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Gauge invariance and the interpretation of inter- and intraband processes

in high-order harmonic generation from bulk solids
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A theoretical model for high-order harmonic generation (HHG) in bulk solids is considered. Our
approach treats laser-induced inter- and intraband currents on an equal footing. The sum of these
currents is the source of the high-order harmonic radiation, and does not depend on the particular
electromagnetic gauge we choose to describe the process. On the other hand, as it is shown us-
ing analytic and numerical calculations, the distinction between intra- and interband dynamics is
gauge dependent, implying that the interpretation of the process of HHG using these terms requires
carefulness.

Introduction The idea that solid state targets illumi-
nated by strong, short near infrared pulses can produce
coherent X-ray radiation [1] or even attosecond electro-
magnetic bursts [2] preceded the first experiments that
demonstrated the appearance of high-order harmonics
(up to order of 25) in the spectra of strongly driven solid
state samples. In Ref. [3] a wide bandgap ZnO target
(3.2 eV) was excited by a pulse with central wavelength
of 3.25 µm, meaning that at least 9 photons are required
for an excitation from the valance to the conduction band
[see also [4] for more details]. Recently, a direct compar-
ison of high-order harmonic generation in the solid and
gas phases of argon and krypton has been reported [5].
Theoretically, semiconductor Bloch-equations were ap-

plied to describe the problem [6], a closed-form expres-
sion were given to the subcycle-resolved transition rate
of electrons between bands [7], appearance of attosecond
pulses were predicted [8], semiclassical [9] and a saddle-
point [10] analysis were performed and the role of an
indirect bandgap was also investigated [11].

The intensity of the exciting laser pulse was below the
damage threshold in Ref. [3]. Although high-order har-
monic generation (HHG) is known to be possible also in
plasmas emerging from solid state surfaces as a conse-
quence of intense electromagnetic radiation [see e.g., [12]
for a review], here we focus on the case when a system
of electrons in a static, periodic potential interacts with
the exciting laser field [13].
Neglecting relaxation and multiparticle effects, the re-

sponse of the electronic subsystem in a solid to the exter-
nal laser pulse is usually categorized as follows: (1) In-
terband transitions, (2) Laser-driven intraband motion,
(3) Dynamical Bloch-oscillations. The first phenomenon
is the usual optical generation of charge carriers, but this
is already a nonlinear effect in the range of HHG. Points
2 and 3 above are closely related, it is only the strength of
the laser field that determines whether dynamical Bloch
oscillations appear or not. As a quasiclassical picture,
the external field of the laser changes the crystal mo-
mentum of the electrons. More precisely, as described

by the acceleration theorem [14, 15], the change of the
crystal momentum can be written as

~
dk(t)

dt
= e0F(t), (1)

where F(t) represents the time dependent external elec-
tric field, and e0 denotes the charge of the electron. (That
is, here, and in the following, e0 is negative.) When the
amplitude of this oscillatory motion is large enough to
cross the boundary of the first Brillouin zone, Bragg-
reflection occurs, which can be termed as dynamical
Bloch-oscillation [16, 17]. It is important to note that
mechanisms 1-3 are coupled, practically none of them
appears on its own [8].

As we show in the following, although separating inter-
and intraband dynamics is very useful for the intuitive
interpretation of the physical processes, it depends on
the choice of the electromagnetic gauge. In other words,
gauge transformations (which, obviously, do not change
physically relevant results) mix the inter- and intraband
dynamics.

The Hamiltonian describing the electron in a periodic
potential (representing the solid) and interacting with an
external field can be written as:

H(t) =H0 +Hext(t) =
1

2m
(p−e0A)2 + V (r) + e0Φ

=
p2

2m
+ V (r) +Hext(t), (2)

where V (r) is the lattice-periodic potential of the crys-
tal, while Hext(t) takes the interaction with the exter-
nal field into account, via the electromagnetic poten-
tials. Note the appearance of the kinetic momentum
pkin = mv = p−e0A in Eq. (2), which is seen to be
different from the canonical p = −i~∇ depending on the
gauge.
The eigenstates of the field-free Hamiltonian obeying

H0|n,k〉 = En(k)|n,k〉, in coordinate representation,
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take the form Ψn,k(r) = exp(ikr)un,k(r)/
√
V , where n

denotes the band index of these Bloch-states, un,k(r) are
lattice periodic functions and V is the crystal volume.
We assume here, as usual, periodic boundary conditions,
and then the k-space will not be continuous, we obtain
a discrete, densely spaced series of k vectors. The k-
dependent eigenenergies En(k) provide the dispersion re-
lations for the various bands.
In order to specify the interaction term Hext(t), we

have to choose a gauge. Clearly, physical predictions
based on exact solutions without approximations must
be the same in all gauges. We assume here that the spa-
tial variation of the external field F(t) can be neglected,
since the wavelengths of the exciting infrared pulses are
much longer than the lattice constants in a crystal. Then
one of the appropriate gauges is the velocity (v) gauge,
where the vector and scalar potentials of the field F(t)

are Av(t) = −
∫ t

−∞
F(t′)dt′,Φv = 0. With this choice,

we have

Hv
ext(t) =

1

2m

[

−2e0pA
v(t) + e20A

v2(t)
]

. (3)

The second widely used option is the length (l) gauge, in
which Al = 0,Φl = −rF(t), obtained from the v gauge
by using the gauge function Λ = −rAv(t). This yields

H l
ext(t) = −e0F(t)r. (4)

(Note that both of these choices belong to the class of
Coulomb gauges.) From now on, we shall use the no-
tation A(t) ≡ Av(t). It should be kept in mind that
electron wavefunctions in these gauges are connected by
a space-time dependent unitary transfomation:

Ψl(r, t) = U(r, t)Ψv(r, t) = exp

[

− i

~
e0A(t)r

]

Ψv(r, t).

(5)
In the following we will consider pulsed excitation of du-
ration T, and assume that both F(t) andA(t) vanish out-
side the interval of [0, T ]. This means that states in the
two gauges coincide for t < 0 and t > T [when U(r, t) is
the identity]. Note that this choice avoids gauge-related
ambiguities for t > T [18–20].
Under the effect of Hg

ext, any initial state will evolve
in time, and can be expanded as a time dependent linear
combination of the unperturbed eigenstates: As Hg

ext is
gauge dependent, the expansion coefficients as well as the
states |Ψg(t)〉 shall depend on the gauge chosen. We use
the following notations in the two gauges of interest here:

|Ψv(t)〉 =
∑

nk

cnk(t)|n,k〉,
∣

∣Ψl(t)
〉

=
∑

nk

bnk(t)|n,k〉.

(6)
The following (invertible) relation holds between the ex-
pansion coefficients:

bn′k′(t) =
∑

nk

〈n′k′| exp [−ie0A(t)r/~] |n,k〉cnk(t). (7)

Before the arrival of the exciting laser pulse (t < 0),
the solid state target can be assumed to be in thermal
equilibrium. This initial condition cannot be described
by a pure quantum mechanical state, we have to consider
a (single particle) density operator, which is diagonal in
the eigenstates of the unperturbed Hamiltonian H0 :

ρ(t = 0) =
∑

nk

|n,k〉〈n,k|f [En(k)], (8)

where the relative statistical weights of the projectors is
determined by the Fermi function f . For wide-bandgap
target materials at room temperature, f [En(k)] is prac-
tically unity for the valence band, and zero for the con-
duction bands. That is, to a very good approxima-
tion, we can write ρ(t = 0) =

∑

k
|n0,k〉〈n0,k|, where

n0 corresponds to the valence band. Similarly to the
pure quantum mechanical states, the density operator
is also gauge dependent, the analogue of Eq. (5) reads
ρl(t) = U(t)ρv(t)U †(t) and the time evolution of the
density operator is given by the von-Neumann equation
i~ ∂

∂tρ
g(t) = [Hg(t), ρg(t)] . For the sake of simplicity, let

us use the velocity gauge, when (in dipole approxima-
tion) the A2 term in the Hamiltonian commutes with ρv,
and the remaining part does not mix states with different
indices k (see the Appendix for more details). Therefore
we have:

ρv(t) =
∑

nn′k

cnk(t)c
∗
n′k(t)|n,k〉〈n′,k|, (9)

where
∑

n |cnk(t)|2 = 1, and the time dependence of
these coefficients is determined by the von-Neumann
equation [with the initial conditions of cnk(0) = δn,n0

].
Since the trace of the density operator is preserved dur-
ing the dynamics, our choice of normalization means that
Trρ equals the number N of valence band states in the
first Brillouin zone. Note that this approach does not
provide absolute field strengths, exact ”number of pho-
tons” in the HHG modes (unlike Ref. [21]), it is only the
relative weight of the high harmonics that can be ob-
tained. That is the reason why we are free to choose the
normalization condition for the initial density matrix.

High-order harmonic generation Moving charges mean
the source of the high harmonic radiation, in other words
it is the expectation value of the time dependent current
(density) that is to be calculated:

J :=
e0
VmTr [ρgpkin] =

e0
VmTr [ρg(p− e0A

g)] . (10)

It is important to stress here, that the source of any
secondary radiation (such as high harmonics) is not the
canonical, but the kinetic momentum pkin, due to its
direct connection to the velocity operator [22].
Let us look at the expectation value above in the two

gauges we consider here. Similarly to the more detailed
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calculations presented in the Appendix, in the velocity
gauge we obtain

J =
e0
Vm

∑

nk

|cnk(t)|2 {~k−e0A(t)} (11)

− i~
e0
Vm

∑

n,n′

∑

k

c∗nk(t)cn′k(t)

∫

Ω

u∗
n,k(r)∇un′,k(r)d

3r.

In the length gauge Al=0, and we have therefore:

J=
e0
VmTr [ρgpkin] =

e0
Vm

∑

nk

~k|bnk(t)|2 (12)

− i~
e0
Vm

∑

n,n′,k

b∗nk(t)bn′k(t)

∫

Ω

u∗
n,k(r)∇un′,k(r)d

3r.

The results calculated in any of the gauges must be
identical, but this equality is valid only for the whole
expressions in Eqs. (11) and (12), and by no means for
the individual terms on the right hand sides.

Gauge dependence It is tempting to regroup the terms
in Eqs. (11) and (12) and interpret the macroscopic,
”current-like” part of the source of the HHG radiation

jg =
e0
Vm

∑

nk

|cgnk(t)|
2 〈n,k|pkin|n,k〉, (13)

as the intraband contribution, while the microscopic,
”polarization-like” part

Ṗg =
e0
Vm

∑

n6=n′k

[cgnk(t)]
∗
cgn′k

(t)〈n,k|pkin |n′,k〉 (14)

as the interband contribution. Indeed, 〈n,k|pkin|n,k〉/m
is the band velocity in the nth band at point k, thus j(g)

means the sum of all these velocities weighted by the
corresponding populations. For comparison with text-
book methods [23], let us note that 〈n,k|p|n,k〉 can also
be calculated as m/~∇kEn(k), but Eqs. (11) and (12)
treat inter- and intraband currents on an equal footing.
Clearly, J = jg + Ṗg, and it is gauge independent, but it
does not necessarily hold for jg and Ṗg separately.
Let us investigate the relation (7) between the expan-

sion coefficients cnk(t) and bnk(t). Assume that the dy-
namics is solved in the velocity gauge [i.e., cnk(t) are
known functions of time], and let us transform the result
to length gauge. We obtain:

bn′k′(t) =
∑

nk

〈n′k′| exp [−ie0A(t)r/~] |n,k〉cnk(t)

=
∑

nk

∫

V

eir(k−eA(t)/~+k
′)u∗

n′,k′(r)un,k(r)d
3r cnk(t)

=
∑

n

∫

Ω

u∗
n′,k′(r)un,k(t)(r)d

3r cnk(t)(t), (15)

where k(t) = eA(t)/~− k′. The first consequence of this
result is that whenever the velocity gauge density opera-
tor is diagonal in k, [which is the case during the whole
time evolution for the initial conditions given by Eq. (8)],
the same holds also for the length gauge, but with k val-
ues being shifted by eA(t)/~. [This is in agreement with
the acceleration theorem (1).] On the other hand, since
the lattice-periodic functions un,k are orthogonal only for
the same index k, the integral in the last line of Eq. (15)
is not proportional to δnn′ .
This effect is closely related to the fact that the sep-

aration of J as the sum of intraband (j) and interband
(Ṗ) components is not unambiguous. E.g., for j we have

jv =
e0
Vm

∑

nk

|cnk(t)|2 〈n,k|p|n,k〉 −
N e20
Vm A, (16)

where N = Trρ. On the other hand,

jl =
e0
Vm

∑

nk

|bnk(t)|2 〈n,k|p|n,k〉. (17)

The last term in Eq. (16) is determined solely by the time
dependence of the vector potential, while the coefficients
cnk and bnk that mean the difference between the sums
in Eqs. (16) and (17) are related via integrals that are
eventually determined by the structure of the material.
This means that even if for a certain material and time
dependent vector potential jl(t) and jv(t) may happen to
be identical, there is no physical reason why this should
hold e.g., for a different target material. In other words,
the inter- and intraband contributions that constitute the
gauge independent source term J, cannot be determined
without referring to a particular gauge.

Numerical example As an illustration, we calculate
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FIG. 1. Panel (a): The total current J (in both of the con-
sidered gauges) and the exciting field as a function of time.
Panel (b) zooms on a certain peak. Panel (c): the intraband
current j. For the sake of simplicity, the initial density op-
erator is ρ0 = |n0, 0〉〈n0, 0|. The central wavelength of the
excitation pulse is λ = 3µm.

the current generated by a short electromagnetic pulse in
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a one-dimensional model crystal, where the exciting field
is polarized along the periodic chain. We use a model
potential that produces a direct bandgap of 3.2 eV, sim-
ilarly to the case of ZnO [3]. Having determined the
Bloch-sates, the time dependence of jg and Ṗ g [the one-
dimensional versions of the quantities given by Eqs. (13)
and (14), respectively] can be calculated, as well as their
sum, Jg. [The superscript reminds us the fact that var-
ious approximations may result in the (incorrect) gauge
dependence of J.]
As we can see in the bottom panel of Fig. 1, the time

dependence of jv and jl are clearly different. The to-
tal currents Jv and J l are not exactly the same either,
but for the 8-band model presented in Fig. 1, the sim-
ple one-dimensional numerical model supports our earlier
findings within reasonable precision.
Discussion An overview of the results above shows

that the main reason why one cannot make a gauge-
independent distinction between intra- and interband dy-
namics is related to the fact that states corresponding
to different gauges are not identical. As an analogue,
let us recall that a similar statement holds also for a
single atom in an electromagnetic field. Even in dipole
approximation, depending on the choice of the gauge,
the states may ”incorporate some interaction with the
field” [24]. However, for optical frequencies and laser
field strengths around 1 GV/m, the phase factor appear-
ing in exp(−ieAr/~) is almost constant over the size of
an atom, its change is around π/100, thus the effect is
weak. In the case of solids, on the other hand, the in-
teraction region is much larger, and the effect cannot be
neglected.
Finally, let us emphasize, that all the considerations

above are relevant during the excitation. When the ex-
citing pulse is over (i.e., A = 0), the separation J = j+Ṗ

is clearly unambiguous, and e.g., j – as a macroscopic
current – can be measured.

Summary We investigated the process of high-order
harmonic generation in bulk solids. Working in the single
electron picture, light-matter interaction were considered
in two widely used electromagnetic gauges. Inter- and
intraband contributions to the whole current were treated
in a unified way. Both analytic and numerical results
show that the interpretation of the process in terms of
inter- and intraband currents has to performed with care,
since these contributions do depend on the choice of the
electromagnetic gauge.
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APPENDIX

Bloch-basis matrix elements

For practical calculations, the matrix elements of the
Hamiltonian in the Bloch-state basis are very useful. Re-
maining in the dipole approximation, where the spatial
dependence of the field amplitude can be neglected, we
obtain:

〈n,k|p|n′,k′〉 =

= −i~

∫

V

Ψ∗
n,k(r)∇Ψn′,k′(r)d3r

= − i~

V

∫

V

eir(k
′−k)u∗

n,k(r)(ik
′ +∇)un′,k′(r)d3r

= − i~

V
∑

R

eiR(k′−k)

∫

Ω

u∗
n,k(r)(ik

′ +∇)un′,k′(r)d3r

= δkk′

[

~kδnn′ − i~

∫

Ω

u∗
n,k(r)∇un′,k′(r)d3r

]

, (18)

where R denotes lattice vectors. In view of this, the
matrix elements of Hext in velocity gauge [recall that
A(t) ≡ A

v
(t)] are given by:

〈n,k| 1

2m

[

−2e0pA(t) + e20A
2(t)

]

|n′,k′ 〉 =

= −e0
m

〈n,k|p|n′,k′〉A(t)+
1

2m
e20A

2(t)δkk′δnn′

= δkk′

[

−i~

∫

Ω

u∗
n,k(r)∇un′,k′(r)d3r

]

A(t)

+

[

~kA(t)+
1

2m
e20A

2(t)

]

δkk′δnn′ . (19)

Note that the reason why these equations have a rela-
tively simple form is the compatibility of the momentum
operator with the translational symmetry of the crys-
tal. On the other hand, the matrix elements of H l

ext(t)
as given by −e0〈n,k|r|n′,k′〉F(t) cannot be simplified as
above, because the operator r is not lattice-periodic.

Numerical details

In order to be able to calculate the matrix elements
as discussed above, we need the actual Bloch-states, that
is, in a discretized picture, the complex values unk(xm),
where xm is in the unit cell (−a/2 < xm < a/2). For the
sake of definiteness, the lattice constant a is chosen to be



5

0.5 nm. Once the potential is specified, these eigenfunc-
tions can be obtained using

[

~
2

2m

(

−i
∂

∂x
+ k

)2

+ V (x)

]

un,k(r) = En(k)un,k(r).

(20)
As numerical examples, we investigated two model
potentials. V1 contains two localized attract-
ing centers: V1(x)[eV ] = −25 cos2 [π(x− x1)/(15a)]
−25 cos2 [π(x− x2)/(15a)], where x1/a = −0.2 and
x2/a = 0.107, and the cos2 functions are zero unless
their argument is in the interval [−π/2, π/2]. The sec-
ond model potential is a modification of the one that
has been used in Ref. [13]: V2[eV ] = 25[1 + tanh(x +
x0)][1 + tanh(x + x0)], where x0 = 0.2475a0 (a0 denotes
the Bohr radius). There is an important point these po-
tentials have in common: both produce a bandgap of 3.2
eV, which is in agreement with the material properties of
ZnO. Clearly, apart from the bandgap, the two potentials
correspond to different band schemes, but the qualitative
results related to the question of gauge invariance are the
same in both cases. For the sake of definiteness, we used
V1 for obtaining the data presented in Fig. 1.
Having N grid points xn in the 1D unit cell, Eq. (20)

with periodic boundary conditions provide a set of eigen-
functions {un,k}N1 that forms a basis for each value of k.
(That is, any finite-valued periodic function defined on
the grid can be written as a linear combination of these
eigenfunctions.) It is convenient to use discrete k indices
as well, km = −π/a + (m − 1)∆k, m = 1, . . . ,M and
(M − 1)∆k = 2π/a. In this way, we obtain N ×M func-
tions un,k, and – besides the matrix elements (19) – we
can calculate their overlaps

Skk′

nn′ =

∫ a/2

−a/2

u∗
n,k(x)un′,k′(x)dx (21)

numerically. Note that – by construction – we have
Skk
nn′ = δnn′ . With sufficient number of real-space dis-

cretization points, the integrals (19) and (21) converge
for the lowest lying energy eigenstates. (According to
our experience, it is sufficient for both N,M to have the
order of magnitude of a few hundred.)
In velocity gauge, the index k of the Bloch-states does

not change during the time evolution, and by inspect-
ing the populations we can determine how many bands
play observable role in the time evolution. Using the ap-
propriate (converged) matrix elements, we can follow the
time evolution, and transform the result to length gauge
at appropriate time instants. More precisely, for a given
initial index k0, whenever k(t) = eA(t)/~ − k0 equals
one of the k-space grid points km, we can use the over-
lap matrix to calculate the transformation. Since these
time instants tm are the same for any initial index k0, the
time evolution of the complete density matrix can be cal-
culated and compared in both gauges at the discrete tm

values. In this way, discretization in k-space affects only
the time resolution of the results: at tm, the calculated
physical quantities are numerically exact in the sense that
the only approximation is real space discretization.
In our actual calculations, the exciting laser field is

assumed to be polarized along the x direction, and the
time dependence of the only nonzero component of the
vector potential is given by

A(t) = A0 sin
2

(

πt

T

)

cos(ωt), (22)

provided t ∈ [0, T ], and zero otherwise. Similarly to
Ref. [3], we consider many-cycle, mid-infrared excitation.
That is, λ = 3µm and T = 300 fs in the calculations. The
amplitude is chosen to correspond to a peak laser field
strength of 1.0 GV/m.
Finally, note that the overlap matrix (21) is clearly

unitary, provided all the bands are taken into account.
However, when we do not use all the bands (either below
or above the highest valence band), the appropriate pro-
jection of S may not be exactly unitary, leading to the
fact that the norm (trace of the density matrix) is not the
same in the two gauges. In other words, besides the usual
criteria a numerical method has to satisfy (convergence,
stability, etc.), the requirement of gauge invariance sets
a new one. Working in Bloch-state basis, this simply
means that a large enough number of bands has to be
taken into account.
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[16] O. D. Mücke, Phys. Rev. B 84, 081202 (2011).
[17] P. Földi, M. G. Benedict, and V. S. Yakovlev, New Jour-

nal of Physics 15, 063019 (2013).
[18] L. B. Madsen, Phys. Rev. A 65, 053417 (2002).
[19] K. Rzazewski and R. Boyd, J. Mod. Opt. 51, 1137 (2004).
[20] Y.-C. Han and L. B. Madsen, Phys. Rev. A 81, 063430

(2010).
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