 dimensions, which is the

interaction term in our theory.

By the redefinition of the coupling as g(µ) ≡ (g0(µ)−G1)/G2, the corresponding β

function is simplified as

β(g) ≡ µ
∂

∂µ
g(µ) = g(µ)(g(µ)− 1). (65)
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4 NLO corrections to the induced metric

In Ref. [1], the induced metric has been calculated from the flowed scalar field in the

large N limit. It has been shown that the metric from the massive scalar field describes a

space which becomes the Euclidean AdS space asymptotically both in UV and IR limits,

where the radius RIR in the IR is larger than the radius RUV in UV as

R2
UV =

d− 2

2
R2
IR < R2

IR, (66)

while the metric describes the whole AdS space in the massless limit with the radius RUV.

In this section, we consider the NLO correction to the induced metric in the 1/N expansion

as another application of the NLO calculation, in particular, in the massless case at d = 3,

in order to see whether the space remains AdS or not and how the radius changes at the

NLO.

4.1 Induced metric at NLO

The VEV of the induced metric is defined from the normalized flowed field as[1]

gµν(z) = R2
0〈∂µσa(z)∂νσa(z)〉 (67)

with some length scale R0, where z = (τ = 2
√
t, x) and µ, ν = 0, 1, · · · , d. Here σa(z) is the

normalized flowed field such that 〈σ2(z)〉 = 1, and the corresponding 2-point function is

explicitly given at NLO as

〈σa1(z1)σa2(z2)〉 =
δa1a2

N

1√
ζ0(t1)ζ0(t2)

(
1− ζ1(t1) + ζ1(t2)

2N

)

×
∫

Dp
e−p2(t1+t2)eip(x1−x2)

p2 +m2

[
1 +

G1(t1, t2|p)
N

]
, (68)

where

ζ1(t) =
1

ζ0(t)
H [G1(t, t|p)] , H [f(t|p)] ≡

∫
Dp

e−2p2t

p2 +m2
f(t|p). (69)

After some algebra (see appendix D), we obtain

gij(τ) = δij
R2
0

d
A(t), (i, j = 1, 2, · · · , d), g00(τ) = −R

2
0 t

2
∂tA(t), (70)

where

A(t) = −1

2

∂tζ0(t)

ζ0(t)
+

1

N
A1(t), (71)

and A1(t) in general is a very complicated function given in appendix D.
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4.2 Induced metric in the massless limit at d = 3

In the massless limit at d = 3, the metric at the LO is given by

gij(τ) = δij
R2
0

3τ2
, g00(τ) =

R2
0

2τ2
, (72)

which describes the AdS space for all τ .

At the NLO, A1(t) is given by

A1(t) =
1

2
√
t

∫
DQhtotal(Q

2)
ū(Q2)

(1 + ū(Q2)
√
t)2
, ū(Q2) =

u

48
√
Q2

, (73)

∂tA1(t) = − 1

4
√
t3

∫
DQhtotal(Q

2)
ū(Q2)(1 + 3ū(Q2)

√
t)

(1 + ū(Q2)
√
t)3

, (74)

which leads to

gij(τ) = δij
R2
0

3τ2

[
1 +

τ

N

∫
DQhtotal(Q

2)
ū(Q2)

(1 + ū(Q2)τ/2)2

]
, (75)

g00(τ) =
R2
0

2τ2

[
1 +

τ

2N

∫
DQhtotal(Q

2)
ū(Q2)(1 + 3ū(Q2)τ/2)

(1 + ū(Q2)τ/2)3

]
, (76)

where htotal(Q
2) is a function given in appendix D.

4.3 UV and IR limits

The above expression in the UV limit (τ → 0) leads to

gij(τ) ≃ δij
R2
0

3τ2

[
1 +

τ

N

∫
DQhtotal(Q

2)ū(Q2)

]
, τ → 0, (77)

g00(τ) ≃ R2
0

2τ2

[
1 +

τ

2N

∫
DQhtotal(Q

2)ū(Q2)

]
, τ → 0, (78)

which shows that the NLO correction is less singular than the LO contribution. Therefore

the space becomes asymptotically AdS in the UV limit at the NLO whose AdS radius is

equal to that at the LO.

We cannot naively take the τ → ∞ limit in eqs. (75) and (76), on the other hand, due

to the enhancement of the UV contribution of the Q integrals. Careful evaluations of these

13



Q integrals in appendix D give

gij(τ) ≃ δij
R2
0

3τ2

[
1 +

r

N

]
, g00(τ) ≃

R2
0

2τ2

[
1 +

r

N

]
, τ → ∞, (79)

where r = −0.41869(1).4 Therefore, the space becomes asymptotically AdS again in the IR

limit, whose radius, however, is smaller than that in the UV limit.5 The induced metric at

the NLO describes a 4 dimensional space which is asymptotically AdS in both UV and IR

regions with different radii but non-AdS in-between.

It is clear that the NLO correction to the AdS radius in the IR limit is related to the

Wilson-Fisher fixed point in the original 3 dimensional scalar theory, since the eqs. (75) and

(76) can be written as

gij(τ) = δij
R2
0

3τ2

[
1− 1

24N

∫
DQhtotal(Q

2)β(g(48µ
√
Q2))

]
, (80)

g00(τ) =
R2
0

2τ2

[
1− 1

24N

∫
DQhtotal(Q

2)

{
1 +

µ

2

∂

∂µ

}
β(g(48µ

√
Q2))

]
, (81)

where µ = 1/
√
t = 2/τ , and β(g(x)) is the β function for the running coupling g(x) from the

free flowed field defined in the previous section with ∆ = 1 as

β(g) =
g(g − 48)

48
, g(x) = 48

u

x+ u
. (82)

5 Summary

In this paper, we studied the flow equation of the O(N) ϕ4 model in d dimensions at the

NLO in the 1/N expansion, employing the Schwinger-Dyson equation. We calculated the

2-pt and 4-pt functions at the NLO.

As an application of the NLO calculation, we investigated the running coupling defined

from the connected 4-pt function of flowed fields. In particular at d = 3 in the massless limit,

we showed that the running coupling has two fixed points, the asymptotic free one in the

UV region and the Wilson-Fisher one in the IR region. We also derived the corresponding β

4 This is independent of uf 6= 0 (the interacting flow). In the case of free flow (uf = 0), however, r =
8

3π2
≃

0.27019.
5 It is interesting and also suggestive to see that the F-coefficient of the 3 dimensional O(N) scalar model

is given by FIR = FUV − ζ(3)/(8π2) +O(1/N), where FUV = NFS with FS ≃ 0.0638 as an example of a

conjecture, the so-called ”the F-theorem”, which claims that the F-coefficient monotonically decreases along

a RG trajectory connecting two 3 dimensional CFTs. Furthermore, in the holographic dual picture, the

F-coefficient is proportional to the AdS radius squared. (See Ref. [11] and references therein.)
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function. Our study suggests that the flow equation can be interpreted as a renormalization

group transformation.

We also calculated the NLO correction to the d+ 1 dimensional metric induced from the

massless scalar field theory at d = 3. In the massless limit, the whole 4-dimensional space

becomes AdS at the LO of the 1/N expansion[1]. We found that the NLO corrections give

small perturbations to the metric, which make the space only asymptotically AdS in both

UV (t = 0) and IR (t = ∞) limits. In addition, while the NLO corrections do not change the

AdS radius at the LO in the UV limit, the AdS radius is reduced by the NLO correction in

the IR limit, which corresponds to the Wilson-Fisher IR fixed point of the original theory.

The nontrivial fixed point in the field theory appears as a change of the AdS radius at

the NLO. The induced metric at NLO describes a 4-dimensional space which connects one

asymptotically AdS space at UV to the other asymptotically AdS space at IR.

This paper contains two important messages. One is that the flow equation can provide

an alternative method to define a renormalization group transformation. The other is that

the massless scalar field in d dimensions plus the extra dimension from the RG scale not only

generates a d+ 1 dimensional AdS space at LO[1] but also gives a NLO correction, which

makes the d+ 1 dimensional space asymptotically AdS only in UV and IR limits at d = 3.

In particular, the AdS radius in the IR limit, which corresponds to the Wilson-Fisher fixed

point, becomes smaller than that in the UV limit, which is equal to the radius at the LO.

Although the relation found in this paper between the massless scalar field theory and the

induced geometry is very suggestive, further studies will be needed to establish an alternative

interpretation of AdS/CFT correspondences proposed in Ref. [2] in terms of field theories.
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A The 1/N expansion in the d dimensional theory

In this appendix, we consider the 1/N expansion in the d dimensional theory.

A.1 Schwinger-Dyson equation(SDE)

In order to perform the 1/N expansion, we consider the SDE of this model, which can

be written compactly as

〈δaxX [ϕ]〉 = 〈X [ϕ]δaxS(µ
2, u)〉, (A1)

where δaxϕ
b(y) = δabδ(d)(x− y)ǫ with a small parameter ǫ, so that

δaxS(µ
2, u) = Nǫ

[
(−�+ µ2)ϕa(x) +

u

3!
ϕa(x)ϕ2(x)

]
. (A2)

Here the vacuum expectation value of an operator O is defined in eq. (9).

We define 2n-point functions Γ2n
6 as

Γa1a2···a2n(x1, x2, · · · , x2n) = N2n−1

〈
2n∏

i=1

ϕai(xi)

〉
≡ Γ2n[12 · · · (2n)] (A3)

which can be written in terms of their connected parts K2n as

Γ4[1234] = K4[1234] +N {Γ2[12]Γ2[34] + Γ2[13]Γ2[24] + Γ2[14]Γ2[23]} , (A4)

Γ6[123456] = K6[123456] +N {Γ2[12]K4[3456] + 14 perms. }

+ N2 {Γ2[12]Γ2[34]Γ2[56] + 14 perms. } (A5)

6 Note that we use the same notation Γ2n for the 2n-point functions in both d and d+ 1 dimensions, since

no confusion may occur.
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and so on. As mentioned in the main text, we assume we are working in a phase where O(N)

symmetry is not broken. We therefore do not add the external source term hϕ(x) to the

action, so that the action has the symmetry under ϕ→ −ϕ, which implies Γ2n−1 = 0 for all

positive integers n.

In terms of these, the SDE for X(ϕ) = ϕa2(x2) becomes

δ12 = (−�+ µ2)x1Γ2[12] +
u

3!N2

∑

b

(K4[bb12] +N {Γ2[bb]Γ2[12] + 2Γ2[b1]Γ2[b2]})(A6)

where δ12 ≡ δa1a2δ(d)(x1 − x2) and xb = x1, so that b in the summation runs over the O(N)

indices only.

For X(ϕ) = ϕa2(x2)ϕ
a3(x3)ϕ

a4(x4), on the other hand, we have

δ12Γ2[34] + 2 perms. = (−�+ µ2)x1
1

N
(K4[1234] +N {Γ2[12]Γ2[34] + 2 perms.})

+
u

3!N3

∑

b

(K6[bb1234] +N {Γ2[bb]K4[1234] + 14 perms.}

+ N2 {Γ2[bb]Γ2[12]Γ2[34] + 14 perms.}
)
, (A7)

which can be simplified by using eq. (A6) as

0 = (−�+ µ2)x1K4[1234] +
u

3!N2

∑

b

(
K6[bb1234] +NΓ2[bb]K4[1234]

+ 2N {Γ2[b1]K4[b234] + Γ2[b2]K4[1b34] + Γ2[b3]K4[12b4] + Γ2[b4]K4[123b]}

+ N {Γ2[12]K4[bb34] + Γ2[13]K4[b2b4] + Γ2[14]K4[b23b]}

+ 2N2 {Γ2[b2][Γ2[b3]Γ2[14] + Γ2[b2][Γ2[b4]Γ2[13] + Γ2[b3][Γ2[b4]Γ2[12]}
)
. (A8)

Using the O(N) symmetry and assuming translational invariance (e.g. infinite volume or

periodic boundary condition), we can write

Γ2[12] ≡ δa1a2Γ(x12), x12 ≡ x1 − x2 (A9)

K4[1234] ≡ δa1a2δa3a4K(x1, x2; x3, x4) + 2 perms., (A10)

K6[123456] ≡ δa1a2δa3a4δa5a6H(x1, x2; x3, x4; x5, x6) + 14 perms., (A11)

where K(x1, x2; x3, x4) is invariant under 1 ↔ 2 or 3 ↔ 4 as well as (12) ↔ (34), and similar

invariances hold for H(x1, x2; x3, x4; x5, x6).
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We finally obtain

δ(d)(x1 − x2) =
[
(−�+ µ2)x1 +

u

3!
Γ(0)

]
Γ(x12)

+
u

3!N

[(
1 +

2

N

)
K(x1, x1; x1, x2) + 2Γ(0)Γ(x12)

]
, (A12)

and

0 =

[
(−�+ µ2)x1 +

u

3!

(
1 +

2

N

)
Γ(0)

]
K(x1, x2; x3, x4)

+
u

3!
Γ(x12)

[
2Γ(x13)Γ(x14) +

(
1 +

2

N

)
K(x1, x1; x3, x4) +

2

N
K(x1, x3; x1, x4)

]

+
u

3!N

[(
1 +

2

N

)
H(x1, x1; x1, x2; x3, x4) +

2

N
H(x1, x2; x1, x3; x1, x4)

]

+
2u

3!N
[Γ(x13)K(x1, x2; x1, x4) + Γ(x14)K(x1, x2; x3, x1)] . (A13)

A.2 The leading order in the 1/N expansion

We introduce the 1/N expansion as

Γ(x12) =

∞∑

i=0

N−iΓi(x12), K(x1, x2; x3, x4) =

∞∑

i=0

N−iKi(x1, x2; x3, x4), (A14)

and so on, together with µ2 =
∞∑

i=0

N−iµ2i .

At the leading order (LO) of the 1/N expansion, the eq. (A12) in momentum space

becomes

1 =

(
p2 + µ20 +

u

6

∫
Dq Γ̃0(q)

)
Γ̃0(p), Γ0(x) =

∫
Dp Γ̃0(p) e

ipx, (A15)

which can easily be solved as

Γ̃0(p) =
1

p2 +m2
, m2 = µ20 +

u

6
Z(m), (A16)

where m ≥ 0 is the renormalized mass and Z(m) is given in eq. (6). Thus the 2-pt function

at the LO becomes

〈ϕa(x)ϕb(y)〉 =
δab

N

∫
Dp

eip(x−y)

p2 +m2
. (A17)

Eq. (A13) at the LO leads to

(−�+m2)x1K0(x1, x2; x3, x4) +
u

3!
Γ0(x12)K0(x1, x1; x3, x4)

= −2u

3!
Γ0(x12)Γ0(x13)Γ0(x14). (A18)
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Introducing a function G0(p1, p2, p3, p4) to rewrite K0(x1, x2, x3, x4) as

K0(x1, x2; x3, x4) =

{
4∏

i=1

∫
Dpi

eipixi

p2i +m2

}
G0(p1, p2, p3, p4)(2π)

dδ(p1 + p2 + p3 + p4), (A19)

we obtain

G0(p1, p2, p3, p4) = G0(p1 + p2) = − 2u

6 + uB(p212)
, (A20)

where p12 = p1 + p2, and

B(Q2) =

∫
Dq1Dq2

(2π)dδ(q1 + q2 −Q)

(q21 +m2)(q22 +m2)
=

∫ 1

0
dx

∫
Dq1

θ(Λ2 − q21)

(q21 +m2 + x(1 − x)Q2)2
.(A21)

This agrees with the previous result obtained by a different method[10]. We here specify the

way we introduce the cut-off Λ for the case where B(Q2) diverges.

A.3 NLO correction to the 2-pt functions

Let us consider the next-to-leading order (NLO) correction to the 2-pt function Γ2. At

the NLO, eq. (A12) leads to

0 = (−�+m2)Γ1(x12) +
{u
6
(2Z(m) + γ1) + µ21

}
Γ0(x12) +

u

6
K0(x1, x1; x1, x2),(A22)

γ1 =

∫
Dq Γ̃1(q), (A23)

which can be solved in momentum space as

Γ̃1(p) = − 1

(p2 +m2)2

(
µ21 +

u

6
γ1 +

u

3
S(p2)

)
, (A24)

where

S(p2) =

∫
DQ

(p−Q)2 +m2

6

6 + uB(Q2)
, (A25)

and the condition for γ1 is solved as

γ1 = −µ
2
1B(0) + C2

1 + u
6B(0)

, C2 ≡ −
∫

DQ
6
u +B(Q2)

d

dm2
B(Q2). (A26)

Substituting eq. (A26) into eq. (A24), we finally obtain

Γ̃1(p) = − 1

(p2 +m2)2

{
g(p2) + C̃

}
, (A27)
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where

g(p2) =

∫
DQ

6
u +B(Q2)

{
1

(Q+ p)2 +m2
+

1

(Q− p)2 +m2
− 2

Q2 +m2

}
, (A28)

C̃ = C1 +
µ21

1 + u
6B(0)

− C2
6
u +B(0)

, C1 =

∫
DQ

6
u +B(Q2)

2

(Q2 +m2)
, (A29)

and g(p2) can be expanded as

g(p2) = Z1p
2 + g̃(p2), g̃(p2) = O(p4), (A30)

where

Z1 =
2

d

∫
DQ

6/u+B(Q2)

[
4− d

(Q2 +m2)2
− 4m2

(Q2 +m2)3

]
. (A31)

A.4 Renormalization

Let us now consider the renormalization of the theory.

Our renormalization condition for the renormalized 2-pt function ΓR is given in

momentum space as

Γ̃−1
R (p) ≃ p2 +m2, p2 ≃ 0, (A32)

where m is interpreted as the renormalized mass, which is independent of both N and the

cut-off. Relating the bare field to the renormalized field by the renormalization constant ZR

as Z
1/2
R ϕR = ϕ, we explicitly obtain

ZRΓ̃R(p) = Γ̃(p) =
1

p2 +m2 +
1

N
Σ1(p2)

+O

(
1

N2

)
, (A33)

where

Σ1(p
2) = Z1p

2 + C̃ + g̃(p2). (A34)

At the LO of the 1/N expansion, the above condition implies

µ20 = m2 − u

6
Z(m), ZR = 1, (A35)

where Z(m) is potentially divergent at d > 1. We therefore introduce the momentum cut-

off Λ to regulate the integral, and µ20 is tuned to cancel the effect of Z(m) including such

divergences, in order to keep the renormalized mass m finite and constant. The lattice regu-

larization or dimensional regularization is more consistent than the momentum cut-off, but
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calculations become much more complicated in the lattice regularization or power diver-

gences are difficult to deal with in the dimensional regularization. Since the momentum

cut-off is enough to see the leading divergences, we adopt it in this paper.

At the NLO, the renormalization condition implies

ZR = 1− Z1

N
, µ21 =

(
1 +

u

6
B(0)

)
Z1m

2 +
u

6
C, (A36)

where

C = −
∫

DQ
6
u +B(Q2)

[
dB(Q2)

dm2
+ 2

6
u +B(0)

Q2 +m2

]
. (A37)

The renormalization condition for the coupling, which first appears at the NLO of the 1/N

expansion, is given by G0(Q
2 = s) = −ur(s)/3, so that ur(s) is regarded as the renormalized

coupling at the scale s. Eq. (A20) thus leads to

ur(s) =
u

1 + u
6B(s)

, (A38)

where B(Q2) is divergent at d ≥ 4. Therefore the renormalized coupling goes to zero as

ur(s) ≃
6

B(s)
→ 0, Λ → ∞ (A39)

at d ≥ 4. This indicates the triviality of the ϕ4 theory at d ≥ 4.

A.5 Renormalization constants

We here explicitly evaluate the renormalization constants.

A.5.1 d = 1

At d = 1, µ20 is finite as

Z(m) =
1

πm
arctan

(
Λ

m

)
(A40)

is finite, and the coupling is also finite and nonzero since

B(Q2) =
1

m(Q2 + 4m2)
≃ 1

mQ2
+ · · · , Q2 → ∞, (A41)

has a finite limit as Λ → ∞.
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The most divergent part of Z1 is given by

Z1 ≃





∫
DQ

u

(Q2 +m2)2
, u 6= ∞

∫
DQ

B(Q2)

6

(Q2 +m2)2
, u = ∞

, (A42)

which shows that Z1 is finite for all u including u = ∞. Eqs. (A36) and (A37) thus tell us

that µ21 is also finite for all u including u = ∞, and therefore, there is no divergence at d = 1

up to the NLO.

A.5.2 d = 2

At d = 2, µ20 is logarithmically divergent as

µ20 = m2 − u

6
Z(m), Z(m) ≃ 1

4π
log

(
Λ2 +m2

m2

)
. (A43)

On the other hand, B(Q2) is finite as

B(Q2) =
tanh−1

(√
Q2

Q2+4m2

)

π
√
Q2(Q2 + 4m2)

≃ 1

2πQ2
log

Q2

m2
− m2

π(Q2)2

(
log

Q2

m2
− 1

)
+ · · · ,(A44)

dB(Q2)

dm2
≃ − 2B(0)

Q2 + 4m2

[
1 +

2m2

Q2
log

Q2

m2
+ · · ·

]
, B(0) =

1

4πm2
, (A45)

so that the renormalized coupling becomes

ur(s) =
6u

6 + u
tanh−1

(√
s

s+4m2

)

π
√
s(s+ 4m2)

≃ 12πus

12πs+ u log(s/m2)
, s→ ∞. (A46)

The most singular term of Z1 for u 6= ∞ becomes

Z1 ≃ u

6

∫
DQ

2

(Q2 +m2)2
, (A47)

which is manifestly finite, while at u = ∞, we have

Z1 =

∫
DQ

B(Q2)

[
2

(Q2 +m2)2
− 4m2

(Q2 +m2)3

]
, (A48)

which diverges as Z1 ≃ log
(
log Λ2

)
.

The most divergent part of µ21 is given by

µ21 ≃





−u
3
Z(m)δ1, (δ1 = 1), u 6= ∞

u

12π
log

(
Λ2 + 4m2

4m2

)
, u→ ∞

. (A49)
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A.5.3 d = 3

At d = 3, µ20 is linearly divergent as

µ20 = m2 − u

6
Z(m), Z(m) ≃ 1

2π2

[
Λ−m arctan

(
Λ

m

)]
, (A50)

while B(Q2) is finite as

B(Q2) =
1

4π
√
Q2

arctan

(√
Q2

4m2

)
≃ 1

8|Q| −
m

2πQ2
+

2m3

3π(Q2)2
+ · · · , (A51)

dB(Q2)

dm2
= − 2B(0)

Q2 + 4m2
, B(0) =

1

8πm
, (A52)

and the renormalized coupling becomes

ur(s) =
6u

6 +
u

4π
√
s
arctan

(√
s

4m2

) ≃ u

1 +
u

48
√
s

, s→ ∞. (A53)

The most singular term of Z1 for u 6= ∞ becomes

Z1 ≃ u

9

∫
DQ

1

(Q2 +m2)2
, (A54)

which is manifestly finite at d = 3. On the other hand, at u = ∞, we have

Z1 =
2

3

∫
DQ

B(Q2)

[
1

(Q2 +m2)2
− 4m2

(Q2 +m2)3

]
, (A55)

whose divergent part becomes

Z1 ≃ 4

3π2
log Λ2. (A56)

The most divergent part of µ21 becomes

µ21 ≃





−u
3
Z(m)δ1, (δ1 = 1), u 6= ∞

−m 2u

9π3
log Λ2, u→ ∞

. (A57)
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A.5.4 d = 4

At d = 4, µ20 is quadratically divergent as

µ20 = m2 − u

6
Z(m), Z(m) ≃ 1

16π2

[
Λ2 −m2 log

(
Λ2 +m2

m2

)]
. (A58)

On the other hand, at d = 4, we have

B(Q2) =
1

(4π)2

[
log

(
Λ2
m

m2

)
+ 2

Q2 + 4Λ2
m − 2Λ2

√
Q2(Q2 + 4Λ2

m)
tanh−1

√
Q2

Q2 + 4Λ2
m

− 2

√
Q2 + 4m2

Q2
tanh−1

√
Q2

Q2 + 4m2



 , (A59)

B(0) =
1

(4π)2

[
log

Λ2
m

m2
− Λ2

Λ2
m

]
, Λ2

m ≡ Λ2 +m2, (A60)

which diverge logarithmically, so that ur(s) = 0 as Λ → ∞.

Since tanh−1(x) ≃x→1 −1
2 log

(
1−x
2

)
, we have

B(Q2) +
6

u
= B̂

(
q2, α2

)
, q2 =

Q2

Λ2
, α =

m

Λ
, (A61)

B̂(q2, 0) = −c0 log q2 +
6

u
+ c0F (q

2), c0 =
1

(4π)2
, (A62)

where

F (q2) =
2(q2 + 2)√
q2(q2 + 4)

tanh−1

√
q2

q2 + 4
. (A63)

Let us now consider the continuum limit of Z1. By rescaling the momentum, we have

Z1 = − α2

8π2

∫ 1

0

tdt

B̂(t, α2)(t+ α2)3
. (A64)

As α2 → 0 in the Λ → ∞ limit, we have
∫ 1

0

tdt

B̂(t, α2)(t + α2)3
≃

∫ 1

0

tdt

B̂(t, 0)(t+ α2)3

=

∫ 1

2

0

tdt

B̂(t, 0)(t+ α2)3
+

∫ 1

1

2

tdt

B̂(t, 0)(t+ α2)3
, (A65)

where the second term is finite in this limit, while the first term is bounded from above
∫ 1

2

0

tdt

B̂(t, 0)(t+ α2)3
≤ − 1

c0

∫ 1

2

0

tdt

(t+ α2)3 log(t + α2)

=
1

c0

[
log | logα2|+

∞∑

r=1

(− logα2)r

r r!
+ (finite terms)

]
, (A66)
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so that Z1 in eq. (A64) vanishes as α2 → 0.

The most divergent part of µ21 becomes

µ21 ≃ −u
3

Λ2

16π2
δ1, δ1 =

∫ 1

0
dq2

(
c0T (q

2)− 6/u

c0{log q2 − F (q2)} − 6/u

)
, (A67)

T (q2) ≡ log q2 + 1− q2

q2 + 4

(
1 +

q2 + 6

q2 + 2
F (q2)

)
,

where δ1 is finite, but is not universal as it depends on how we regulate the integral.

A.5.5 d > 4

At d > 4, µ20 is O(Λd−2) as

µ20 = m2 − u

6
Z(m), Z(m) ≃ d

(4π)d/2(d− 2)Γ(1 + d/2)
Λd−2. (A68)

We also write

B(Q2) =
d

(4π)d/2Γ(1 + d/2)

∫ 1

0
dx

∫ Λ

0

pd−1dp

[p2 +m2 +Q2x(1 − x)]
2 , (A69)

from which we obtain

B(Q2) = Λd−4B̂

(
Q2

Λ2
,
m2

Λ2

)
, B̂(0, 0) =

d

(d− 4)

1

(4π)d/2Γ(1 + d/2)
, (A70)

dB(Q2)

dm2
= −2Λd−6B̂m

(
Q2

Λ2
,
m2

Λ2

)
, (A71)

where

B̂(q2, α2) =
d

(4π)d/2Γ(1 + d/2)

∫ 1

0
dx

∫ 1

0

yd−1dy

[y2 + α2 + q2x(1− x)]
2 , (A72)

B̂m(q2, α2) =
d

(4π)d/2Γ(1 + d/2)

∫ 1

0
dx

∫ 1

0

yd−1dy

[y2 + α2 + q2x(1− x)]
3 (A73)

so that B(Q2) = O(Λd−4). As in the case at d = 4, ur(s) = 0 in the limit that Λ → ∞.

By the change of variable Q = Λq in eq. (A31) and then taking the limit Λ → ∞, we

obtain

Z1 =
2(4− d)

d

∫

q2<1

Dq

B̂(q2, 0)

1

(q2)2
. (A74)

The fact that B̂(0, 0) 6= 0 establishes that Z1 is finite at d > 4.
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The most divergent part of µ21 is given by

µ21 ≃ −u
3
Z(m)δ1, (A75)

where

δ1 = (d− 2)

∫ 1

0

qd−1dq

B̂(q2, 0)

(
B̂(0, 0)

q2
− B̂m(q2, 0)

)
(A76)

with the change of variables as q2 = Q2/Λ2. It is easy to show that δ1 is finite.

B Solving the SED for the flow equation

In this appendix we explicitly solve the SDE in d+ 1 dimensions, in order to obtain the

2-pt and 4-pt functions for the flow fields at the NLO.

B.1 Solution for Γ0

We first solve the equation at the LO for Γ0. If we introduce one unknown function F (t, p)

as

Γ0(12) =

∫
Dp

F (t1, p)F (t2, p)

p2 +m2
e−(p2+µ2

f )(t1+t2)eip(x1−x2) (B1)

with the initial condition F (0, p) = 1, we have

Df
1 Γ0(12) =

∫
Dp

Ḟ (t1, p)F (t2, p)

p2 +m2
e−(p2+µ2

f )(t1+t2)eip(x1−x2) (B2)

−uf
6
Γ0(12)Γ0(11) = −uf

6

∫
Dp

F (t1, p)F (t2, p)

p2 +m2
e−(p2+µ2

f )(t1+t2)eip(x1−x2)Γ0(t1), (B3)

Γ0(t1) = Γ0(11) =

∫
Dp

F 2(t1, p)

p2 +m2
e−2(p2+µ2

f )t1, (B4)

where Ḟ means a t-derivative of F . Then, the SDE (20) becomes

Ḟ (t, p)

F (t, p)
= −uf

6
Γ0(t), (B5)

which tells us that F (t, p) is independent of p, so we put F (t, p) = F (t). The above equation

is thus reduced to

Ḟ (t) = −uf
6
F 3(t)e−2µ2

f tζ0(t), (B6)
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where ζ0(t) is defined in eq. (24), whose solution is given by

F−2(t) = 1 +
uf
3

∫ t

0
dsζ0(s)e

−2µ2

f s ≡ e−2µ2

f t
ζ(t)

Z(mf )
, ζ(t) = ζ0(t) + ∆(t) (B7)

where mf is defined in eq. (6) and

∆(t) = e2tµ
2

f
(
Z(mf )− Z(m)

)
+

∫
Dp

(
p2 +m2

f

p2 +m2

)
e2tµ

2

f − e−2tp2

p2 + µ2f
. (B8)

In the case of the interacting flow with uf > 0, µ2f negatively diverges as Z(mf ) → +∞
in the continuum limit at d > 1 or as uf → +∞ in the NLSM limit. In these limits, ∆(t)

vanishes as

lim
µ2

f
→−∞

∆(t) ≃ −
m2

f ζ0(t)− ζ̇0(t)/2

µ2f
+O

(
1/µ4f

)
(B9)

for t > 0. In the case of free flow (uf = 0), we simply have F (t) = 1.

We then obtain

Γ0(12) =





Z(mf )√
ζ(t1)ζ(t2)

∫
Dp

e−p2(t1+t2)eip(x1−x2)

p2 +m2
, uf 6= 0

∫
Dp

e−(p2+µ2

f )(t1+t2)eip(x1−x2)

p2 +m2
, uf = 0

. (B10)

B.2 Solution for K0

We consider K0, which appears at the NLO. The equation for K0 in eq. (22) is closed,

once Γ0 is obtained. Using eq. (26), we have

Df
1K0(12; 34) =

∫
dP4

[
Ḟ (t1)

F (t1)
+ ∂t1

]
g(12; 34|12; 34)

=

∫
dP4

[
−uf

6
F 2(t1)e

−2µ2

f t1ζ0(t1) + ∂t1

]
g(12; 34|12; 34), (B11)

Γ0(12)Γ0(13)Γ0(14) =

∫
dP4δ̂ (p

2
1 +m2)F 2(t1)e

−2µ2

f t1e(p
2
1−p22−p23−p24)t1, (B12)

Γ0(11)K0(12; 34) = F 2(t1)e
−2µ2

f t1ζ0(t1)

∫
dP4 g(12; 34|12; 34), (B13)

Γ0(12)K0(11; 34) = F 2(t1)e
−2µ2

f t1

∫
dP4δ̂ (p

2
1 +m2)et1(p

2
1−p22)

×
∫

Dq1Dq2
e−t1(q

2
1+q22)

(q21 +m2)(q22 +m2)
g(11; 34|q1q2; 34), (B14)
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so that the SDE leads to

∂t1g(12; 34|12; 34) = −uf
6
F (t1)

2e−2µ2

f t1(p21 +m2)et1(p
2
1−p22)δ̂

[
2e−t1(p

2
3+p24)

+

∫
Dq1Dq2

e−t1(q
2
1+q22)

(q21 +m2)(q22 +m2)
g(11; 34|q1q2; 34)

]
. (B15)

From eq. (B15), one can easily see ∂t2∂t1g(12; 34|12; 34) = 0, which implies

g(12; 34|12; 34) = X(23|12; 34) +X(13|21; 34) +X(24|12; 43) +X(14|21; 43)

+ Y (2|12; 34) + Y (1|21; 34) + Y (3|43; 12) + Y (4|34; 12)

+ Z(|12; 34), (B16)

where we require that X and Y satisfy

X(τ, τ ′|12; 34) = X(τ ′, τ |43; 21), X(τ, 0|12; 34) = 0, (B17)

Y (τ |12; 34) = Y (τ |12; 43), Y (0|12; 34) = 0. (B18)

Since g(12; 34|12; 34) agrees with the amputated connected 4-pt function in the d dimensional

theory at τi = 0 (i = 1, 2, 3, 4), we obtain

Z(|p1, p2, p3, p4) = −δ̂ 2

6/u+B(0|p34)
, (B19)

where B(t|Q) is defined in eq. (31). Then one can easily check that g satisfies the required

symmetries

g(12; 34|12; 34) = g(21; 34|21; 34) = g(12; 43|12; 43) = g(34; 12|34; 12). (B20)

B.2.1 Solution for Y

Terms which depend only on t1 in eq. (B15) can be written as

∂tY (t|21; 34) = −uf
3
F 2(t)e−2tµ2

f (p21 +m2)et(p
2
1−p22)δ̂

×
[
ρ(t|34) +

∫
Dq1Dq2

e−t(q21+q22)Y (t|q1, q2; 34)
(q21 +m2)(q22 +m2)

]
, (B21)

where ρ(t|34) is defined in eq. (35). To solve this equation, we set

Y (t|21; 34) = δ̂(p21 +m2)

∫ t

0
ds es(p

2
1−p22)ψ(s|34), (B22)
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satisfying eq. (B18). Eq. (B21) is reduced to

ψ(t|34) = −uf
3
F 2(t)e−2tµ2

f

[
ρ(t|34) +

∫ t

0
dsK(t, s|p34)ψ(s|34)

]
, (B23)

which shows ψ does not depend on p1, p2, where K is defined in eq. (34). Since

ufF
2(t)e−2tµ2

f = ufZ(mf )/ζ(t) goes to infinity in the continuum limit at t > 0 and d > 1 or

in the NLSM limit uf → ∞, eq. (32) must hold in either of the two limits.

B.2.2 Solution for X

We next consider the solution for X . Terms depending on both t1 and t3 in eq. (B15),

and thereafter replacing t3 by t2 and interchanging p1 ↔ p2, gives

∂t1X(t1, t2|12; 34) = −uf
6
F 2(t1)e

−2t1µ
2

f (p22 +m2)et1(p
2
2−p21)δ̂

∫
Dq1Dq2

× e−t1(q
2
1+q22)

(q21 +m2)(q22 +m2)
{2X(t1, t2|q1, q2; 34) + Y (t2|43; q1, q2)} ,(B24)

where

Y (t|43; q1, q2) = (2π)dδ(p34 + q12)(p
2
3 +m2)

∫ t

0
ds es(p

2
3−p34)ψ(s|q1, q2). (B25)

We define

∂t2∂t1X(t1, t2|12; 34) = δ̂(p22 +m2)(p23 +m2)et1(p
2
2−p21)et2(p

2
3−p24)β(t1, t2|12; 34),(B26)

where properties of X imply β(t1, t2|12; 34) = β(t2, t1|43; 21) and β(t, 0|12; 34) =
β(0, t|12; 34) = 0. Then the above equation becomes

β(t1, t2|12; 34) = −uf
6
F 2(t1)e

−2t1µ
2

f

[
g(t1, t2|p34) + 2

∫ t1

0
ds1

∫
Dq1Dq2(2π)

dδ(q12 + p34)

× e−(t1+s1)q
2
1−(t1−s1)q

2
2

q21 +m2
β(s1, t2|q1, q2; 34)

]
, (B27)

where

g(t1, t2|Q) =
∫

Dq1Dq2(2π)
dδ(q12 +Q)

e−t1(q
2
1+q22)

(q21 +m2)(q22 +m2)
ψ(t2|q1, q2). (B28)

Since the above expression tells us that β depends only on p34, we can write

β(t1, t2|12; 34) = ω(t1, t2|p34) = ω(t1, t2| − p34), (B29)
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so that we have

ω(t1, t2|p34) = −uf
6
F 2(t1)e

−2t1µ
2

f

[
g(t1, t2|p34) + 2

∫ t1

0
ds1K(t1, s1|p34)ω(s1, t2|p34)

]
, (B30)

which is reduced to

g(t1, t2|Q) + 2

∫ t1

0
ds1K(t1, s1|Q)ω(s1, t2|Q) = 0 (B31)

in the continuum limit or NLSM limit. Eq. (B31) leads to eq. (33) in the main text, since
∫ t2

0
ds2K(t2, s2|Q)g(t1, s2|Q) = −ρ(t1, t2|Q). (B32)

B.3 Solution for Γ1

B.3.1 SDE at NLO

The SDE for Γ1 is a little modified as

Df
1Γ1(12) + µ21,fΓ0(12) = −uf

6

[
K0(12; 11) + Γ0(12)Γ1(11) + Γ1(12)Γ0(11) + 2Γ0(12)Γ0(11)

]
,

(B33)

where we replace µ2f by µ2f +
µ21,f
N

, so thatDf
1 → Df

1 +
1

N
µ21,f . Here u

2
1,f is given by eq. (A36)

with the replacement u,m→ uf , mf .

We parametrize Γ1 as

Γ1(12) = F (t1)F (t2)

∫
Dp

e−(p2+µ2

f )(t1+t2)eip(x1−x2)

p2 +m2
G1(t1, t2|p) (B34)

with the boundary condition

G1(0, 0|p) ≡ b(p) = − Σ1(p)

p2 +m2
, (B35)

where Σ1(p) is the self-energy at the NLO in the d dimensional theory.

The NLO SDE becomes

∂t1G1(t1, t2|p1) + µ21,f = −uf
6
F 2(t1)e

−2t1µ
2

fH [G1(t1, t1|p)] + λ(t1, t2|p1) , (B36)

where H is defined in eq. (69) and

λ(t1, t2|p1) ≡ −uf
6
F 2(t1)e

−2t1µ
2

f∆(t1, t2|p1), (B37)

∆(t1, t2|p1) = 2ζ0(t1) + et1p
2
1

∫ 4∏

i=2

Dpie
−t1p

2
i

p2i +m2

{
Z(|21; 34) + 2Y (1|34; 21)

+ 2X(11|12; 34) + Y (1|12; 34) + 2X(21|21; 34) + Y (2|21; 34)
}
. (B38)
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Using solutions X and Y , we have in the continuum limit

λ(t1, t2|p1) =

∫
dp2

et1(p
2
1−p22)

p22 +m2

[
ψ(t1|12) + (p22 +m2)

∫ t1

0
ds es(p

2
2−p21)ω(t1, s|p12)

+ (p21 +m2)

∫ t2

0
ds es(p

2
1−p22)ω(t1, s|p12)

]
. (B39)

Since the right-hand side of eq. (B39) is finite, ∆(t1, t2|p) → 0 in the continuum limit.

B.3.2 Solution to the SDE

Let us define

G1(t1, t2|p) ≡ b(p) + κ(t1, t2|p) +H(t1) +H(t2) (B40)

with κ(t1, t2|p) = κ(t2, t1|p) and κ(0, 0|p) = H(0) = 0, where

∂t1κ(t1, t2|p) = λ(t1, t2|p), (B41)

dH(t)

dt
= −uf

6
F 2(t)e−2tµ2

f [H [G1(t, t|p)]− 2ζ(t)δ1] . (B42)

The second equation (B42) can be rewritten as

dH(t)

dt
= −uf

6
F 2(t)e−2tµ2

f [2ζ0(t)H(t) + b0(t) + κ0(t)− 2ζ(t)δ1] , (B43)

so that we have in the continuum limit

H(t) = −b0(t) + κ0(t)

2ζ0(t)
+ δ1, (B44)

where we define b0(t) = H[b(p)] and κ0(t) = H[κ(t, t|p)].
The first equation (B41) can be solved as

κ(t1, t2|p) = k2(t1, t2|p) + k1(t1|p) + k1(t2|p), (B45)

where

k1(t|p) =

∫ t

0
ds λ1(s|p), (B46)

λ1(t|p) =

∫
Dq

e(p
2−q2)t

q2 +m2
ψ(t|p, q) +

∫ t

0
ds

∫
Dqe(p

2−q2)(t−s)ω(t, s|Q), (B47)

k2(t1, t2|p) =

∫ t1

0
ds1

∫ t2

0
ds2

∫
Dq

p2 +m2

q2 +m2
e(p

2−q2)(s1+s2)ω(s1, s2|Q) (B48)

with Q = p+ q.
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C Calculations in the massless limit at d = 3

It can be shown that the flow bubble integral can be represented as

B(t|{p}sym.) = −2

∫ t

0
dsK(s, 0|{p}sym.) +B(0|{p}sym.), B(0|{p}sym.) =

1

8
√
D
, (C1)

which can be rescaled as

B(t|{p}sym.) =
1√
D
b0(Dt), (C2)

where

b0(w) =
1

8
−

√
w

2(2π)3/2

∫ 1

0

dx√
x
e−wx

∫ 1

0

dz√
z
ewzx/2. (C3)

Rescaling

ρ(t|{p}sym.) = R0(Dt,D), ψ(t|{p}sym.) =
√
Dφ0(Dt,D), (C4)

the integral equation for ψ in the massless limit is written as

R0(w,D) +

∫ w

0
dv k0(w, v)φ0(v,D) = 0, (C5)

where

R0(w,D) = e−3w/2 − 8b0(w)
ū(D)

1 + ū(D)
, ū(D) =

u

48
√
D
. (C6)

Since the problem is linear, we can write

φ0(w,D) = φ
(1)
0 (w)− 8φ

(2)
0 (w)

ū(D)

1 + ū(D)
, (C7)

where φ
(i)
0 , i = 1, 2 solve the momentum-independent equations (56) and (57). We thus finally

obtain eq. (52).

As the source term can be rescaled as

ρ(t, s|{p}sym.) =
1√
D

[
b0(D(t+ s))− 8b0(Dt)b0(Ds)

ū(D)

1 + ū(D)

]
, (C8)

the equation for ω in the massless limit is written for ω(t, s|{p}sym.) =
√
DW0(Dt,Ds,D) as

b0(D(t+ s))− 8b0(Dt)b0(Ds)
ū(D)

1 + ū(D)

= 2

∫ Dt

0
du k0(Dt, u)

∫ Ds

0
dv k0(Ds, v)W0(u, v,D), (C9)

which can be solved as

W0(w, v,D) = Ω0(w, v)− 4φ
(2)
0 (w)φ

(2)
0 (v)

ū(D)

1 + ū(D)
, (C10)

where Ω0 solves the momentum (D) independent equation (58). We thus obtain eq. (53).
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D Induced metric in the massless limit at d = 3

D.1 Induced metric

The space component of the induced metric is given by

gij(z) = δij
R2
0

dζ0(t)

(
1− ζ1(t)

N

)
H
[
p2
(
1 +

G1(t, t|p)
N

)]
. (D1)

We then evaluate

ζ1(t) =
1

ζ0(t)
H[G1(t, t|p)] = 2δ1, H[1] = ζ0(t), H[p2] = −∂tζ0(t)

2
, (D2)

H[p2G1(t, t|p)] = H[λ(t, t|p)] + ζ0(t)∂tH(t)− ∂tζ0(t)δ1 = ζ0(t)∂tH(t)− ∂tζ0(t)δ1, (D3)

where in the last equation we use H[λ(t, t|p)] = 0. Altogether we obtain

gij(z) = δijR
2
0

[
g(0)(t) +

1

N
g(1)(t)

]
, g(0)(t) = − ∂tζ0(t)

2dζ0(t)
, g(1)(t) =

∂tH(t)

d
. (D4)

The time component is evaluated as

g00(t) = t∂t1∂t2

[
R2
0√

ζ0(t1)ζ0(t2)

∫
Dp

e−p2(t1+t2)

p2 +m2

(
1 +

G̃1(t1, t2|p)
N

)]

t1=t2=t

(D5)

= R2
0

{
g
(0)
00 (t) +

1

N
g
(1)
00 (t)

}
, (D6)

where

G̃1(t1, t2|p) = −2δ1 +G1(t1, t2|p). (D7)

The leading term is

g
(0)
00 (t) =

t

4
∂2t [log ζ0(t)] (D8)

and for the NLO term we have

1

t
g
(1)
00 (t) = ∂t1∂t2

I(t1, t2)√
ζ0(t1)ζ0(t2)

∣∣∣∣∣
t1=t2=t

, (D9)

where

I(t1, t2) =

∫
Dp

e−p2(t1+t2)

p2 +m2
G̃1(t1, t2|p). (D10)

With this notation

1

t
g
(1)
00 (t) =

1

4

(∂tζ0(t))
2

ζ30(t)
I(t, t)− 1

2

∂tζ0(t)

ζ20 (t)
∂tI(t, t) +

1

ζ0(t)
∂t1∂t2I(t1, t2)

∣∣
t1=t2=t

. (D11)
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Since

I(t, t) = H[G̃1(t, t|p)] = 0, (D12)

the first two terms vanish. Further,

∂t1∂t2I(t1, t2)
∣∣
t1=t2=t

= H
[
(p2)2G̃1(t, t|p)− 2p2λ(t, t|p) + ∂t2λ(t, t2|p)

∣∣
t2=t

]
+ ∂tH(t)∂tζ0(t).

(D13)

Using the identities

H[λ(t, t|p)] = 0; H[p2G̃1(t, t|p)] = ζ0(t) ∂tH(t) (D14)

and their derivatives this can be further simplified:

∂t1∂t2I(t1, t2)
∣∣
t1=t2=t

= −1

2
ζ0(t)∂

2
tH(t) +H

[
∂t2λ(t, t2|p)

∣∣
t2=t

− ∂tλ(t, t|p)/2]. (D15)

Here the second term vanishes and we finally obtain

g
(1)
00 (t) = − t

2
∂2tH(t). (D16)

D.2 Calculation of H(t) in the massless limit

We recall the definition of H(t) as

H(t) = −b0(t) + κ0(t)

2ζ0(t)
+ δ1 (D17)

where

b0(t) = H[b(p)], κ0(t) = H[κ(t, t|p)], (D18)

with

b(p) = − Σ1(p)

p2 +m2
, κ(t, t|p) = k2(t, t|p) + 2k1(t|p). (D19)

Here k1 and k2 are given in eqs. (B46), (B47) and (B48).

Hereafter we consider the massless limit at d = 3, where we have ζ0(t)
−1 = 2(2π)3/2

√
t.
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D.2.1 Calculation of b0(t)

We first calculate b0(t). In the massless limit, we have

Hb(t) ≡ − b0(t)

2ζ0(t)
=

1

2ζ0(t)

∫
Dp

e−2p2t

(p2)2
g(p2) (D20)

since C̃ = Z1m
2 = 0 and

g(p2) =
u

3

∫
DQ

1 + ū(Q2)

{
1

(Q+ p)2
− 1

Q2

}
. (D21)

After rescaling, we obtain

Hb(t) =

∫
DQhb(Q

2)
ū(Q2)

√
t

1 + ū(Q2)
√
t
, (D22)

where

hb(Q
2) = 32

√
2
√
π3
√
Q2

∫
Dp

e−2p2

(p2)2

{
1

(Q+ p)2
− 1

Q2

}
. (D23)

D.2.2 Calculation of κ0(t)

For this we need ψ and ω in the massless limit, which can be obtained as

ψ0(t|p, q) =
√
Q2

[
ϕ0(Q

2t, z)− 8φ
(2)
0 (Q2t)

ū(Q2)

1 + ū(Q2)

]
, (D24)

ω0(t, s|Q) =
√
Q2

[
Ω0(Q

2t, Q2s)− 4φ
(2)
0 (Q2t)φ

(2)
0 (Q2s)

ū(Q2)

1 + ū(Q2)

]
(D25)

with z = (p2 + q2)/Q2, where φ
(2)
0 and Ω0 are already obtained in section 3, while ϕ0 satisfies

e−zw +

∫ w

0
dx k0(w, x)ϕ0(x, z) = 0, (D26)

instead of eq. (56) and thus ϕ0(x, 3/2) = φ
(1)
0 (x).

Using these, we first calculate

H
(1)
κ (t) ≡ − 1

ζ0(t)

∫
Dp

e−2p2t

p2

∫ t

0
ds

∫
Dq

e(p
2−q2)s

q2
ψ0(s|p, q)

= H
(1)
κ (0) +

∫
DQ

∫ 1

0
dxφ

(2)
0 (Q2x)h11(x,Q

2)
ū(Q2)

√
t

1 + ū(Q2)
√
t
, (D27)

where H
(1)
κ (0) is some constant and

h11(x,Q
2) = 32

√
2
√
π3
√
Q2

∫
DpDq (2π)3δ(q + p−Q)

e−(2−x)p2−xq2

p2q2
. (D28)
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Similarly we have

H
(2)
κ (t) ≡ − 1

ζ0(t)

∫
Dp

e−2p2t

p2

∫ t

0
ds

∫
Dq e(p

2−q2)s

∫ s

0
dr e(q

2−p2)rω0(s, r|Q)

= H
(2)
κ (0) + 2

∫
DQ

∫ 1

0
dxφ

(2)
0 (Q2x)

∫ x

0
dy φ

(2)
0 (Q2y) h10(x− y,Q2)

× ū(Q2)
√
t

1 + ū(Q2)
√
t
, (D29)

where

h10(z, Q
2) = 8

√
2
√
π3
√
Q2

∫
DpDq (2π)3δ(q + p−Q)

e−(2−z)p2−zq2

p2
. (D30)

The last contribution becomes

H
(3)
κ (t) ≡ − 1

2ζ0(t)

∫
Dp e−2p2t

∫ t

0
ds

∫
Dq

e(p
2−q2)s

q2

∫ t

0
dr e(p

2−q2)rω0(s, r|Q)

= H
(3)
κ (0) +

∫
DQ

∫ 1

0
dxφ

(2)
0 (Q2x)

∫ 1

0
dy φ

(2)
0 (Q2y) h10(2− x− y,Q2)

× ū(Q2)
√
t

1 + ū(Q2)
√
t
. (D31)

D.3 Total contributions

We thus obtain the H(t) as7

H(t) = H(0) +

∫
DQ htotal(Q

2)
ū(Q2)

√
t

1 + ū(Q2)
√
t
, (D32)

where

H(0) = H
(1)
κ (0) +H

(2)
κ (0) +H

(3)
κ (0) + δ1 (D33)

htotal(Q
2) = hb(Q

2) +

∫ 1

0
dxφ

(2)
0 (Q2x)

{
h11(x,Q

2) + 2

∫ x

0
dy φ

(2)
0 (Q2y)h10(x− y,Q2)

+

∫ 1

0
dy φ

(2)
0 (Q2y)h10(2− x− y,Q2)

}
, (D34)

which leads to eqs. (73) and (74) by A1(t) ≡ ∂tH(t) and ∂tA1(t) ≡ ∂2tH(t).

7 Here H(0) is potentially divergent but it does not contribute to the metric.
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D.4 IR behaviors

D.4.1 Some definitions

We write the NLO induced metric as

gij(τ) = δij

{
R2
0

12t

[
1 +

R(t)

N

]}
, g00(τ) = −t∂t

{
R2
0

8t

[
1 +

R(t)

N

]}
, (D35)

where the relative correction is a sum of four contributions,

R(t) = Rb(t) +

3∑

i=1

R
(i)
κ (t), Rb(t) ≡ 4t∂tHb(t), R

(i)
κ (t) ≡ 4t∂tH

(i)
κ (t). (D36)

We also introduce G(v) by

φ
(2)
0 (v) = −(2π)3/2√

v
G(v), G(0) = 1/8, G(v) ∼ exp(−v/2), v → ∞ (D37)

and use the time variable T = u
√
t/48.

In the following we will use the fact that a double 3-dimensional integral of any function

depending only on the absolute values p, q and |Q|, where Q = p+ q, can be written

∫
Dp

∫
Dq f(p, q, Q2) =

1

(2π)4

∫ ∞

0
pdp

∫ ∞

0
qdq

∫ (q+p)2

(q−p)2
dQ2 f(p, q, Q2). (D38)

D.4.2 The Rb contribution

Here we can do the angular part of the Q2 integral analytically and find

Rb(t) =
32T
√
2π

5

∫ ∞

0

qdq

(q + T )2
ρb(q), (D39)

where

ρb(q) = q2
∫ ∞

0

dp

p3
e−2p2

{
ln

(p+ q)2

(p− q)2
− 4p

q

}
, (D40)

which behaves as ρb(q) = O(q) for small q, while

ρb(q) ∼
√
2π

3q
, (D41)

for large q. Thus we can establish that Rb(t) = O(T ) for small t, while for large t

rb ≡ Rb(∞) =
8

3π2
= 0.27019. (D42)
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D.4.3 The R
(1)
κ contribution

We have

R
(1)
κ (t) = −32(2π)3

∫
Dp

∫
Dq

∫ 1

0

dx√
x

e−p2(2−x)−q2x

p2q2
|Q|T

(T + |Q|)2G(Q
2x). (D43)

Doing the q2 integral first and introducing x = y2 we can rewrite it as

− 32

π

∫ ∞

0

dp

p
e−2p2

∫ ∞

0

Q2T

(T +Q)2
dQ

∫ 1

0
dy G(Q2y2)

∫ (Q+p)2

(Q−p)2

e(p
2−q2)y2

q2
dq2. (D44)

After some further rescaling we get

R
(1)
κ (t) = −64

π

∫ ∞

0
dQ

QT

(T +Q)2
ρ
(1)
κ (Q), (D45)

where

ρ
(1)
κ (Q) =

∫ ∞

0

dp

p
e−2p2

∫ Q

0
dz G(z2)Y (

p

Q
, z), (D46)

Y (ε, z) =

∫ 1+ε

|1−ε|

dξ

ξ
e(ε

2−ξ2)z2 = 2εe−z2 +O(ε2). (D47)

From this we see that ρ
(1)
κ (Q) = O(Q) for small Q, while

ρ
(1)
κ (Q) ∼ 2

Q

∫ ∞

0
dp e−2p2

∫ ∞

0
dz G(z2)e−z2 =

1

Q

√
π

2

∫ ∞

0
dz G(z2)e−z2 (D48)

for large Q, so that we numerically obtain

r
(1)
κ ≡ R

(1)
κ (∞) = − 64√

2π

∫ ∞

0
dz G(z2)e−z2 = −1.14734. (D49)

D.4.4 The R
(2)
κ contribution

Similarly

R
(2)
κ (t) = 16

√
2π

9
∫

Dp

∫
Dq

∫ 1

0

dx√
x

∫ x

0

dy√
y

T

(T + |Q|)2G(Q
2x)G(Q2y)

e−2p2

p2
e(p

2−q2)(x−y).

(D50)

Doing the q2 integrations first, we have

R
(2)
κ (t) = 64

√
2π

∫ ∞

0
dQ

QT

(T + Q)2

∫ ∞

0

dp

p
e−2p2

×
∫ 1

0
dx

∫ x

0
dy G(Q2x2)G(Q2y2)

∫ (Q+p)2

(Q−p)2
e(p

2−q2)(x2−y2)dq2.

(D51)
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The q2 integral can be done analytically and we find

R
(2)
κ (t) = 128

√
2π

∫ ∞

0
dQ

QT

(T +Q)2
ρ
(2)
κ (Q), (D52)

where

ρ
(2)
κ (Q) =

∫ ∞

0

dp

p
e−2p2

∫ Q

0
dz

∫ z

0
dwG(z2)G(w2)

ew
2−z2

z2 − w2
sinh

2p

Q
(z2 − w2). (D53)

Thus ρ
(2)
κ = O(Q) for small Q, while

ρ
(2)
κ (Q) ∼ 1

Q

∫ ∞

−∞
dp e−2p2

∫ ∞

0
dz

∫ z

0
dwG(z2)G(w2)ew

2−z2 (D54)

for large Q, and

r
(2)
κ ≡ R

(2)
κ (∞) = 128π

∫ ∞

0
dz

∫ z

0
dwG(z2)G(w2)ew

2−z2 = 0.45846. (D55)

D.4.5 The R
(3)
κ contribution

For R
(3)
κ we find

R
(3)
κ (t) = 32

√
2π

∫ ∞

0
dQ

QT

(T +Q)2
ρ
(3)
κ (Q) (D56)

with

ρ
(3)
κ (Q) =

∫ 1

0
dx

∫ 1

0
dy

∫ ∞

0
pdp e−2p2+p2(x2+y2)G(Q2x2)G(Q2y2)

∫ (Q+p)2

(Q−p)2

e−q2(x2+y2)

q2
dq2.

(D57)

After rescaling

ρ
(3)
κ (Q) =

1

Q2

∫ Q

0
dz

∫ Q

0
dwG(z2)G(w2)

∫ ∞

0
pdp e−2p2Z

(
p

Q
, z2 + w2

)
, (D58)

where

Z(ε, A) = 2eAε2
∫ 1+ε

|1−ε|

e−Aξ2

ξ
dξ ≈ 4εe−A, ε→ 0. (D59)

Thus ρ
(3)
κ (Q) = O(Q) for small Q, while

ρ(3)(Q) ∼ 4

Q3

∫ ∞

0
dz

∫ ∞

0
dwG(z2)G(w2)

∫ ∞

0
p2dp e−2p2−z2−w2

=

√
π

8

(∫ ∞

0
dz G(z2)e−z2

)2
1

Q3
,

(D60)

for large Q, which leads to

r
(3)
κ ≡ R

(3)
κ (∞) = 0. (D61)

Thus the total relative correction is negative:

r = rb + r
(1)
κ + r

(2)
κ + r

(3)
κ = −0.41869. (D62)
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