
ar
X

iv
:1

61
1.

09
63

7v
1 

 [
m

at
h.

C
O

] 
 2

9 
N

ov
 2

01
6

Partition dimension of projective planes

Zoltán Blázsik, Zoltán Lóránt Nagy

MTA–ELTE Geometric and Algebraic Combinatorics Research Group

Eötvös Loránd University

H–1117 Budapest, Pázmány P. sétány 1/C, Hungary

blazsik@cs.elte.hu, nagyzoli@cs.elte.hu

Abstract

We determine the partition dimension of the incidence graph G(Πq) of the pro-
jective plane Πq up to a constant factor 2 as (2 + o(1)) log2 q ≤ pd(G(Πq)) ≤
(4 + o(1)) log2 q.
Keywords: partition dimension, resolving set, projective plane, ovals, ζ-sets, semi-
random method

1 Introduction

In graph theory, a large number of different concepts were introduced to distinguish or
identify every vertex in a given graph. Notably the vertices are usually distinguished via
adjacency to a certain set of vertices — like in case of identifying codes in graphs and
distinguishing sets or locating-dominating sets [1, 10, 12, 14] — or via distance from a
certain set of vertices — like in case of resolving sets, metric and partition dimension
[4, 6]. In this paper we will study the latter concept on a highly symmetric graph family
of great importance in many branches of combinatorics, namely on the incidence graphs
of projective planes.

For vertices u and v in a connected graph G, the distance d(u, v) is the length of a
shortest path between u and v in G. For an ordered set W = {w1, w2, . . . , wk} of vertices
in a connected graph G and a vertex v of G, the k-vector (ordered k-tuple)

r(v|W ) = (d(v, w1), d(v, w2), . . . , d(v, wk))

is referred to as the (metric) representation of v with respect to W . The set W is called
a resolving set for G if the vertices of G have distinct representations. A resolving set
containing a minimum number of vertices is called a minimum resolving set of G. The
number of vertices is the so called metric dimension and denoted by µ(G).
The distance concept was naturally generalized to subsets of points due to Chartrand et
al. [6].
For an ordered k-partition S = {S1, S2, . . . , Sk} of V (G) and a vertex v of G, the repre-
sentation of v with respect to S is defined as the k-vector

r(v|S) = (d(v, S1), d(v, S2), . . . , d(v, Sk)).
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The partition S is called a resolving partition if the k-vectors r(v|S), v ∈ V (G), are
distinct. The minimum k for which there is a resolving k-partition of V (G) is the partition
dimension pd(G) of G. We note that the notation also make sense if S is any family of
sets. Generally, we say that a set system separates a vertex set if no two vertices have
equal distances from every set of the set system.

Both dimension concepts has been widely investigated, see [4, 7, 16] for surveys. Al-
though they are analogously defined and there are connections between the two parame-
ters, in general, they are not similar in nature. To illustrate this phenomenon, we recall
some results concerning µ(G) and pd(G).

Claim 1.1. [6] pd(G) ≤ µ(G) + 1 for all graphs G.

Claim 1.2. [7] Given natural numbers α and β where 3 ≤ α ≤ β+1, there exists a graph
G where µ(G) = β and pd(G) = α.

The study of dimension parameters concerning incidence graphs of designs or geome-
tries has been initiated only recently in [2, 3, 7, 13]. Note that a similar concept of
identifying codes in special graphs is also recently studied [8, 12].

Let Πq be an arbitrary finite projective plane of order q of a point set P and a line set
L. We denote the plane by PG(2, q) if we assume that the plane is built on a finite field
Fq. The incidence graph of a plane Πq is denoted by G(Πq). We will denote the classes of
the bipartite graph G(Πq) by P[G(Πq)] and L[G(Πq)], corresponding to points and lines,
respectively. Similarly, we introduce this notation for any subset Z of the vertex set of
G(Πq) in general, namely P[Z]) will denote those vertices of Z which correspond to the
points of Πq and L[Z] will denote those vertices of Z which correspond to the lines of Πq.

The metric dimension of this incidence graph was determined by Héger and Takáts in
[13].

Theorem 1.3. If q is large enough, then µ(G(Πq)) = 4q − 4.

Chapell, Gimbel and Hartman [7] gave bounds on the partition dimension pd(G) in
terms of the diameter diam(G) of the graph G and investigated the case diam(G) = 2.
They mentioned that investigating the order of a graph with given partition dimension
and diameter appears to be more difficult when the diameter exceeds two. The incidence
graph of projective planes provides an infinite family for well structured graphs of diameter
three, so this can be considered as a partial motivation as well for the following problem,
besides Héger and Takáts’ result Theorem 1.3.

Problem 1.4. Determine the partition dimension of the incidence graph of a finite pro-
jective plane.

Our main results are as follows.

Theorem 1.5. The partition dimension of the incidence graph of a projective plane of
order q is at least of order (2 + o(1)) log2 q.

Theorem 1.6. The partition dimension of the incidence graph of a projective plane of
order q is at most of order (4 + o(1)) log2 q.

2



Note that in view of a general bound of Theorem 3.1 in [7] concerning the maximal
degree of the graph, pd(G(Πq)) ≥ log3(q + 2).

Our paper is built up as follows. In Section 2. we prove Theorem 1.5, then Section 3.
is devoted to derive Theorem 1.6 using probabilistic and graph theoretic tools. A survey
on applications of the probabilistic method in finite geometry can be found in [9]. Finally
we discuss open problems in Section 4.

2 Lower Bound

We are going to show that pd(G(Πq)) is at least of size (2+ o(1)) log2 q. To this end, let’s
consider a resolving partition S with sets {P1,P2, . . . ,Pr,L1,L2, . . . ,Ls,M1,M2, . . . ,Mt}
where Pi ⊆ P[G(Πq)], Lj ⊆ L[G(Πq)] and Mk is a mixed subset containing vertices from
both P[G(Πq)] and L[G(Πq)]. Since S is a resolving partition we know that for all vertices
of the incidence graph the corresponding vectors are pairwise different. Let’s examine the
possible values of the coordinates of these vectors depending on the type (corresponding
to point or line) of the vertex v.

1. If v ∈ P[G(Πq)] then

• d(v,Pi) =

{
0 v ∈ Pi

2 otherwise.

• d(v,Lj) =

{
1 there is a line in Lj which is incident with v
3 otherwise.

• d(v,Mk) =





0 v ∈ Mk

1 there is a line in Mk which is incident with v
2 otherwise.

2. If v ∈ L[G(Πq)] then

• d(v,Lj) =

{
0 v ∈ Lj

2 otherwise.

• d(v,Pi) =

{
1 there is a point in Pi which is incident with v
3 otherwise.

• d(v,Mk) =





0 v ∈ Mk

1 there is a point in Mk which is incident with v
2 otherwise.

Note that if there is a partition class which contains only one type of vertices then
by this last observation one can distinguish all the vertices of P[G(Πq)] from the vertices
of L[G(Πq)]. Moreover if we consider two vertices which are of the same type then their
vector is different if they are not in the same partition class. But we know that there is
a partition class which contains at least q2+q+1

s+t
many lines and also there is a class which

contains at least q2+q+1

r+t
many points.

For these lines, their representation vectors are the same in the coordinates corre-
sponding to the subsets Lj. The number of coordinates remaining to distinguish two such
lines depends on the type of their partition class. Namely if this class is a class with just
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lines then it’s r + t but when this class is a mixed class then it’s just only r + t − 1.
Since the values of these remaining coordinates could only be 1 or 3 for the coordinates
corresponding to a subset Pi and could only be 1 or 2 for the mixed classes because they
do not contain these. Hence the following inequality has to hold:

2r+t−1 ≥
q2 + q + 1

s+ t
.

A similar argument works for the points too and it gives that

2s+t−1 ≥
q2 + q + 1

r + t
.

We would like to minimize r + s + t under the above conditions. One can easily see
that the minimum could be reached by taking s = r = 0 (Note: in this setup one should
be careful because the points and the lines are not automatically distinguished). In that
case the two condition happens to be the same:

t · 2t−1 ≥ q2 + q + 1.

Hence the theoretical lower bound follows on the partition dimension number.

3 Upper bound

Here we prove that pd(G(Πq)) ≤ (4 + o(1)) log2 q. First we will outline the construction
that provides the desired bound and introduce some key tools. Next we prove two lemmas
concerning main ingredients of the constructions. Finally we show that the construction
is indeed a resolving partition.

Notation 3.1. Let us choose an incident pair of point P̃0 and line ℓ̃0 and we call them
the support of the construction. Denote the points incident to ℓ̃0 by P̃i (i ∈ [0, q]) and
the lines incident to P̃0 by ℓ̃i (i ∈ [0, q]). We call the point set {P̃i : 0 < i ≤ q} and line
set {ℓ̃i : 0 < i ≤ q} major points and major lines in the construction, respectively. The
set C := {P̃i : 0 < i ≤ q} ∪ {ℓ̃i : 0 < i ≤ q} is the core of the construction. Let’s call the
points and lines which are not in the core common points and common lines (altogether
the common vertices).

Construction

Our partition set system H consists of 4 subsystems:

H = {H0} ∪ H1 ∪H2 ∪ {H−1},

where H1 =
⋃k

i=1
Hi, H2 =

⋃k+l
i=k+1

Hi.

H0 is defined as H0 := {P̃i | i ∈ [1 . . . q]}, furthermore H−1 is defined such that it
completes the system, that is,

⋃k+l
i=−1

Hi = P[G(Πq)] ∪ L[G(Πq)] with H−1 being disjoint
from any other Hi.

Now we define the set system H1.
Any H ∈ H1 is built up the following way: choose a major point P̃i and a major line

ℓ̃j which will be the base of the set H . Divide the point set ℓ̃j \ P̃0 into two equal parts.
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Put the points of the first part into H and put also every line determined by P̃i and points
of the second part. This way |H| = q will hold for every element of H1. Any subset of
P ∪ L that can be created this way is called a ζ-set (on the base point P̃i and base line
ℓ̃j).

k ≈ 3 log2 q ζ-sets will be chosen randomly in such a way that almost all points and
lines are uniquely determined by the distances from the sets of H1, if we restrict ourselves
to the common vertices.

Finally, H2 will consist of l ≈ log2 q sets which will distinguish all of the remaining
non-separated pairs of vertices. The existence of the these sets is implied by the following
lemmas.

Lemma 3.2. One can choose k suitable ζ-sets in order to separate any pair of elements
from (P \ {P̃i}) and any pair from (L \ {ℓ̃i}) except for at most m(k) pairs in total, with

m(k) =
2
(
q2

2

)

2k
.

Proof of Lemma 3.2. We choose k points and k lines from the major point and line set
uniformly at random, and index them by P̃i and ℓ̃i, i ∈ [1 . . . k]. Next, we choose k ζ-sets
(on the base points P̃i and base line ℓ̃i, by taking ⌊ q

2
⌋ points from each line ℓ̃i uniformly

at random, leaving the support point intact. This enables us to calculate the expected
value of not-separated pairs.
We distinguish the cases when the pair is a pair of point or pair of lines, but note that the
two cases are similar due to the symmetry of the ζ-sets and the duality of the structure.

In the calculation below, we omit integer part for transparency (that is, we consider
the case q is even) but it is straightforward to see that the reasoning works for the q odd
case as well.

Let Q and Q′ be two random points in P \ {P̃i}. The probability of the separation
essentially depends on two factors: whether or not QQ′ intersects ℓ̃0 in a point P̃t, t ∈
[1 . . . k]; and whether or not one of Q and Q′ is incident to ℓ̃t. These subcases provide the
following for a random point pair:

P(Q,Q′ not separated by k random ζ-set) =

P(Q,Q′ not separated by k random ζ-set & QQ′ ∩ ℓ̃0 6∈ {P̃t, t ∈ [1 . . . k]})+

P(Q,Q′ not separated by k random ζ-set & QQ′ ∩ ℓ̃0 ∈ {P̃t, t ∈ [1 . . . k]})

≤
q − k + 1

q + 1

(
q − 2

2q − 2

)k

+
k

q + 1

(
q − 1

q

(
q − 2

2q − 2

)k−1
)
.

Indeed, suppose first that QQ′ intersects ℓ̃0 in a point outside P̃t, t ∈ [1 . . . k]. That
case, for every ζ-set H on the base P̃i, ℓ̃i, d(Q,H) 6= d(Q′, H) holds if exactly one of the
lines P̃iQ, P̃iQ

′ belongs to H , hence the probability of separation by H is at least q/2
q−1

.
(Note that equality does not hold here as Q or Q′ might be a point of the ζ-set.)

On the other hand, if QQ′ intersects ℓ̃0 in a point P̃t, t ∈ [1 . . . k], then the above
argument works for all but one ζ-set, H (on the base P̃t, ℓ̃t). However, if Q 6∈ ℓ̃t, Q

′ 6∈ ℓ̃t,
then d(Q,H) = d(Q′, H) surely holds, while if Q ∈ ℓ̃t, or Q′ ∈ ℓ̃t, then d(Q,H) 6= d(Q′, H)
only if Q or Q′ is a point in H .
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Easy calculation shows that

q − k + 1

q + 1

(
q − 2

2q − 2

)k

+
k

q + 1

(
q − 1

q

(
q − 2

2q − 2

)k−1
)

<

(
1

2

)k

.

Taking into consideration the number of point pairs, and the dual case for the number
of line pairs, we obtain a bound on the expected value of the non-separated point pairs
and line pairs:

E( not separated pairs by k random ζ-set) =

2

(
q2

2

)
[P(Q,Q′ not separated by k random ζ-set)] <

2
(
q2

2

)

2k
.

The statement thus follows.

Lemma 3.3. One can choose a system H2 of ⌈log2 q⌉ disjoint sets consist of both points
and lines which are disjoint to the ζ-sets and to the major points as well such that with
these new sets the corresponding representations of the vertices will be pairwise different.

Proof. Let’s look at a table of the representations of the vertices so far, with Hij denoting
a chosen ζ-set on base point P̃i and base line ℓ̃j .

P̃0 P̃1 . . . . . . P̃q P1 . . . Pq2 ℓ̃0 ℓ̃1 . . . ℓ̃j . . . ℓ̃q ℓ1 . . . ℓq2

H0 2 0 . . . 0 . . . 0 2 1 3 . . . 3 . . . 3 1
Hij ∈ H1 2 2 . . . 2 1 2 . . . 2 0/1/2 2 2 . . . 2 1 2 . . . 2 0/1/2

Considering this table, one can determine which pairs of vertices could have the same
representation:

1. pairs of common vertices not being separated after Lemma 3.2,

2. pairs of major points and also pairs of major lines (which are not basis of ζ-sets in
H1),

3. the support line and some common lines and dually the support point and some
common points may form some non-separated pairs.

These are the only possibilities which we need to take care of for the suitable choice of
H2. This observation motivates us how to choose lines and points to a member H ∈ H2.
In the following we will build up L[H ], and then P[H ] will be chosen in the same way
dually. But before that we need some structural observations.

We make an auxiliary graph X with vertex set consists of those common vertices
which are in the remaining non-separated pairs and two such vertices are joined with an
edge if they have the same representation so far. Clearly X is just the disjoint union of
some cliques. Moreover by the choice of H0 in every clique either every vertex is a point
of Πq or every vertex is a line of Πq. Just for convenience let’s assume that we choose
k = ⌈3 log2 q⌉ + 3 ζ-sets in the first part of the construction. That means by Lemma 3.2
that we have at most q

8
pairs of vertices which have not been separated yet. Hence in X
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the number of edges is at most q
8
. Together with the observation above we get that X

has at most q
4

vertices.
Modify X a little bit by adding the support point and line to it if needed (let’s call

the graph we get this way X ′), namely whenever there is a common point or line which
is non-separated from the support point or line respectively. There are three options for
P̃0 (and similarly for ℓ̃0):

• P̃0 have already been separated from every other vertex in G(Πq).

• P̃0 has the same representation as some of the points of X, hence joins that clique
in X ′.

• P̃0 has the same representation as a common point not in X (hence it’s exactly one
vertex), therefore they both inserted into X ′ with an edge between them.

Either way the number of vertices in X ′ is at most q
4
+ 4. Denote the vertices in

X ′∩P[G(Πq)] with P[X ′] and similarly L[X ′] will denote the vertices in X ′ corresponding
to a line of Πq. By the note above we know that there is no edge in X ′ between P[X ′]
and L[X ′].

Now let’s recall the notion of a searching set for a search problem. Roughly speaking
we would like to distinguish all elements of a set by pointing out some subsets and create
a 0-1 vector for every element of the set where the value of the jth coordinate is 1 iff
this element is inside the jth chosen subset. These distinguishing subsets are also called
searching sets. It is known that for an n element set we need ⌈log2 n⌉ such searching set
to reach our goal by distinguishing all of the elements of the set.

The main idea behind the selection of L[H ] is based on these searching sets. Namely
we will consider a family of searching sets on the q major points and also on P[X ′] and
on L[X ′] too, with sizes half of their corresponding domain set. For an H ∈ H2 we will
choose one of the searching sets for the major points, for P[X ′] and also for L[X ′]. Let’s
denote these searching sets with T (H), Q(H) and R(H) respectively. We can assume that
P̃0 and ℓ̃0 are always outside of every chosen searching sets without the loss of generality.

We are going to prove that we can find q
2

such common lines (they will form L[H ])
which satisfies the following properties:

• through every point in T (H) there is exactly one line from L[H ],

• through every point in Q(H) there is exactly one line from L[H ],

• they are not going through any points of P[X ′] \Q(H) =: Q(H)C ,

• they are not in L[X ′] \R(H) =: R(H)C,

• they have not been assigned to any sets in our construction yet.

Let’s call those common lines which satisfy the last three requirements free lines. Let’s
make another auxiliary graph denoted by Y which is a bipartite graph where the first class

consists of the vertices of T (H) and the other class is just P[G(Πq)] \
(
∪q+1

i=0 P̃i

)
\Q(H)C

and there is an edge between two vertices (obviously from different classes) iff the line
defined by these two vertices is a free line. We need to give a lower bound on the number
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of free lines through an arbitrary point from T (H) and also from Q because of the first
two requirements.

Consider a point v ∈ T (H). Through this point there are q common lines but it may
happen that this point was chosen as a base to a ζ-set therefore it is possible that q

2
of

these common lines were used before. Since we are not going to use lines through the
points of Q(H)C and lines from R(H)C it could rule out another |Q(H)C | + |R(H)C | =
1

2

(
q
4
+ 4
)
= q

8
+ 2 lines through v. Furthermore if v was in some searching sets on the

major points before during this phase then in every such case there was one line which
was inserted into that particular set from H2. This gives us a lower bound on the number
of free lines through an arbitrary point of T (H):

|{free lines through v ∈ T (H)}| ≥ q −
q

2
−
(q
8
+ 2
)
− log2 q =

3q

8
− log2 q − 2

Note that the degree of v in Y is at least q ·
(
3q
8
− log2 q − 2

)
because every free line

through v has q points on it which corresponds to q edges in the graph. Consider now an
arbitrary point u ∈ Q(H). Through u there are q

2
common lines which meets the support

line in T (H). Again we don’t want to use lines through the points of Q(H)C and lines
from R(H)C which could rule out q

8
+2 lines just as above. And if u was in some searching

sets on P[X ′] before during this phase then in every such case there was one line which
was inserted into that particular set from H2. Hence:

|{free lines through u ∈ Q(H)}| ≥
q

2
−
(q
8
+ 2
)
− log2 q =

3q

8
− log2 q − 2

Now we can see that if q is large enough then there are many free lines through these
points in Y . Moreover for an arbitrary point u ∈ Q(H) if we ignore those lines which
contains another point of Q(H) then there is at least 3q

8
−log2 q−2−

(
q
8
+ 2
)
= q

4
−log2 q−4

such free lines through u. Let’s consider the points of Q(H) one by one then we can choose
an edge (thus a free line) for the first one which fulfills the requirements and does not
contain any other points from Q(H). Drop the meeting point of this line and the support
line for any other points of Q(H) because of the first requirement. Then we can continue
this in a greedy way because of the counting above (for the last member of Q(H) we drop
another at most q

8
+ 2 meeting points but the number of free lines through that point is

still at least q
4
− log2 q − 4−

(
q
8
+ 2
)
= q

8
− log2 q − 6).

Now we just need to choose one line through every uncovered points of T (H) carefully.
Note that if we drop those lines through these points which meet Q(H) (and in parallel
delete the q edges for each of them from Y ) then again there remains at least 3q

8
−

log2 q − 2 −
(
q
8
+ 2
)
= q

4
− log2 q − 4 free lines through them. By choosing from the free

lines greedily works again because of the calculations above. Dually one can construct
P[H ] in a similar way which completes the set H ∈ H2. By repeating this argument we
can construct ⌈log2 q⌉ such sets in H2 (we included the decreasing of the degrees above
therefore this greedy approach will work).

In the preceding paragraphs we just showed a way of choosing log2 q sets all of which
fulfills the requirements for it’s lines and dually for it’s points too. The only thing remained
is to verify that these set in H2 really take care of every pair of non-separated vertices
after choosing H0 and H1.
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The major points (and dually the major lines) are indeed separated because for a
particular H ∈ H2 those major points will have coordinate 1 which are inside T (H) since
we chose a line going through them and the other major points have coordinate 2. Since
we chose a family of searching sets on these major points then eventually they will be
distinguished at the end. If we examine all of the other remaining pairs we can notice that
the coordinates for P̃0 and ℓ̃0 will be 2 for every set in H2 and for a particular H ∈ H2 the
points of Q(H) will have coordinate at most 1 (we chose a line through them and maybe
we put them into P[H ]) but for the points of Q(H)C the coordinate is surely 2 (did not
choose a line through them and we exclude them from being in P[H ]). Similar argument
hold for the lines of R(H) and R(H)C . Again since we chose a family of searching sets
on the P[X ′] and on L[X ′] all of the remaining pairs will be separated too.

Observe that by adding all of the non-used vertices of G(Πq) to H−1 we obtain a
resolving partition indeed, with 1 + (3⌈log2 q⌉ + 3) + ⌈log2 q⌉ + 1 ≤ 4⌈log2 q⌉ + 5 classes
which completes the proof of Theorem 1.6.

Remark 3.4. One can easily see that in these Lemmas we don’t rely heavily on the parity
of q, if q is odd everything still works with slight modifications.

4 Further related problems and remarks

Although the lower and upper bounds we proved do not match, we strongly believe that
the construction given in the upper bound is optimal in some sense. The reason for this
is the following: one have to create a set system where the majority of the sets contain
neither more points nor more lines than cq for a small constant c. Indeed, the result of
Blokhuis [5] implies that cq lines are incident with at least roughly c

c+1
q2 points, hence a

set containing this many lines assign the same distance for the majority of the points.
This observation in fact improves our lower bound via the result of Katona [11] on sep-
arating systems of given size, but only in the remainder term. Thus several questions
remain open concerning the optimal construction.

Problem 4.1. Can the above bounds be improved if the plane in coordinatized, that is, G
is the incidence graph of the plane PG(2, q)?

Problem 4.2. Prove that there exists a constant c for which pd(G(Πq)) = (c+o(1)) log2 q.

Our construction mainly based on sets of collinear points and lines forming a pencil,
in order to separate approximately half of the lines (incident to the points) from the other
lines and do the same for the points for every set in the resolving partition. Note that
the points of a maximal arc and the dual configuration owns the same property. This
motivates the following natural question.

Problem 4.3. Does there exist a set of disjoint ovals in Πq of cardinality c log2 q (c ≤ 4)
which separates the lines of the projective plane Πq?

A related problem only requires a set of ovals to cover (intersect) every line.

Problem 4.4. What is the minimal cardinality of a set of (disjoint) ovals in Πq for which
no line is skew to all of them?
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It is believed [15, 17] that the order of magnitude is O(log q) for q odd, which provides
O(q log q) points on the plane, even the size of small minimal blocking (point)sets is much
less. Note that the q even case is completely different, where 3 ovals can cover every line
in the Galois plane PG(2, q) due to Szőnyi, Illés and Wettl [15].

Our result can also be considered as a first step to the determination of the partition
dimension of incidence graph of symmetric structures in general, analogously to the metric
dimension case [2].
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