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Abstract. In this paper we give an arithmetical proof of the strong normalization of
λSym
Prop of Berardi and Barbanera [BB96], which can be considered as a formulae-as-types

translation of classical propositional logic in natural deduction style. Then we give a
translation between the λSym

Prop-calculus and the λµµ̃∗-calculus, which is the implicational

part of the λµµ̃-calculus invented by Curien and Herbelin [CH00] extended with negation. In
this paper we adapt the method of David and Nour [DN05] for proving strong normalization.
The novelty in our proof is the notion of zoom-in sequences of redexes, which leads us
directly to the proof of the main theorem.

Introduction

It was revealed by the works of Murthy [Mur91] and Griffin [Gri90] that the Curry-Howard
isomorphism, which establishes a correspondence between natural deduction style proofs in
intuitionistic logic and terms of the typed λ-calculus, can be extended to the case of classical
logic, as well. Since their discovery many calculi appeared aiming to give an encoding of
proofs formulated either in classical natural deduction or in classical sequent calculus.

The λµ-calculus presented by Parigot in [Par90] finds its origin in the so called Free
Deduction (FD). Parigot resolves the deterministic nature of intuitionistic natural deduction:
unlike in the case of intuitionistic natural deduction, when eliminating an instance of a cut
in FD, there can be several choices for picking out the subdeductions to be transformed. By
introducing variables of a new kind, the so called µ-variables, Parigot distinguishes formulas
that are not active at the moment but the current continuation can be passed over to them.
Besides the usual β-reduction, Parigot introduces a new reduction rule called the µ-rule
corresponding to structural cut eliminations made necessary by the occurrence of new forms
of cuts due to the rule in connection with the µ-variables. The result is a calculus, the
λµ-calculus (Parigot [Par92]), which is in relation with classical natural deduction. The
µ′-rule is the symmetric counterpart of the µ-rule. It was introduced by Parigot [Par93]
with the intention of keeping the unicity of representation of data (Nour [Nou97]), the price
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was, however, that confluence had been lost. In the presence of other simplification rules
besides µ and µ′, even the strong normalization property is lost (Battyányi [Bat07]).

Historically, the first calculus reflecting the symmetry of classical propositional logic

was the λSymProp-calculus of Berardi and Barbanera [BB96] establishing a formulae-as-types

connection with natural deduction in classical logic. The calculus λSymProp uses an involutive
negation which is not defined as A → ⊥. There are negated and non-negated atomic
types, and the main connective is not the arrow but the classical ∧ and ∨. Berardi and
Barbanera make use of the natural symmetry of classical logic expressed by the de Morgan

laws in defining negated types. In their paper, Berardi and Barbanera proved that λSymProp

is strongly normalizable with a symmetric version of the Tait-Girard reducibility method
(Tait [Tai67]). In this paper, leaning on the combinatorial proof applied by David and Nour

in [DN07], we prove that λSymProp is strongly normalizing. The novelty in our proof is the
application of so-called zoom-in sequences of redexes, which was inspired by the work in
Raamsdonk et al. [RSSX99]. We prove strong normalizability by verifying that it is closed
under substitution. From the assumption that U [x := V ] is strongly normalizing and U , V
are strongly normalizing, we can identify a subterm U ′ of a reduct of U such that U ′[x := V ]
also is strongly normalizing. The reduction sequence leading to U ′ is a so-called zoom-in
sequence of redexes: each subsequent element is a subterm of the one-step reduct of the
preceding one. We prove that zoom-in sequences have useful invariant properties, which
makes it relatively easy for us to set the stage for the main theorem. Due to its intrinsic

symmetry in dealing with the typing relation, the λSymProp-calculus also proves to be very close

to the calculus named by Nour as classical combinatory logic (CCL). Nour [Nou06] defined a
calculus of combinators which is equivalent to the full classical propositional logic in natural

deduction style. Then a translation is given in both directions between λSymProp and CCL.

Curien and Herbelin introduced the λµµ̃-calculus (Curien et al. [CH00]), which estab-
lished a correspondence, via the Curry-Howard isomorphism, between classical Gentzen-style
sequent calculus and a logical calculus. The λµµ̃-calculus possesses a rather strong symmetry:
it has right-hand side and left-hand side terms (also referred to as environments). The strong
normalization of the calculus was proved by Polonovski [Pol04], and a proof formalizable in
first order Peano arithmetic was found by David and Nour [DN05].

As to the connection between the λµ and the λµµ̃-calculus, Curien and Herbelin [CH00]
defined a translation both for the call-by-value and the call-by-name part of the λµ-calculus
into the λµµ̃-calculus. Rocheteau [Roc05] finished this work by defining simulations between
the two calculi in both directions. In this paper we define the λµµ̃∗-calculus, which is the
λµµ̃-calculus extended with negation, and we describe translations between the λµµ̃∗-calculus

and the λSymProp-calculus. As a consequence, we obtain that, if one of the calculi is strongly
normalizable, then the other one necessary admits this property.

The proof applied in the paper is an adaptation of that of David and Nour [DN05]. David
and Nour [DN05] gave arithmetic proofs, that is, proofs formalizable in first-order Peano
arithmetic, for the strong normalizability of the λµµ̃- and Parigot’s symmetric λµ-calculus.
It is demonstrated that the set of strongly normalizable terms are closed under substitution.
The goal is achieved by applying implicitly an alternating substitution to find out which part
of the substitution would be responsible for being not strongly normalizable provided the
basis of the substitution and the terms written in are strongly normalizable. In this paper we
reach the same goal by identifying a minimal non strongly normalizing sequence of redexes
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provided an infinite reduction sequence is given. We call this sequence of redexes a minimal
zoom-in reduction sequence. The idea of zoom-in sequence was inspired by Raamsdonk et al.
[RSSX99], where perpetual reduction strategies are defined in order to locate the minimal
non strongly normalizing subterms of the elements of an infinite reduction sequence. Again,
alternating substitutions are defined inductively starting from two sets of terms, and it is
proven that zoom-in reduction sequences do not lead out of these substitutions. With this
in hand, the method of David and Nour [DN05] can be applied.

We prove the strong normalization of the λSymProp-calculus, though our proof works with
some slight modification in the case of the λµµ̃-calculus, as well (Battyányi [Bat07]). However,
instead of repeating the proof here, we give a translation of the λSymProp-calculus into the
λµµ̃-calculus, and vice versa. In fact, to make the connection more visible we define the
λµµ̃∗-calculus, which is the λµµ̃-calculus extended with terms expressing negated types.
Hence, we also obtain a new proof of strong normalization of the λµµ̃-calculus.

The paper is organized as follows. In the first section we introduce the λSymProp-calculus of
Berardi and Barbanera, and, as the first step towards strong normalization, prove that the
permutation rules can be postponed. In the next section we show that the β, β⊥, π and
π⊥ rules together are strongly normalizing. Section 3 introduces the λµµ̃-calculus defined
by Curien and Herbelin, and we augment the calculus with negation in order to make
the comparison of the λSymProp- and the λµµ̃-calculi simpler. Section 4 provides translations
between the λSymProp- and the λµµ̃∗-calculi such that the strong normalization of one of the
calculi implies that of the other. The last section contains conclusions with regard to the
results of the paper.

1. The λSymProp-calculus

The λSym-calculus was introduced by Berardi and Barbanera [BB96]. It is organized entirely
around the duality in classical logic. It has a negation “built-in”: the negation of A is not
defined as A→ ⊥. Each type is rather related to its natural negated type by the notion of
duality introduced by negation in classical logic. In fact, Berardi and Barbanera defined
a calculus equivalent to first order Peano arithmetic. However, we only consider here its

propositional part, denoted by λSymProp, since all the other calculi treated by us in this work
are concerned with propositional logic.

Definition 1.1. The set of types are built from two sets of base types A = {a, b, . . .} (atomic
types) and A⊥ = {a⊥, b⊥, . . .} (negated atomic types).

(1) The set of m-types is defined by the following grammar

A := α | α⊥ | A ∧A | A ∨A
where α ranges over A and α⊥ over A⊥.

(2) The set of types is defined by the following grammar

C := A | ⊥.
(3) We define the negation of an m-type as follows

(α)⊥ = α⊥ (α⊥)⊥ = α (A ∧B)⊥ = A⊥ ∨B⊥ (A ∨B)⊥ = A⊥ ∧B⊥.
In this way we get an involutive negation, i.e. for every m-type A, (A⊥)⊥ = A.
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(4) The complexity of a type is defined inductively as follows.
cxty(A) = 0, if A ∈ A ∪A⊥ ∪ {⊥}.
cxty(A1 ∧A2) = cxty(A1 ∨A2) = cxty(A1) + cxty(A2) + 1.

Then, for every m-type A, cxty(A) = cxty(A⊥).

Definition 1.2.

(1) We denote by V ar the set of term-variables. The set of terms T of the λSymProp-calculus
together with their typing rules are defined as follows. In the definition below the type
of a variable must be an m-type and Γ denotes a context (the set of declarations of
variables).

var
Γ, x : A ` x : A

〈 , 〉 Γ ` P1 : A1 Γ ` P2 : A2

Γ ` 〈P1, P2〉 : A1 ∧A2
σi

Γ ` Pi : Ai
Γ ` σi (Pi) : A1 ∨A2

i ∈ {1, 2}

λ
Γ, x : A ` P : ⊥
Γ ` λxP : A⊥

?
Γ ` P1 : A⊥ Γ ` P2 : A

Γ ` (P1 ? P2) : ⊥
(2) We say that M has type A, if there is a context Γ such that Γ ` M : A. We consider

A as fixed for a certain element Γ ` M : A of the typability relation.
(3) As usual, we denote by Fv(M), the set of the free variables of the term M .
(4) The complexity of a term of T is defined as follows.

cxty(x) = 0,
cxty(〈P1, P2〉) = cxty((P1 ? P2)) = cxty(P1) + cxty(P2),
cxty(λxP ) = cxty(σi(P )) = cxty(P ) + 1, for i ∈ {1, 2}.

Definition 1.3.

(1) The reduction rules are enumerated below.
(β) (λxP ? Q) →β P [x := Q]
(β⊥) (Q ? λxP ) →β⊥ P [x := Q]
(η) λx(P ? x) →η P if x /∈ Fv(P )
(η⊥) λx(x ? P ) →η⊥ P if x /∈ Fv(P )
(π) (〈P1, P2〉 ? σi(Qi)) →π (Pi ? Qi) i ∈ {1, 2}
(π⊥) (σi(Qi) ? 〈P1, P2〉) →π⊥ (Qi ? Pi) i ∈ {1, 2}
(Triv) E[P ] →Triv P (∗)

(*) If E[−] is a context with type ⊥ and E[−] 6= [−], P has type ⊥ and E[−] does not
bind any free variables in P .

(2) Let us take the union of the above rules. Let → stand for the compatible closure of
this union and, as usual, →∗ denote the reflexive, symmetric and transitive closure of
→. The notions of reduction sequence, normal form and normalization are defined with
respect to →.

(3) Let M,N be terms. Assume M →∗ N . The length (i.e. the number of steps) of the
reduction →∗ is denoted by lg(M →∗ N).

We enumerate below some theoretical properties of the λSymProp-calculus following Berardi and

Barbanera [BB96] and de Groote [Gro01].
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Proposition 1.4 (Type-preservation property). If Γ ` P : A and P →∗ Q, then
Γ ` Q : A.

Proposition 1.5 (Subformula property). If Π is a derivation of Γ ` P : A and P is in
normal form, then every type occurring in Π is a subformula of a type occurring in Γ, or a
subformula of A.

Theorem 1.6 (Strong normalization). If Γ ` P : A, then P is strongly normalizable, i.e.
every reduction sequence starting from P is finite.

Berardi and Barbanera proved Theorem 1.6 for the extension of the λSymProp-calculus
equivalent to first-order Peano-arithmetic. The proof of this result by Berardi and Barbanera
[BB96] is based on reducibility candidates, but the definition of the interpretation of a type
relies on non-arithmetical fixed-point constructions.

We present a syntactical and arithmetical proof of the strong normalization of the

λSymProp-calculus in Section 3. The proof was inspired by a method of David and Nour [DN05].

First we establish that the permutation rules η, η⊥ and Triv can be postponed so that we
can restrict our attention uniquely to the rules β, β⊥, π, and π⊥.

1.1. Permutation rules. First of all, we prove that the η- and η⊥-reductions can be
postponed w.r.t. β, β⊥, π, and π⊥.

Definition 1.7.

(1) Let λβπ-calculus denote the calculus with only the reduction rules →β, →β⊥ , →π, and
→π⊥ .

(2) Let →βπ stand for the union of →β,→β⊥ ,→π,→π⊥ and let M →e N denote the fact
that M →η N or M →η⊥ N .

(3) We denote by →β0 (resp. by →β⊥0
) the β-reduction (λxM ? N) →β M [x := N ] (resp.

the β⊥-reduction (N ? λxM)→β⊥ M [x := N ]), where x occurs at most once in M .

(4) We use the standard notation →+ and →∗ for the transitive and reflexive, transitive
closure of a reduction, respectively.

We examine the behaviour of a →e rule followed by a →β and a →β0 rule in Lemmas 1.8
and 1.9.

Lemma 1.8. If U →e V →β W , then U →β V
′ →∗e W or U →β0 V

′ →β W for some V ′.

Proof. We assume →e is an η-reduction, the proof of the case of →β is similar. The proof
is by induction on cxty(U). The only interesting case is U = (U1 ? U2). We consider only
some of the subcases.

(1) U1 = λx(U3 ? x), with x /∈ Fv(U3), and V = (U3 ? U2) →β U4[y := U2] = W , where
U3 = λyU4. In this case U = (λx(U3 ? x) ? U2)→β0 (U3 ? U2)→β U4[y := U2] = W , so
→η→β turns into →β0→β.

(2) U1 = λxU3, U3 →η U4 and V = (λxU4 ? U2) →β U4[x := U2] = W . Then U →β V
′ =

U3[x := U2]→η U4[x := U2] = W .
(3) U1 = λxU3, U2 →η U4 and V = (λxU3 ? U4) →β U3[x := U4] = W . Then U →β V

′ =
U3[x := U2]→∗η U3[x := U4].
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Lemma 1.9. If U →e V →β0 W , then U →β0 W or U →β0 V
′ →e W or U →β0 V

′ →β0 W
for some V ′.

Proof. By induction on cxty(U). We assume U = (U1 ? U2) and we consider some of the
more interesting cases.

(1) U1 = λx(U3 ? x), with x /∈ Fv(U3), and V = (U3 ? U2) →β0 U4[y := U2] = W , where
U3 = λyU4. In this case U = (λx(U3 ? x) ? U2) →β0 (U3 ? U2) →β0 U4[y := U2] = W ,
thus →η→β0 turns into →β0→β0 .

(2) U1 = λxU3, U3 →η U4 and V = (λxU4 ? U2)→β0 U4[x := U2] = W . Then U →β0 V
′ =

U3[x := U2]→η U4[x := U2] = W .
(3) U1 = λxU3, U2 →η U4 and V = (λxU3 ? U4)→β0 U3[x := U4] = W . Then U →β0 V

′ =
U3[x := U2]→η U3[x := U4] provided x occurs in U3. Otherwise U →β0 U3 = W .

We obtain easily the following lemma on the behaviour of several →e rules followed by a
→β or a →β0 rule.

Lemma 1.10. If U→∗eV →β0 W , then U→β0
+V ′→∗eW for some V ′, and

lg(U→β0
+V ′→∗eW ) ≤ lg(U→∗eV →β0 W ).

Proof. By induction on lg(U →∗e V →β0 W ), using Lemma 1.9.

Lemma 1.11. If U→∗eV →β W , then U→β
+V ′ →∗e W for some V ′.

Proof. By induction on lg(U→∗eV →β W ). Use Lemmas 1.8 and 1.10.

Lemma 1.12. If U→∗eV →β⊥ W , then U→β⊥
+V ′→∗eW for some V ′.

Proof. Similar to that of the previous lemma.

We investigate now how a →e rule behaves when followed by a →π or →π⊥ rule.

Lemma 1.13. If U →e V →π W (resp. U →e V →π⊥ W ), then U →π V ′ →e W or
U →π W (resp. U →π⊥ V

′ →e W or U →π⊥ W ) for some V ′.

Proof. Observe that in case of U →e V →π W the following possibilities can occur: either
U = λx(V ? x) and V →π W or U = (〈P1, P2〉 ? σ(Q)) and V = (〈P ′1, P ′2〉 ? σ(Q′)), where
exactly one of Pi →e P

′
i , Q→e Q

′ holds, the other two terms are left unchanged. From this,
the statement easily follows.

Lemma 1.14. If U →∗e V →βπ W , then U →+
βπ V

′ →e W for some V ′.

Proof. By Lemmas 1.11, 1.12 and 1.13.

Lemma 1.15. If U →∗e V →∗βπ W , then U →+
βπ V

′ →∗e W for some V ′.

Proof. Follows from the previous lemma.

We are now in a position to prove the main result of the section.

Lemma 1.16. The η- and the η⊥-reductions are strongly normalizing.

Proof. The η- and η⊥-reductions on M reduce the complexity of M .
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Definition 1.17.

(1) Let λβπη-calculus denote the calculus obtained from the λβπ-calculus by adding the η-

and η⊥-reductions to it.
(2) Let →βπη denote the union of →β, →β⊥ , →π, →π⊥ , →η and →η⊥ .
(3) Assume M is a term strongly normalizable in the λβπ-calculus. Then we denote by

ηβπ(M) the length of the longest reduction sequence →∗βπ starting from M .

Corollary 1.18. If the λβπ-calculus is strongly normalizing, then the λβπη-calculus is also
strongly normalizing.

Proof. Let M be a term, we prove by induction on ηβπ(M) that M is strongly normalizable
in the λβπη-calculus. Assume S is an infinite βπη-reduction sequence starting from M . If
S begins with a →βπ, then the induction hypothesis applies. In the case when S contains
only →e-reductions, we are done by Lemma 1.16. Otherwise there is an initial subsequent
M →+

e M
′ →βπ N . By Lemma 1.14, we have M →+

βπ M
′′ →∗e N . Thus, we can apply the

induction hypothesis to M ′′.

In the rest of the section we deal with the rule Triv. For strong normalization, it is
enough to show that →Triv can be postponed w.r.t. →βπη.

Lemma 1.19. If U →∗Triv V →βπη W , then U →+
βπη V

′ →∗Triv W for some V ′.

Proof. It is enough to prove that if U →Triv V →βπη W , then U →βπη V
′ →Triv W for

some V ′. Observe that if U = E[V ]→Triv V →βπη W , then V : ⊥ and W : ⊥, from which
the statement follows.

Lemma 1.20. The reduction →Triv is strongly normalizing.

Proof. The reduction →Triv on M reduces the complexity of M .

Corollary 1.21. If the λβπ-calculus is strongly normalizing, then the λSymProp-calculus is also
strongly normalizing.

Proof. By Corollary 1.18 and Lemmas 1.19 and 1.20.

2. Strong normalization of the λβπ-calculus

In this section, we give an arithmetical proof for the strong normalization of the λβπ-calculus.
In the sequel we detail the proofs for the β- and π-reductions only, all the proofs below can
be extended with the cases of the β⊥- and π⊥-reduction rules in a straightforward way. We
intend to examine how substitution behaves with respect to strong normalizability. The first
milestone in this way is Lemma 2.7. Before stating the lemma, we formulate some auxiliary
statements.

Definition 2.1.

(1) Let SNβπ denote the set of strongly normalizable terms of the λβπ-calculus.
(2) Let M ∈ SNβπ, then ηc(M) stands for the pair 〈ηβπ(M), cxty(M)〉.
Lemma 2.2. Let us suppose M ∈ SNβπ, N ∈ SNβπ and (M ?N) /∈ SNβπ. Then there are
P ∈ SNβπ, Q ∈ SNβπ such that M →∗βπ P and N →∗βπ Q and (P ? Q) /∈ SNβπ is a redex.

Proof. By induction on ηc(M)+ηc(N). Assume M ∈ SNβπ, N ∈ SNβπ and (M?N) /∈ SNβπ.
When (M ?N)→ (M ′ ? N) or (M ?N)→ (M ?N ′), then the induction hypothesis applies.
Otherwise (M ?N)→ P /∈ SNβπ, and we have the result.
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Definition 2.3.

(1) A proper term is a term differing from a variable.
(2) For a type A, ΣA denotes the set of simultaneous substitutions of the form [x1 :=

N1, . . . , xk := Nk] where Ni (1 ≤ i ≤ n) is proper and has type A.
(3) A simultaneous substitution σ ∈ ΣA is said to be in SNβπ, if, for every x ∈ dom(σ),

σ(x) ∈ SNβπ holds.

Lemma 2.4. Let M,N be terms such that M →∗βπ N .

(1) If N = λxP , then M = λxP1 with P1 →∗βπ P .

(2) If N = 〈P,Q〉, then M = 〈P1, Q1〉 with P1 →∗βπ P and Q1 →∗βπ Q.

(3) If N = σi(P ), then M = σi(P1) with P1 →∗βπ P , for i ∈ {1, 2}.

Proof. Straightforward.

We remark that in the presence of the →η and →⊥η rules the above lemma would not
work. For example, λx(y ? x)→η y.

Lemma 2.5. If M ∈ SNβπ and x ∈ V ar, then (M ? x) ∈ SNβπ (resp. (x ?M) ∈ SNβπ).

Proof. Let us suppose M ∈ SNβπ and (M ? x) /∈ SNβπ. By Lemma 2.2, we must have
M →∗βπ λyM1 ∈ SNβπ such that (M ? x) →∗βπ (λyM1 ? x) →βπ M1[y := x] and M1[y :=

x] /∈ SNβπ. Being a subterm of a reduct of M ∈ SNβπ, we also have M1 ∈ SNβπ. Moreover,
M1[y := x] is obtained from M1 by α-conversion, hence M1[y := x] ∈ SNβπ, a contradiction.

Definition 2.6.

(1) Let M,N be terms.
(a) We denote by M ≤ N (resp. M < N) the fact that M is a sub-term (resp. a strict

sub-term) of N .
(b) We denote by M ≺ N the fact that M ≤ P for some N →+

βπ P or M < N . We

denote by � the reflexive closure of ≺.
(c) Let R be a βπ-redex. We write M →R N if N is the term M after the reduction of

R.
(2) Let R = [R1, . . . , Rn] where Ri is a βπ-redex (1 ≤ i ≤ n). Then R is called zoom-in if,

for every 1 ≤ i < n, Ri →Ri R′i and Ri+1 ≤ R′i. Moreover, R is minimal, if, for each
Ri = (Pi ? Qi), we have Pi, Qi ∈ SNβπ and (Pi ? Qi) /∈ SNβπ. We write M →R N , if

M →R1 ...→Rn N .

For the purpose of proving the strong normalization of the calculus, it is enough to show
that the set of strongly normalizable terms is closed under substitution. To this end, we
show that, if U , S ∈ SNβπ and U [x := S] /∈ SNβπ, then there is a term W ≤ U of a special
form such that W ∈ SNβπ and W [x := S] /∈ SNβπ. Moreover, we show that the sequence of
redexes leading to W is not completely general, this is a zoom-in sequence defined below.
Reducing the outermost redexes of a zoom-in sequence preserve some useful properties,
which is the statement of Lemma 2.9.

Lemma 2.7. Let U , S ∈ SNβπ and suppose U [x := S] /∈ SNβπ. Then there are terms

P, V � U and a zoom-in minimal R such that U [x := S] →R V [x := S], (x ? P ) ≤ V (or
(P ? x) ≤ V ), P [x := S] ∈ SNβπ and (x ? P )[x := S] /∈ SNβπ (or (P ? x)[x := S] /∈ SNβπ).
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Proof. The proof goes by induction on ηc(U). If U is other than an application, we can
apply the induction hypothesis. Assume U = (U1 ? U2) with Ui[x := S] ∈ SNβπ (i ∈ {1, 2})
and U [x := S] /∈ SNβπ. By Lemma 2.2 and the induction hypothesis we may assume that

(U1 ? U2)[x := S] →ρ U
′ /∈ SNβπ, where ρ ∈ {β, β⊥, π, π⊥}. Let us suppose ρ = β, the

other cases can be treated similarly. If U1 = λyU ′1, then the induction hypothesis applies to
U ′1[y := U2]. Otherwise U1 = x, and we have obtained the result.

Next we define an alternating substitution: we start from two sets of terms of comple-
mentary types and the substitution is defined in a way that we keep track of which newly
added sets of substitutions come from which of the two sets. The reason for this is that
Lemma 2.7 in itself is not enough for proving the strong normalizability of λSymProp even if we
would consider the β and β⊥ rules alone. We have to show that, if we start from a term
(U1 ? U2), where U1 and U2 ∈ SNβπ and we assume that U1[x := U2] /∈ SNβπ, then there are
no deep interactions between the terms which come from U1 and from U2. We can identify
a subterm of a reduct of U1 which is the cause for being non SNβπ, when performing a
substitution with U2.

Definition 2.8.

(1) A set A of proper terms is called �-closed from below if, for all terms U,U ′, if U ′ � U ,
U ∈ A and U ′ is proper, then U ′ ∈ A.

(2) Let A,B be sets �-closed from below and A a type. We define simultaneously two sets
of substitutions
(a) ΠA(B) ⊆ ΣA and ΘA⊥(A) ⊆ ΣA⊥ as follows.

– ∅ ∈ ΠA(B),
– [y1 := V1τ1, . . . , ym := Vmτm] ∈ ΠA(B) if Vi ∈ B such that type(Vi) = A and
τi ∈ ΘA⊥(A) (1 ≤ i ≤ m).

– ∅ ∈ ΘA⊥(A).
– [x1 := U1ρ1, . . . , xm := Umρm] ∈ ΘA⊥(A) if Ui ∈ A such that type(Ui) = A⊥

and ρi ∈ ΠA(B) (1 ≤ i ≤ m).
(b) Let SA(A,B) = {Uρ | U ∈ A and ρ ∈ ΠA(B)} ∪ {V τ | V ∈ B and τ ∈ ΘA⊥(A)}. It

is easy to see that, from U ≤ V and V ∈ SA(A,B), it follows U ∈ SA(A,B).

Lemma 2.9. Let n be an integer, A a type of length n and R = [R1, . . . , Rm] a zoom-in
minimal sequence of redexes. Assume the property H “if U , V ∈ SNβπ and cxty(type(V )) <
n, then U [x := V ] ∈ SNβπ” holds. If R1 ∈ SA(A,B) for some sets A and B �-closed from
below, then Rm ∈ SA(A,B).

Proof. The proof goes by induction on m. We prove the induction step from m = 1 to
m = 2, the proof is the same when m ∈ N is arbitrary. We only treat the more interesting
cases. Assume R1 ∈ SA(A,B).

(1) R1 = (λxQ ? S)→β R
′
1 = Q[x := S] and R2 ≤ R′1.

(a) Suppose R1 = Uρ for some U ∈ A and ρ ∈ ΠA(B). Then U = (U1 ? U2) with
U1ρ = λxQ and U2ρ = S, and, since ρ ∈ ΣA, U1 must be proper. Then we have
U1 = λxU ′1 and U ′1ρ = Q for some U ′1. Now, R′1 = U ′1[x := U2]ρ ∈ SA(A,B), which
yields R2 ∈ SA(A,B).

(b) Assume now R1 = V τ . Then V = (V1 ? V2) with V1τ = λxQ and V2τ = S, and,
since τ ∈ ΣA⊥ , V2 must be proper. If V1 is proper, then, as before, we obtain
the result. Otherwise V1τ = Uρ = λxQ. Since U ∈ A is proper, U = λxU1 and
U1ρ = Q for some U1. Then U1ρ1 ∈ SA(A,B) with ρ1 = ρ + [x := V2τ ], since
type(V2τ) = type(S) = A. This implies R2 ∈ SA(A,B).
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(2) R1 = (〈Q1, Q2〉 ? σ1(S))→π (Q1 ? S) = R′1 and R2 ≤ R′1.
(a) Assume R1 = Uρ for some U ∈ A and ρ ∈ ΠA(B). Then U1ρ = 〈Q1, Q2〉 and

U2ρ = σ1(S).
- Let U1 and U2 be proper. Then U1 = 〈U ′1, U ′′1 〉 and U2 = σ1(U ′2) such that
U ′1ρ = Q1, U ′′1 ρ = Q2 and U ′2ρ = S. We have R′1 = (U ′1 ? U

′
2)ρ ∈ SA(A,B), which

yields the result.
- Assume U2 ∈ V ar. Then V τ = σ(S), and cxty(type(S)) <
cxty(type(σS)) = n. Then assumption H and the fact that 〈Q1, Q2〉 ∈ SNβπ,
together with Lemma 2.5, lead to (Q1 ? S) ∈ SNβπ, which is not possible. Since
ρ ∈ ΣA, U1 ∈ V ar is impossible.

(b) Assume R1 = V τ for some V ∈ B and τ ∈ ΘA⊥(A). Then V1τ = 〈Q1, Q2〉 and
V2τ = σ1(S), where V = (V1 ? V2).
- Let V1 and V2 be proper. Then V1 = 〈V ′1 , V ′′1 〉 and V2 = σ1(V ′2) such that
V ′1τ = Q1, V ′′1 τ = Q2 and V ′2τ = S. We have R′1 = (V ′1 ? V

′
2)τ ∈ SA(A,B).

- Assume V1 ∈ V ar. Then Uρ = 〈Q1, Q2〉, where cxty(type(Q1)) <
cxty(type(〈Q1, Q2〉)) = n. Then assumption H and the fact that S ∈ SNβπ,
together with Lemma 2.5, lead to (Q1 ? S) ∈ SNβπ, which is not possible. Since
τ ∈ ΣA⊥ , the case of V2 ∈ V ar is impossible.

The next lemma identifies the subterm of U being responsible for the non strong normaliz-
ability of U [x := V ].

Lemma 2.10. Let n be an integer and A a type of length n. Assume the property H “if U ,
V ∈ SNβπ and cxty(type(V )) < n, then U [x := V ] ∈ SNβπ” holds.

(1) Let U be a proper term, σ ∈ ΣA and a /∈ Im(σ). If Uσ, P ∈ SNβπ and Uσ[a := P ] /∈
SNβπ, then there exists U ′ such that (U ′ ? a) � U and σ′ ∈ ΣA such that U ′σ′ ∈ SNβπ

and (U ′σ′ ? a)[a := P ] /∈ SNβπ.
(2) Let U be a proper term, σ ∈ ΣA⊥ and a /∈ Im(σ). If Uσ, P ∈ SNβπ and Uσ[a := P ] /∈

SNβπ, then there exists U ′ such that (a ? U ′) � U and σ′ ∈ ΣA⊥ such that U ′σ′ ∈ SNβπ

and (a ? U ′σ′)[a := P ] /∈ SNβπ.

Proof. Let us consider only case (1). We identify the reason of Uσ[a := P ] being non strongly
normalizable, we find a subterm (U ′ ?a) of a reduct of U such that, for a substituted instance
of (U ′ ? a), (U ′ ? a)σ′ ∈ SNβπ and (U ′ ? a)σ′[a := P ] /∈ SNβπ. This will contradict by some
minimality assumption concerning U in the next lemma. For this we define two sets of
substitutions as in Definition 2.8 with the sets A and B as below. We note that Property H
of the previous lemma implicitly ensures that the type of U and the type of the elements in
σ can be of the same lengths.

Let
A = {M |M � U and M is proper},

B = {V |V � σ(b) for some b ∈ dom(σ) and V is proper}.
Then Uσ ∈ SA(A,B). By Lemma 2.7, there exists a minimal zoom-in R = [R1, . . . , Rn] and
there are terms U∗ and V � Uσ such that Uσ[a := P ]→R V [a := P ] and (U∗ ? a) ≤ V and
(U∗ ? a) ∈ SNβπ and (U∗ ? a)[a := P ] /∈ SNβπ or (a ? U∗) ≤ V and (a ? U∗) ∈ SNβπ and
(a ? U∗)[a := P ] /∈ SNβπ. Assume the former. By Lemma 2.9, (U∗ ? a) ∈ SA(A,B). Then
(U∗ ? a) = Sρ for some S ∈ A or (U∗ ? a) = Wτ for some W ∈ B. Since a /∈ Im(σ), the
latter is impossible. The former case, however, yields S = (U ′ ? a) with U ′ρ = U∗ for some
U ′ ∈ A, which proves our assertion.



STRONG NORMALIZATION OF λSymProp- AND λµµ̃∗-CALCULI 11

The next lemma states closure of strong normalizability under substitution.

Lemma 2.11. If M,N ∈ SNβπ, then M [x := N ] ∈ SNβπ.

Proof. We are going to prove a bit more general statement. Suppose M,Ni ∈ SNβπ are
proper, type(Ni) = A (1 ≤ i ≤ k). Let τi ∈ ΣA⊥ are such that τi ∈ SNβπ (1 ≤ i ≤ k) and let
ρ = [x1 := N1τ1, . . . , xk := Nkτk]. Then we have Mρ ∈ SNβπ. The proof is by induction on
(cxty(A), ηβπ(M), cxty(M), Σi ηβπ(Ni),Σi cxty(Ni)) where, in Σi ηβπ(Ni) and Σi cxty(Ni),
we count each occurrence of the substituted variable. For example if k = 1 and x1 has n
occurrences, then Σi ηβπ(Ni) = n · ηβπ(N1).

The only nontrivial case is when M = (M1 ? M2) and Mρ /∈ SNβπ. By the induction
hypothesis Miρ ∈ SNβπ (i ∈ {1, 2}). We select some of the typical cases.

(A) M1ρ→βπ λzM
′ and M ′[z := M2] /∈ SNβπ.

1. M1 is proper, then there is an M3 such that M1 = λzM3 and M3ρ→βπ M
′. In this

case (M3[z := M2])ρ /∈ SNβπ and since ηβπ(M3[z := M2]) < ηβπ(M), the induction
hypothesis gives the result.

2. M1 ∈ V ar. Then M1 = x ∈ dom(ρ), ρ(x) = Njτj →βπ λzM
′ for some (1 ≤ j ≤ k).

Since Nj is proper, there is an N ′ such that Nj = λzN ′, N ′τj →βπ M
′. Then

N ′τj [z := M2ρ] /∈ SNβπ and type(z) = type(Nj)
⊥ = type(τj), so, by the previous

lemma, we have N ′′ ≺ N ′ and τ ′ such that (N ′′τ ′ ? M2ρ) /∈ SNβπ. Now we

have (N ′′τ ′ ? M2ρ) = (y ? M2ρ)[y := N ′′τ ′], type(N ′′) = type(τ ′)⊥ = A and
ηβπcxty(N ′′) < ηc(Nj), which contradicts the induction hypothesis.

(B) M1ρ→βπ 〈M ′,M ′′〉 and either (M ′ ? M2) /∈ SNβπ or (M ′′ ? M2) /∈ SNβπ. Suppose the
former.

1. M1,M2 are proper, then there are M3,M4 such that M1 = 〈M3,M4〉 and M3ρ→βπ

M ′, or M4ρ→βπ M
′′. Assume the former. Then we have (M3 ? M2)ρ /∈ SNβπ and

ηβπ((M3 ? M2)) < ηβπ(M), a contradiction.
2. M1 = x ∈ dom(ρ), then ρ(x) = Njτj →βπ 〈M ′,M ′′〉, Nj is proper and Nj = 〈U, V 〉,
Uτj →βπ M

′ or V τj →βπ M
′′. Now (Uτj ? M2) = (y ? M2)[y := Uτj ] /∈ SNβπ, but

cxty(type(U)) < cxty(type(Nj)), a contradiction again.
3. M2 ∈ V ar. This is similar to the previous case. By the same argument as in part

(A)-2.-(a) of the proof of the previous lemma, M1 and M2 cannot be both variables.
This completes the proof of the lemma.

Theorem 2.12. The λβπ-calculus is strongly normalizing.

Proof. It is enough to show that, for every term, M , N ∈ SNβπ implies (M ?N) ∈ SNβπ.
Supposing M,N ∈ SNβπ, Lemma 2.5 gives (M ? x) ∈ SNβπ, which yields, by the previous
lemma, (M ?N) = (M ? x)[x := N ] ∈ SNβπ.
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3. The λµµ̃- and the λµµ̃∗-calculus

In this section, we introduce the λµµ̃-calculus together with one of its extensions, the

λµµ̃∗-calculus, by which we establish a translation of the λSymProp-calculus and thus obtain the

strong normalization of the λµµ̃∗-calculus as a consequence.

3.1. The λµµ̃-calculus. The λµµ̃-calculus was introduced by Curien and Herbelin ([Her95]
and [CH00]). We examine here the calculus defined by Curien et al. [CH00], which is a simply
typed one. The λµµ̃-calculus was invented for representing proofs in classical Gentzen-style
sequent calculus: under the Curry-Howard correspondence a version of Gentzen-style sequent
calculus is obtained as a system of simple types for the λµµ̃-calculus. Moreover, the system
presents a clear duality between call-by-value and call-by-name evaluations.

Definition 3.1. There are three kinds of terms, defined by the following grammar, and
there are two kinds of variables. We assume that we use the same set of variables in the
λµµ̃∗-calculus, too. In the literature, different authors use different terminology. Here, we
will call them either c-terms, or l-terms or r-terms. Similarly, the variables will be called
either l-variables (and denoted as x, y, ...) or r-variables (and denoted as a, b, ...).

p ::= bt, ec
t ::= x | λxt | µαp
e ::= α | (t.e) | µ̃xp

As usual, we denote by Fv(u), the set of the free variables of the term u.

Definition 3.2. The types are built from atomic formulas (or, in other words, atomic types)
with the connector →. We assume that the same set of type variables A is used in the
λµµ̃∗-calculus, also. The typing system is a sequent calculus based on judgements of the
following form.

p : (Γ B 4) Γ B t : A | 4 Γ | e : A B 4
where Γ (resp. 4) is a set of declarations of the form x : A (resp. a : A), x (resp. a) denoting
a l-variable (resp. an r-variable) and A representing a type, such that x (resp. a) occurs at
most once in an expression of Γ (resp. 4) of the form x : A (resp. a : A). We say that Γ an
l-context and 4 is an r-context, respectively. The typing rules are as follows

V ar1
Γ, x : A B x : A | 4

V ar2
Γ | α : A B α : A,4

λ
Γ, x : A B t : B | 4

Γ B λxt : A→ B | 4
(.)

Γ B t : A | 4 Γ | e : B B 4
Γ | (t.e) : A→ B B 4

b, c Γ B t : A | 4 Γ | e : A B 4
bt, ec : (Γ B 4)

µ
p : (Γ B α : A,4)

Γ B µαp : A | 4
µ̃

p : (Γ, x : A B 4)

Γ | µ̃xp : A B 4
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Definition 3.3. The cut-elimination procedure (on the logical side) corresponds to the
reduction rules (on the terms) given below.

(λ) bλxt, (t′.e)c ↪→ λ bt′, µ̃x bt, ecc
(µ) bµαp, ec ↪→ µ p[α := e]
(µ̃) bt, µ̃xpc ↪→ µ̃ p[x := t]
(sl) µαbt, αc ↪→ sl t if α 6∈ Fv(t)
(sr) µ̃xbx, ec ↪→ sr e if x 6∈ Fv(e)

Let us take the union of the above rules. Let ↪→ stand for the compatible closure of this
union and, as usual, ↪→∗ denote the reflexive, symmetric and transitive closure of ↪→. The
notions of reduction sequence, normal form and normalization are defined with respect to
↪→.

We present below some theoretical properties of the λµµ̃-calculus (Herbelin [Her95],
Curien and Herbelin [CH00], de Groote [Gro01], Polonovski [Pol04] and David and Nour
[DN07]).

Proposition 3.4 (Type-preservation property). If Γ B t : A | 4 (resp. Γ | e : A B 4,
resp. p : (Γ B 4)) and t ↪→∗ t′ (resp. e ↪→∗ e′, resp. p ↪→∗ p′), then Γ B t′ : A | 4 (resp.
Γ | e′ : A B 4, resp. p′ : (Γ B 4)).

Proposition 3.5 (Subformula property). If Π is a derivation of Γ B t : A | 4 (resp.
Γ | e : A B 4, resp. p : (Γ ` 4)) and t (resp. e, resp. p) is in normal form, then every
type occurring in Π is a subformula of a type occurring in Γ∪4, or a subformula of A (only
for t and e).

Theorem 3.6 (Strong normalization property). If Γ B t : A | 4 (resp. Γ | e : A B 4,
resp. p : (Γ B 4)), then t (resp. e, resp. p) is strongly normalizable, i.e. every reduction
sequence starting from t (resp. e, resp. p) is finite.

The proof of Theorem 3.6 can be found in the thesis of Polonovski [Pol04], as well as in
the work of David and Nour [DN07], where an arithmetical proof is presented.

3.2. The λµµ̃∗-calculus. Since we work in a sequent calculus, where negation is implicitly
built in the rules, the typing rules of the λµµ̃-calculus do not handle negation. However,
for a full treatment of propositional logic we found it more convenient to introduce rules
concerning negation. Since c-terms, which could have been candidates for objects of type ⊥,
are distinctly separated from terms, adding new term- and type-forming operators seems to
be the easiest way to define negation.

Definition 3.7.

(1) The terms of the λµµ̃∗-calculus are defined by the following grammar.

p ::= bt, ec
t ::= x | λx t | µα p | e

e ::= α | (t.e) | µ̃x p | t̃

As an abuse of terminology, in the sequel when speaking about the syntactic elements
of the λµµ̃∗-calculus, we may not distinguish l-, r- and c-terms, we may speak about
terms in general. We denote by T the set of terms of the λµµ̃∗-calculus.
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(2) The complexity of a term of T is defined as follows.
cxty(x) = cxty(α) = 0,
cxty(λxt) = cxty(t̃) = cxty(t) + 1,
cxty(e) = cxty(e) + 1,
cxty(µαp) = cxty(µ̃x p) = cxty(p) + 1,
cxty(bt, ec) = cxty((t.e)) = cxty(t) + cxty(e).

Definition 3.8. The type inference rules are the same as in the λµµ̃-calculus with two extra
rules added for the types of the complemented terms. Moreover, we introduce an equation
between types (for all types A, (A⊥)⊥ = A) to ensure that our negation is involutive.

.
Γ | e : AB4

Γ B e : A⊥ | 4
.̃

Γ B t : A | 4
Γ | t̃ : A⊥ B4

We also define the complexity of types in the λµµ̃∗-calculus.

cxty(A) = 0 for atomic types,
cxty(A→ B) = cxty(A) + cxty(B) + 1,
cxty(A⊥) = cxty(A).

That is, the complexity of a type A provides us with the number of arrows in A. The
presence of negation makes it necessary for us to introduce new rules handling negation.

Definition 3.9. Besides the reduction rules already present in λµµ̃, we endow the calculus
with some more new rules to handle the larger set of terms. In what follows cl stands for the
name: complementer rule. We shall refer to the cl1,l- and cl1,r-rules by a common notation
as the cl1-rules.

(cl1,l) t̃ ↪→ cl1,l t

(cl1,r) ẽ ↪→ cl1,r e

(cl2) be, t̃c ↪→ cl2 bt, ec
In the sequel, we continue to apply the notation ↪→ and ↪→∗ in relation with this new
calculus.

Obviously, the statements analogous to Propositions 3.4 and 3.5 are still valid.

4. Relating the λSymProp-calculus to the λµµ̃∗-calculus

Rocheteau [Roc05] defined a translation between the λµµ̃-calculus and the λµ-calculus,
treating both a call-by-value and a call-by-name aspect of λµµ̃. In this subsection, we give a
translation (in both directions) between the λSymProp-calculus and the λµµ̃∗-calculus, which
is a version of the λµµ̃-calculus extended with negation. The translations are such that
strong normalization of one calculus follows from that of the other in both directions. We
omit issues of evaluation strategies, however. In the end of the section we give an exact
description of the correspondence between the two translations. Preparatory to presenting
the translations, let us introduce some definitions and notation below. We assume that
the two calculi have the same sets of variables and atomic types. Moreover, as an abuse of
notation, if α : A⊥ stems from the r-variable α : A in the λµµ̃∗-calculus, then we suppose
that in the λSymProp-calculus α denotes a variable with type A⊥.
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4.1. A translation of the λµµ̃∗-calculus into the λSymProp-calculus.

Definition 4.1.

(1) Let us consider the λSymProp-calculus. For i ∈ {1, 2}, we write πi(y) = λz(y ? σi(z)). Then,

we can observe that y : A1 ∧A2 ` πi(y) : Ai, for i ∈ {1, 2}.
(2) We define a translation .e : T −→ T as follows.

pe = (ue ? ve) if p = bv, uc.

te =


x if t = x,
λy(λx(π2(y) ? ue) ? π1(y)) if t = λxu,
λx(ee ? te) if t = µ̃xbt, ec,
ue if t = u.

ee =


α if e = α,
〈te, he〉 if e = t.h,
λα(ee ? te) if e = µαbt, ec,
he if e = h̃.

(3) The translation .e also applies to types.
• Ae = A, where A is an atomic type,
• (A⊥)e = (Ae)⊥,
• (A→ B)e = (Ae)⊥ ∨Be.

(4) Let Γ, 4 be l- and r-contexts, respectively. Then Γe = {x : Ae | x : A ∈ Γ} and similarly
for 4. Furthermore, for any r-context 4, let 4⊥ = {α : A⊥ | α : A ∈ 4}.

Lemma 4.2. (1) If Γ B t : A | 4, then Γe, (4e)⊥ ` te : Ae.
(2) If Γ | e : A B 4, then Γe, (4e)⊥ ` ee : (Ae)⊥.
(3) If p : (Γ B 4), then Γe, (4e)⊥ ` pe : ⊥.

Proof. The above statements are proved simultaneously according to the length of the
λµµ̃∗-deduction. We remark that .e is defined in Definition 4.1 exactly in the way to make
the assertions of the lemma true. Let us examine some of the more interesting cases.

(1) Suppose
Γ, x : A B u : B | 4

Γ B λxu : A→ B | 4
.

Then we have, by the induction hypothesis and Notation 4.1,

Γe, (4e)⊥, x : Ae, y : Ae ∧ (Be)⊥ ` ue : Be,

Γe, (4e)⊥, y : Ae ∧ (Be)⊥ ` π1(y) : Ae,

Γe, (4e)⊥, y : Ae ∧ (Be)⊥ ` π2(y) : (Be)⊥.

Thus we can conclude

Γe, (4e)⊥, x : Ae, y : Ae ∧ (Be)⊥ ` (π2(y) ? ue) : ⊥,
Γe, (4e)⊥, y : Ae ∧ (Be)⊥ ` λx(π2(y) ? ue) : (Ae)⊥.

From which, we obtain

Γe, (4e)⊥ ` λy(λx(π2(y) ? ue) ? π1(y)) : (Ae)⊥ ∨Be.
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(2) Assume now
Γ B t : A | 4 Γ | e : B B 4

Γ | t.e : A→ B B 4
.

Then we have
Γe, (4e)⊥ ` te : Ae Γe, (4e)⊥ ` ee : (Be)⊥

Γe, (4e)⊥ ` 〈te, ee〉 : Ae ∧ (Be)⊥
.

(3) From
Γ B t : A | 4 Γ | e : A B 4

bt, ec : (Γ B 4)
,

we obtain
Γe, (4e)⊥ ` te : Ae Γe, (4e)⊥ ` ee : (Ae)⊥

Γe, (4e)⊥ ` (ee ? te) : ⊥
.

Our next aim is to prove that λµµ̃∗ can be simulated by the λSymProp-calculus. To this end we

introduce a new notion of equality in the λSymProp-calculus.

Definition 4.3. We define an equivalence relation ∼ on T , which is the smallest relation
compatible with the term forming rules and containing ((M ?N), (N ?M)).

• x ∼ x,
• if M ∼M ′, then λxM ∼ λxM ′ and σi(M) ∼ σi(M ′) for i ∈ {1, 2},
• if M ∼ M ′ and N ∼ N ′, then 〈M,N〉 ∼ 〈M ′, N ′〉 and (M ? N) ∼ (M ′ ? N ′) and

(M ?N) ∼ (N ′ ? M ′).

We say that M and N are equal up to symmetry provided M ∼ N .

Lemma 4.4. Let M,M ′, N,N ′ ∈ T .

(1) If M ∼M ′ and N ∼ N ′, then M [x := N ] ∼M ′[x := N ′].
(2) If M ∼M ′ and M ′ → N , then there is N ′ for which M → N ′ and N ∼ N ′.

Proof. 1. By induction on cxty(M). 2. By 1.

Lemma 4.5. Let u, t, e ∈ T. Then (u[x := t])e = ue[x := te] and (u[a := e])e = ue[a := ee].

Proof. By induction on cxty(u).

Now we can formulate our assertion about the simulation of the λµµ̃∗-calculus by the

λSymProp-calculus.

Theorem 4.6. Let v, w ∈ T.

(1) If v ↪→r w and r ∈ {β , µ , µ̃ , sl , sr}, then ve →+ we.
(2) If v ↪→r w and r ∈ {cl1,l , cl1,r , cl2}, then ve ∼ we.

Proof. (1) Let us only treat the typical cases.
(a) If v = bλxu, (t.e)c ↪→β bt, µ̃xbu, ecc = w, then ve = (〈te, ee〉 ? λy(λx(π2(y) ? ue) ?

π1(y)))→β⊥ (λx(π2(〈te, ee〉) ? ue) ? π1(〈te, ee〉))→∗ (λx(ee ? ue) ? te) = we.
(b) If v = bµap, ec ↪→µ p[a := e] = w, then, by Lemma 4.5, ve = (ee ? λape)→β⊥ p

e[a =
ee] = we.

(c) If v = µabw, ac ↪→sl w, a /∈ w, then ve = λa(a ? we)→η⊥ w
e.

(2) (a) If v = ũ ↪→cl1,l u = w, then ve = (ũ)e = ue = we.
(b) If v = bv, ũc ↪→cl2 bu, vc = w, then ve = bv, ũce = (ue ? ve) ∼ we.
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Corollary 4.7. The λµµ̃∗-calculus is strongly normalizable.

Proof. Let σ be a reduction sequence in the λµµ̃∗-calculus, assume σ is v0 ↪→ v1 . . . ↪→ vn
and σ contains k ≥ 0 number of β-, µ-, µ̃-, sl- or sr-reductions. By Theorem 4.6, ve0, ve1, . . .,
ven forms a sequence of λSymProp-terms, where either vei → vei+1 or vei ∼ vei+1 (0 ≤ i ≤ n − 1)
and, for every β-, µ-, µ̃-, sl- or sr-reduction, there corresponds a reduction step in the
λSymProp-calculus. By Lemma 4.4, we obtain that ∼ can be postponed, that is, there are w0,
w1, . . ., wk+1 in T such that w0 = ve0, wk+1 = ven and w0 → . . .→ wk ∼ wk+1. This means
that we can establish a reduction sequence of length k starting from ve0 in the λSymProp-calculus.
Hence, by Theorem 2.12 and Corollary 1.21, an infinite reduction sequence starting from v0

can contain only a finite number of β-, µ-, µ̃-, sl- or sr-reductions. Thus there would exist
an infinite reduction sequence in the λµµ̃∗-calculus consisting entirely of cl1,l-, cl1,r- and
cl2-reductions, which is impossible.

4.2. A translation of the λSymProp-calculus into the λµµ̃∗-calculus. Now we are going

to deal with the converse relation. That is we will present a translation of the λSymProp-calculus

into the λµµ̃∗-calculus which faithfully reflects the typability relations of one calculus in the

other one. Then we prove that our translation is in fact a simulation of the λSymProp-calculus in

the λµµ̃∗-calculus.

Definition 4.8.

(1) The translation .f : T −→ T is defined as follows.

M f =



x if M = x,

bQf, P̃ fc if M = (P ? Q),

µ̃xN f if M = λxN,

(P f.Q̃f) if M = 〈P,Q〉,
λxµβbN f, x̃c if M = σ1(N), x /∈ Fv(N f) and β /∈ Fv(bN f, x̃c),
λxN f if M = σ2(N) and x /∈ Fv(N f).

(2) The translation .f applies to the types as follows.
• αf = α,

• (α⊥)
f

= α⊥,
• (A ∧B)f = (Af → (Bf)⊥)⊥,
• (A ∨B)f = (Af)⊥ → Bf.

We remark that .f maps the terms of the λSymProp-calculus with type ⊥ to c-terms of the

λµµ̃∗-calculus, which have no types. We also have, for all types A, (A⊥)
f

= (Af)⊥.
Therefore the translation .f maps equal types to equal types.

Lemma 4.9. (1) If Γ `M : A and A 6= ⊥, then Γf BM f : Af.
(2) If Γ `M : ⊥, then M f : (Γf B ).

Proof. The proof proceeds by a simultaneous induction on the length of the derivation in

the λSymProp-calculus. We can observe again that the notion of .f in Definition 4.8 is conceived
in a way to make the statements of the lemma true. Let us only examine some of the typical
cases of the first assertion.
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(1) Suppose
Γ, x : A ` u : ⊥
Γ ` λxu : A⊥

.

Then, applying the induction hypothesis,

uf : (Γf, x : Af B )

Γf | µ̃xuf : Af B

Γf B µ̃xuf : (Af)⊥
.

(2) If
Γ ` u : A

Γ ` σ1(u) : A ∨B
,

then, we obtain

Γf, x : (Af)⊥ B uf : Af | β : Bf

Γf, x : (Af)⊥ B x : (Af)⊥ | β : Bf

Γf, x : (Af)⊥ | x̃ : Af B β : Bf

buf, x̃c : (Γf, x : (Af)⊥ B β : Bf)

Γf, x : (Af)⊥ B µβbuf, x̃c : Bf

Γf B λxµβbuf, x̃c : (Af)⊥ → Bf
.

(3) From
Γ ` u : A⊥ Γ ` v : A

Γ ` (u ? v) : ⊥
,

we obtain
Γf B uf : (Af)⊥

Γf | ũf : Af B Γf B vf : Af

bvf, ũfc : (Γf B )
.

Now we turn to the proof of the simulation of the λSymProp-calculus in the λµµ̃∗-calculus.

Lemma 4.10. Let M,N ∈ T . Then (M [x := N ])f = M f[x := N f].

Proof. By induction on cxty(M).

Theorem 4.11. Let M,N ∈ T . If M → N , then M f ↪→+ N f.

Proof. Let us prove some of the more interesting cases.

(1) If M = (λxP ? Q)→β P [x := Q] = N , then, applying Lemma 4.10,

M f = bQf,
˜̃
µxP fc ↪→cl1 bQf, µ̃xP fc ↪→µ̃ P

f[x := Qf] = N f.
(2) If M = (Q ? λxP )→β⊥ P [x := Q] = N , then

M f = bµ̃xP f, Q̃fc ↪→cl2 bQf, µ̃xP fc ↪→µ̃ P
f[x := Qf] = N f.

(3) If M = (〈P,Q〉 ? σ1(R))→π (P ? R) = N , then

M f = bλxµbbRf, x̃c,
˜

(P f.Q̃f)c ↪→cl1 bλxµbbRf, x̃c, (P f.Q̃f, )c ↪→λ

bP f, µ̃xbµbbRf, x̃c, Q̃fcc ↪→µ̃ bµbbRf, P̃ fc, Q̃fc ↪→µ bRf, P̃ fc = N f.
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We could have as well demonstrated that the λµµ̃∗-calculus is strongly normalizable
by applying the method presented in Section 3 as accomplished by Battyányi [Bat07]. The
following result states that in this case the strong normalizability of the λSymProp-calculus would
arise as a direct consequence of that of the λµµ̃∗-calculus.

Corollary 4.12. If the λµµ̃∗-calculus is strongly normalizable, then the same is true for

the λSymProp-calculus as well.

Proof. By Theorem 4.11.

4.3. The connection between the two translations. In this subsection we examine the
connection between the two transformations. We prove that both compositions .e

f
: T −→ T

and .f
e

: T −→ T are such that we can get back the original terms by performing some steps

of reduction on ue
f

or on M fe , respectively. That is, the following theorems are valid. The
case of .f

e
is the easier one.

First we describe the effect of .f
e

on the typing relations.

Lemma 4.13. If Γ `M : A, then Γ `M fe : A.

Proof. Combining Lemmas 4.9 and 4.2.

Theorem 4.14. Let M ∈ T . Then M fe →∗ M .

Proof. By induction on cxty(M). We consider only the more interesting cases.

(1) If M = (P ? Q), then (P ? Q)f
e

= bQf, P̃ fce = (P fe ? Qfe)→∗ (P ? Q).

(2) If M = 〈P,Q〉, then 〈P,Q〉fe = (P f.Q̃f)
e

= 〈P fe, Qfe〉 →∗ 〈P,Q〉.
(3) If M = σ1(N), then

σ1(N)f
e

= λxµβbN f, x̃ce = λy(λx(π2(y) ? (µβbN f, x̃c)e) ? π1(y)) =

λy(λx(π2(y) ? λβ(x ? N fe)) ? π1(y))→β⊥ λy(λx(x ? N fe) ? π1(y))→η⊥

λy(N fe ? π1(y))→β λy(y ? σ1(N fe))→η⊥ σ1(N fe)→∗ σ1(N).

We begin to examine the composition .ef : T → T for an arbitrary u. First we make the
following observation.

Lemma 4.15. (1) If Γ B t : A | 4, then Γ,4⊥ B tef : A.

(2) If Γ | e : A B 4, then Γ,4⊥ B eef : A⊥.

(3) If p : (Γ B 4), then pef : (Γ,4⊥ B).

Proof. Combining Lemmas 4.2 and 4.9.

Theorem 4.14 states that, if M is an λSymProp-term, then M can be related to M fe by the
reductions in the λSymProp-calculus. We note that we are not able to obtain u from uef in such a
way. We can find a term T instead such that uef ↪→∗ T (u). The function T can intuitively be
considered as the description how λSymProp-connectives can be embedded into the λµµ̃∗-calculus.
It turns out that the λµµ̃∗-calculus translates the λSymProp-terms not so smoothly as it was the
case with the other direction.
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Definition 4.16. We define a function T assigning a λµµ̃∗-term to a λµµ̃∗-term.

• T (x) = x,

• T (λxu) = µ̃ybT (u)[x := p1(y)], p̃2(y)c,
• T (µαp) = µ̃αT (p),
• T (u) = T (u),

• T (α) = α,
• T ((u.v)) = 〈T (u), T (v)〉,
• T (µ̃xp) = µ̃xT (p),

• T (h̃) = T (h),

• T (bt, ec) = bT (t), T̃ (e)c.

Theorem 4.17. Let u ∈ T. We have uef ↪→∗ T (u).

Proof. By induction on cxty(u). We consider only some of the cases.

(1) If u = λxv, then

uef = (λy(λx(π2(y) ? ue) ? π1(y)))f = µ̃ybp1(y),
˜

µ̃xbvef, p̃2(y)cc ↪→cl1,r

µ̃ybp1(y), µ̃xbvef, p̃2(y)cc ↪→µ̃ µ̃ybvef[x := p1(y)], p̃2(y)[x := p1(y)]c ↪→∗ T (u).

(2) If u = µ̃xbt, vc, then

uef = (λx(ve ? te))f = µ̃xbtef, ṽefc ↪→∗ µ̃xbT (t), T̃ (v)c = µ̃xT (bt, vc) = T (u).

Remark 4.18. We remark that we cannot expect T (u) to be expressible with the help
of T. Namely, we can show that, if =λµµ̃∗ denotes the reflexive, transitive closure of the
compatible union of the reduction relations in the λµµ̃∗-calculus, then none of the assertions
below are valid.

(1) There exists a a λµµ̃∗-term Φ such that, for every c-term c, T (c) =λµµ̃∗ Φ(c).

(2) There exists a a λµµ̃∗-term Φ1 such that, for every l-term t, T (t) =λµµ̃∗ Φ1(t).

(3) There exists a a λµµ̃∗-term Φ2 such that, for every r-term e, T (e) =λµµ̃∗ Φ2(e).

5. Conclusion

The paper is mainly devoted to an arithmetical proof of the strong normalization of the
λSymProp-calculus introduced by Berardi and Barbanera [BB96]. The proof is an adaptation
of the work of David and Nour [DN05]. The novelty of our paper is the application of the
method of zoom-in sequences of redexes: we achieve the main theorem by identifying the
minimal non-strongly normalizing redexes of an infinite reduction sequence, which we call
a zoom-in sequence of redexes. The idea of zoom-in sequences was inspired by the notion
of perpetual reduction strategies introduced by Raamsdonk et al. [RSSX99]. Following
the proof of the strong normalization of the λSymProp-calculus, the λµµ̃-calculus is introduced,
which was defined by Curien and Herbelin [CH00]. The same proof of strong normalization
as we have presented for the λSymProp-calculus would also work for the calculus of Curien and
Herbelin as was shown by Battyányi [Bat07]. However, instead of adapting the proof method
for the λµµ̃-calculus, we designed a translation of the λSymProp-calculus in the λµµ̃∗-calculus
and vice versa, where the λµµ̃∗-calculus is the λµµ̃-calculus augmented with terms explicitly
expressing negation and with rules handling them. The translation allows us to assert strong
normalization for the λµµ̃∗- and, hence, for the λµµ̃-calculus.

On the technical side, we remark that there were two main difficulties that rendered
the proof a little more involved. First, we had to work with an alternating substitution
defined inductively starting from two sets of terms. The reason was that we had to prove a
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more general statement to locate the supposedly non strongly normalizing part of a term
emerging as a result of a substitution. Simple substitutions would not have been enough for
our purpose. The second difficulty was that in order to establish a key property of zoom-in
sequences in Lemma 2.9 we had to move forward the Hypothesis “H” from the main theorem,
thus making the application of the hypothesis implicit in the sequel. We think that the
elimination of both problems would considerably enhance the paper’s intelligibility.

It seems promising to investigate whether the present method of verifying strong
normalization can be applied to systems other than simple typed logical calculi, for example,
proof nets (Laurent [Lau13]). Another fields of interest could be intuitionistic and classical
typed systems with explicit substitutions (Rose [Ros96]). To handle these systems, the
present proof must be simplified, we have to pay attention in our proof, for example, that
the substitutions are defined by two sets of terms of different types. Finally, we remark that
it is a natural requirement of a proof formalizable in first order arithmetic to enable us to
find an upper bound for the lengths of the reduction sequences. At its present form, our
proof does not make it possible, this raises another demand for the simplification of the
results.
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Chambéry, 2007.

[CH00] P.-L. Curien and H. Herbelin. The duality of computation. ACM SIGPLAN Notices, 2000.
[DN05] R. David and K. Nour. Arithmetical proofs of strong normalization results for the symmetric λµµ′-

calculus. TLCA 2005, Lecture Notes in Computer Science (3461), pp. 162-178, Springer Verlag, Berlin,
2005.

[DN07] R. David and K. Nour. Arithmetical proofs of strong normalization results for symmetric lambda
calculi. Fundamenta Informaticae (77), pp. 1001-1022, 2007.

[Gri90] T. Griffin. A formulae-as-type notion of control, POPL 1990, pp. 47-58, ACM Press, New York,
1990.

[Lau13] O. Laurent. An introduction to proof nets, Course Notes, Ecole normale supérieure de Lyon, 2013.
[Mur91] C. R. Murthy. An evaluation semantics for classical proofs. Proceedings of the sixth annual IEEE

symposium, pp. 96-107, 1991.
[Gro01] P. de Groote. Strong normalization of classical natural deduction with disjunction. TLCA 2001,

Lecture Notes in Computer Science (2044), pp. 182-196, Springer Verlag, Berlin, 2001.
[Her95] H. Herbelin. Séquents qu’on calcule. PhD thesis, University of Paris 7, 1995.
[Nou97] K. Nour. La valeur d’un entier classique en λµ-calcul. Archive for Mathematical Logic (36), pp.

461-471, 1997.
[Nou06] K. Nour. Classical combinatory logic. Computational Logic and Application, DMTCS proc. AF, pp.

87-96, 2006.
[Par90] M. Parigot. Free Deduction: An Analysis of ”Computations” in Classical Logic. Lecture Notes in

Computer Science (592), pp. 361-380, Springer-Verlag, Berlin, 1990.
[Par92] M. Parigot. λµ-calculus: an algorithmic interpretation of classical natural deduction. Lecture Notes

in Computer Science (624), pp. 190-201, Springer Verlag, Berlin, 1992.
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