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Local time on the exceptional set of dynamical percolation,

and the Incipient Infinite Cluster

Alan Hammond Gábor Pete Oded Schramm

Abstract

In dynamical critical site percolation on the triangular lattice or bond percolation

on Z2 , we define and study a local time measure on the exceptional times at which

the origin is in an infinite cluster. We show that at a typical time with respect to this

measure, the percolation configuration has the law of Kesten’s Incipient Infinite Cluster.

In the most technical result of this paper, we show that, on the other hand, at the first

exceptional time, the law of the configuration is different. We also study the collapse

of the infinite cluster near typical exceptional times, and establish a relation between

static and dynamic exponents, analogous to Kesten’s near-critical relation.
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1 Introduction

Critical planar percolation is a central object of probability theory and statistical me-

chanics; see [Gri99, Wer09] for background. The best understood example is Bernoulli(1/2)

site percolation on the triangular lattice T , where conformal invariance and hence conver-

gence of interfaces to SLE6 is known [Smi01, Sch00, Smi06, CN07]. Nevertheless, many

results are known for critical bond percolation on Z2 and other nice lattices, as well. In

particular, almost everything in the present paper will apply equally to site percolation

on T and bond percolation on Z2 .

In dynamical percolation, a model introduced independently by [HägPS97] and Itai

Benjamini, the status of each bit (site or bond) is continuously and independently resampled

from the Bernoulli(p) measure, at times given by independent Poisson clocks of rate one.

We will always consider site percolation on T and bond percolation on Z2 , at the critical

value p = pc = 1/2. One of the principal reasons that dynamical percolation is interesting

is that it provides a natural coupling of an uncountable number of copies of the underlying

percolation process, and there may exist some exceptional instances of these copies that

satisfy certain events that have zero probability in static percolation. The existence (or

non-existence) of such exceptional times is called dynamical sensitivity (or stability) of

the event, and the key event in question is of course the existence of an infinite cluster.

See [Ste09] for a survey, but here is a brief summary of the subject. It was proved in

[HägPS97] that for p 6= pc on any graph, both the existence and non-existence of infinite

clusters are dynamically stable; then, dynamical stability of non-existence also holds at

p = pc on Zd with d ≥ 19 and on regular trees; and finally, there exist non-regular but

spherically symmetric trees with no infinite clusters at pc in static percolation, but with

exceptional times in dynamical percolation. See [Kho08, PSS09] for more recent results

on trees. The first example of dynamical sensitivity at pc in a transitive graph was given

by [SchSt10], proving it for the triangular lattice T . This paper used discrete Fourier

analysis, a tool that was introduced by [BKS99] for the closely related problem of noise

sensitivity of percolation. This technique was further developed in [GPS10], proving that

the set of exceptional times almost surely has Hausdorff dimension 31/36, and showing

dynamical sensitivity of critical percolation also for bond percolation on Z2 . Further studies

of dynamical sensitivity and stability include [BS98, BrGS12, Ahl11] for percolation type

processes, [BrS06] and [DCGP11, Section 5] for Ising and random cluster Glauber dynamics,

and [BHPS03, Hof06, FNRS09] for some other processes.

The rare appearances of infinite structure at the exceptional times are reminiscent of the

Incipient Infinite Cluster: a term used by physicists to refer to the large-scale connected

structure present in critical percolation, and defined mathematically by Kesten as follows.

Definition 1.1. The incipient infinite cluster, denoted by IIC, is the weak limit of the

probability measures Ppc( ·
∣∣0↔ n) as n→∞, provided that the limit exists.
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Here, {0↔ n} denotes the event that the open cluster of the origin reaches to distance n .

(We will formulate a precise definition shortly.) The existence of the IIC for numerous

lattices in two dimensions was proved by Kesten [Kes86]. In high dimensions, properties of

IIC and its scaling limits have been investigated in detail using the lace expansion [HarS00a,

HarS00b]. In two dimensions, several other natural means of locating large structures at

criticality — such as using the above definition with the condition 0 ↔ n replaced by the

requirement that the open cluster of the origin have size at least n , or the weak limit as

n → ∞ of the largest cluster in [−n, n]2 viewed from a uniformly chosen vertex in the

cluster — have been shown to also be equal to IIC [Jar03]. These results support the view

that, at least in dimension two, any natural means of selecting a limit of large scale critical

structure is the IIC . One may ask then how the IIC may be found in dynamical percolation

— and this question is central to the present paper.

1.1 The first exceptional time

There is one very natural means of selecting an exceptional time at which the cluster of the

origin in dynamical percolation is infinite:

Definition 1.2. Let E denote the random set of times at which the cluster of the origin

is infinite. We define the first exceptional time FET to be inf E ∩ (0,∞). That FET < ∞
almost surely follows from the principal result of [SchSt10] for T and from [GPS10] for Z2 .

Note that FET is positive almost surely, since some positive time passes before there is a

change in any bit (be it site or bond) in the boundary of the finite cluster of the origin in

ω0 . The law of ωFET will be denoted by FETIC , the first exceptional time infinite cluster.

Although it may be a natural candidate for the appearance of the incipient infinite

cluster in dynamical percolation, FETIC is not the right choice:

Theorem 1.3. The laws FETIC and IIC are not equal.

Proving Theorem 1.3 is this paper’s most complex task. Roughly speaking, we show

that the cluster of the origin under FETIC is somewhat thinner than under IIC . Indeed, as

we will state more precisely in the next subsection, while the configuration at a “typical”

exceptional time turns out to have the law of IIC , with many other exceptional times nearby,

FET appears at the endpoint of a unit-order interval in which exceptional times are absent;

in fact, finite approximations to FETIC may be constructed by size-biasing according to

the length of the interval lacking connection from 0 to a high distance R leading up to a

moment of such a connection. As such, FETIC assigns more mass to configurations which

are liable to break apart easily under the perturbation provided by dynamical percolation.

What makes the proof difficult is to detect this imbalance also in the limit R→∞ . We will

explain these vague ideas in more detail when we start proving Theorem 1.3 in Section 4.

It seems natural to suppose that the two measures differ to a greater degree:
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Conjecture 1.4. The measures FETIC and IIC are singular with respect to each other.

The above intuitive explanation about how biasing by the length of the waiting time

makes FETIC thinner than IIC might suggest that IIC stochastically dominates FETIC .

However, IIC does not satisfy the FKG inequality (which we shortly review), and so it may

be that such a general conclusion does not follow from the negative conditioning represented

by longer waiting times.

Question 1.5. Does IIC stochastically dominate FETIC?

The invasion percolation cluster IPC is an infinite cluster associated to the critical point

which is built by self-organized criticality. It was shown in [DSV09] that IIC and IPC are

singular with respect to each other on Z2 . On the other hand, although IIC dominates IPC

on regular trees [AGdHS08], this is not so on Z2 [Sap11].

It was pointed out to us by Alain-Sol Sznitman that, instead of considering the dis-

tribution at the first entry to a given subset of the state space in a Markov process,

which is FETIC in our case, it is often more convenient to study the so-called equilib-

rium measure on the subset. For dynamical percolation on the ball BR and the subset

A :=
{
ζ ∈ {0, 1}BR : 0↔ R in ζ

}
, this measure is proportional at ζ ∈ A to the probability

that dynamical percolation started at ζ and stopped at an independent exponential time

T leaves the set A at the first update and does not return to it before T . The virtue

of considering this measure could be that is has closer connections to the potential theory

of the Markov process (Green’s functions, Dirichlet forms, etc.; see [Szn11, Section 1.3])

than the first entry time, hence it might be easier to address the analogues of Theorem 1.3,

Conjecture 1.4 and Question 1.5 for this measure.

1.2 The local time measure and the IIC

Our first effort to seek the IIC in dynamical percolation was hampered by biasing created

by the procedure for selection. In light of this, it is natural to try again by considering the

law of the configuration obtained by selecting an exceptional time at a “uniform” moment.

However, this notion of uniformity requires more structure on the exceptional time set in

order to make sense. For this reason, and because of its intrinsic interest, we construct a

local time measure µ on the exceptional time set E as a weak limit of certain measures µr

on the set of connection times to a large distance r ∈ N .

The simplest construction would be to define an approximative local time µr for distance

r ∈ N by setting

M r(ωs) :=
11{0↔ r}
P(0↔ r)

, and µr[a, b] :=

∫ b

a
M r(ωs) ds , (1.1)

and then hope that these measures have a limit µ[a, b] in some sense, as r →∞ . However,

we have encountered some technical difficulties in trying to prove this convergence, hence
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will rely on the following slightly more complicated, but still very natural definition, which

turns out to be easier to handle.

A local time is supposed to measure how much time the dynamical percolation process

ωs spends near E . For this, we need some notion of how close a percolation configuration

ω is to satisfying 0↔∞ . The simplest such notion was proposed in (1.1): the existence of

a connection to a large distance r . But we seem to get a more canonical notion by looking

at how much a finite piece of the percolation configuration actually helps in realizing a

connection to infinity. Namely, for any finite set H of bits, we let ωH denote the restriction

of ω to H , and define the random variable

MH(ω) := lim
R→∞

P(0↔ R |ωH)

P(0↔ R)
. (1.2)

Of course, it is not at all obvious that the limit over R exists. However,

P(0↔ R |ωH)

P(0↔ R)
=

P(0↔ R, ωH)

P(0↔ R)P(ωH)
=

P(ωH | 0↔ R)

P(ωH)
, (1.3)

whose right-hand side indeed has a weak limit in high R — this is nothing other than the

IIC , whose construction was carried out in dimension two by Kesten [Kes86]. Thus, the

limit in (1.2) indeed exists, so that we may define

Mr(ωs) := MBr(ωs), µr[a, b] :=

∫ b

a
Mr(ωs) ds . (1.4)

Note that EMH(ωs) = 1 for any H , hence Eµr[a, b] = b − a , independently of r , and we

may hope to get a non-degenerate random measure in the limit r → ∞ . Moreover, and

this is the main advantage of Mr over M r , the sequence {µr[a, b]}r∈N is a martingale with

respect to the full filtration Fr[a, b] generated by {ωBr
s : s ∈ [a, b]} (see (2.1) in Section 2

for the proof). Thus, martingale convergence results can be used to prove the following:

Theorem 1.6. The limit µ[a, b] = limr→∞ µr[a, b] of (1.4) exists almost surely and in L2 .

Assuming that the limit µ[a, b] = limr→∞ µr[a, b] of (1.1) exists in L2 , the two local time

measures almost surely coincide: µ[a, b] = µ[a, b] for all intervals [a, b] simultaneously.

So, we now have a measure from which we wish to sample uniformly to obtain a candidate

for a law coinciding with IIC . However, µ is a σ -finite measure on R so that further work

is needed to make valid the notion of sampling a uniform point in the measure. The

next two theorems give constructions of such a point and show that indeed the law of the

configuration at the selected time is IIC .

Theorem 1.7 (Quenched sampling). For almost every realization of the dynamical perco-

lation process {ωs : s ∈ [0,∞)}, and the corresponding local time measure µ, there exists

some T0 < ∞ such that for all T > T0 we have µ[0, T ] > 0. For such T , let χT be a

random point from [0, T ] with law µ/µ[0, T ]. Then, for almost all {ωs : s ∈ [0,∞)}, the
configuration ω(χT ) converges in law to IIC , as T →∞.
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Theorem 1.8 (Annealed sampling).

(a) For any fixed T > 0, let {ω∗
s : s ∈ [0, T ]} be dynamical percolation reweighted (size-

biased) by µ[0, T ]. Let χ∗
T be a random time from [0, T ] with law µ/µ[0, T ] for

µ = µ(ω∗). Then, the configuration ω∗(χ∗
T ) has the distribution of the IIC.

(b) Given a sample of µ = µ(ω) on R , let Πµ be the Poisson point process with inten-

sity µ. One can make sense of conditioning (ω,Πµ(ω)) on 0 ∈ Πµ(ω) ; this is called

(ω∗,Π∗
µ), the Palm version of (ω,Πµ). Then ω∗

0 has the law of the IIC.

A concrete means of realizing the Palm version of (ω,Πµ) from dynamical percolation

ω is Liggett’s extra head construction, which we will describe in Section 3; see Figure 3.1.

Another application of the local time µ could be to run the dynamical percolation pro-

cess ω according to µ(ω). It should be possible to consider this time-changed dynamical

percolation as a Markov process on configurations satisfying 0↔∞ , with stationary mea-

sure IIC ; however, even the definition of the right state-space is unclear, especially if one

wants IIC to be the unique stationary measure. We will not study these questions here.

1.3 Structure of the paper

In the rest of this Introduction, we summarize the necessary background in static and

dynamical critical percolation. In Section 2, we prove Theorem 1.6, and collect some prop-

erties of the finite and the limiting local time measures µr , µr , µ . We then locate the

IIC using the local time, proving Theorems 1.7 and 1.8 in Section 3. The more substantial

Section 4 is devoted to telling apart FETIC and IIC , with a thinning procedure on bounded

configurations being introduced and analysed in order to prove Theorem 1.3. The proof of

Theorem 1.3 in fact exploits our identification of the IIC in dynamical percolation, because

the proof considers a uniform right-hand endpoint of a period of connection 0 ↔ R and

examines how long it takes for this connection to be reestablished as time advances; in

finding an answer, we will exploit the fact that the law of the configuration in BR at this

endpoint time is a close relative of critical percolation given 0↔ R (and thus also of IIC).

Section 5 contains Theorem 5.1, a result addressing the question of how instances of the IIC

embedded within dynamical percolation typically collapse as the time parameter is tuned

at short distances to the moment at which the IIC appears.

As mentioned above, all our results apply equally to critical site percolation on the

triangular lattice T and critical bond percolation on Z2 , except for the existence and

values of some critical exponents, of course, but we will formulate our results without using

these exponents. For the sake of definiteness, we will work with critical site percolation on

T , or rather, with critical percolation on the faces of the dual hexagonal lattice.
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1.4 Notation and percolation background

Let e1 and e2 denote the Euclidean unit vectors. The lattice in R2 with generators e1 and
1
2e1 +

√
3
2 e2 induces a Voronoi tiling of the plane whose faces are hexagons. We refer to the

set of these hexagons, with the adjacency relation given by two hexagons sharing a common

edge, as the hexagonal lattice H . The hexagon centred at the origin will be denoted by

0. Note that the set of hexagons intersecting the x-axis forms a bi-infinite simple path.

Define d : H × H −→ N to be graphical distance and set BR =
{
h ∈ H : d(0, h) ≤ R

}

for R ∈ N . For R1, R2 ∈ N such that R1 < R2 , write AR1,R2 = BR2 \ BR1 for the

annulus with inner and outer radii R1 and R2 . The (outer) boundary of a set A ⊂ H is

∂A := {h ∈ H \ A : d(h,A) = 1}.
In critical percolation on H , each h ∈ H is independently open or closed with probability

one-half. The set {0, 1}H of percolation configurations is equipped with the usual product

topology, and the events are the subsets A ⊆ {0, 1}H that are measurable with respect to

the corresponding Borel sigma-algebra. For a, b ∈ H , we write a↔ b for the event that an

open path of hexagons connects a and b . For A,B ⊆ H , we write A ↔ B if there exist

a ∈ A and b ∈ B such that a ↔ b . For R1, R2 ∈ N such that 1 ≤ R1 < R2 , we write

R1 ↔ R2 to indicate that ∂BR1 ↔ ∂Bc
R2

. For R ∈ N , we also write 0↔ R for 0↔ ∂Bc
R .

The open cluster of 0,
{
h ∈ H : 0↔ h

}
, will be denoted by C0 .

We will use the notation α1(R1, R2) := P(R1 ↔ R2) and α1(R) := α1(1, R), this being

the one-arm probability. Furthermore, α4(R1, R2) denotes the alternating four-arm

probability: the probability that there are two open and two closed paths connecting ∂BR1

and ∂Bc
R2

, in an alternating order: open-closed-open-closed. Again, α4(R) := α4(1, R).

Given a percolation configuration ω ∈ {0, 1}H and an event A ⊆ {0, 1}H , we call a

hexagon h pivotal for A in ω if changing the status of h changes the outcome of the

event. The set of pivotal hexagons will be denoted by PivA(ω). For instance, note that h

is pivotal for the left-right crossing event in a rectangular region of H if and only if there

are four alternating arms connecting h to the corresponding sides of the rectangle.

Let us now recall some standard tools in percolation theory [Wer09].

The Harris-FKG inequality. The set {0, 1}H of percolation configurations on the hexag-

onal lattice has a natural partial order ≤ . A percolation event A ⊆ {0, 1}H is called

increasing if ω ∈ A and ω ≤ ω′ implies that ω′ ∈ A . The inequality of Harris and Fortuin-

Kesteleyn-Ginibre states that if A and B are increasing events, then P(A ∩ B) ≥ P(A)P(B).

RSW estimates. For any L > 0, there exists a constant cL > 0 such that the probability

of an open path in critical percolation between the left and right sides of the region H ∩
[0, Ln]× [0, n] is at least cL , independently of n .

Quasi-muliplicativity of arm probabilities. For ℓ ∈ {1, 4}, there exists a constant

7



0 < cℓ such that, for any radii R1 < R2 < R3 , we have

cℓ <
αℓ(R1, R3)

αℓ(R1, R2)αℓ(R2, R3)
≤ 1 . (1.5)

The right-hand inequality is trivial; for ℓ = 1, the left-hand one is a simple consequence of

FKG and RSW; for ℓ = 4, more work is needed, done in [Kes87a]; see also [Nol08, SchSt10].

Similarly to quasi-multiplicativity, one can show that we lose only a constant factor in

probability if we require our four alternating arms to have their endpoints on nice prescribed

arcs of the boundary. Together with some simple results on arm probabilities in the half-

plane, this implies the following bounds on the number of pivotals: if A(R) is the left-right

crossing event in the square [0, R]2 , then |PivA(R)| ≍ α4(R)R2 , and if A(R1, R2) is the

annulus crossing event R1 ↔ R2 with R1 < R2/2, then |PivA(R1,R2)| ≍ α4(R2)R
2
2 , with

constant factors independent of R1 .

For critical percolation on H , we also know the existence and values of critical expo-

nents: α1(R1, R2) = (R1/R2)
5/48+o(1) by [LSW02], and α4(R1, R2) = (R1/R2)

5/4+o(1) by

[SmW01], as R2/R1 → ∞ . In particular, |PivA(R)| = R3/4+o(1) as R → ∞ . On Z2 , we

have the bounds

C−1 (r/R)2−η ≤ α4(r,R) ≤ C (r/R)1+η (1.6)

for some fixed constants C > 0, η ∈ (0, 1) and every 1 ≤ r ≤ R . See [SSmG11, Appendix

B] and the references at [GPS10, Eq. (2.6)]. Consequently, with some different value of the

constant C ,

C−1Rη ≤ |PivA(R)| ≤ C R1−η . (1.7)

The near-critical window. One can consider monotone versions of dynamical percola-

tion, in which dynamical updates lead always either to the closure or to the opening of

hexagons. These give couplings between dynamical and off-critical percolation (and also a

coupling of percolation measures at different densities), and therefore information on off-

critical percolation can yield bounds on dynamical percolation questions. We will use these

relations (which turn out to be sharp) several times.

Kesten found the near-critical window of percolation precisely [Kes87a] (see [Nol08,

Wer09] for more modern accounts): for a system of linear size R , the window is given by

the reciprocal of the expected number of pivotals for the left-right crossing event A(R) at

criticality. More precisely, for the annulus crossing event A(R, 2R), as R→∞ , we have

Ppc±ǫ(A(R, 2R))

Ppc(A(R, 2R))
→ 1 if ǫ≪ 1

|PivA(R)|
, (1.8)

while

δ < Ppc±ǫ(A(R, 2R)) < 1− δ if ǫ ≍ 1

|PivA(R)|
, (1.9)
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with δ ∈ (0, 1) depending only on the constant factors giving the size of ǫ , and finally,

Ppc+ǫ(A(R, 2R))→




1 if ǫ≫ 1

|PivA(R)| ,

0 if − ǫ≫ 1
|PivA(R)| .

(1.10)

Kesten also proved the stability of one- and alternating four-arm probabilities inside the

window:
Ppc±ǫ(Aℓ(1, R))

Ppc(Aℓ(1, R))
→ 1 if ǫ≪ 1

|PivA(R)|
,

≍ 1 if ǫ ≍ 1

|PivA(R)|
,

(1.11)

for ℓ ∈ {1, 4}. The ǫ ≪ 1/|PivA(R)| case of (1.11) and (1.8) are not stated explicitly in

[Kes87a], but they clearly follow from his proof using differential inequalities.

Using the stability of the 1-arm and 4-arm probabilities in the near-critical window,

he also found the off-critical exponent, a relation usually called Kesten’s scaling relation

[Kes87a, Corollary 1]:

Ppc+ǫ(0←→∞) ≍ α1(ρ(1/ǫ)) , (1.12)

where ρ(r) := inf{s ∈ N+ : s2 α4(s) ≥ r} for r ≥ 1, the inverse function of R 7→ |PivA(R)| .
We have ρ(r) = r4/3+o(1) on H , and C−1rη ≤ ρ(r) ≤ Cr1/η for some 0 < η,C <∞ on Z2 ,

by (1.7). Note here that Kesten formulated his result in terms of critical exponents, which

would not be enough for us later because of the unspecified o(1) terms in the exponent,

but the proof clearly gives the stronger result we stated; see [Wer09, Chapter 6].

Dynamical percolation and a dynamical FKG inequality. As mentioned above, we

will consider dynamical critical percolation with updates from the stationary distribution

(resampling the bits) at times given by Poisson clocks of rate one, with time indexed by R ,

and, just for the sake of definiteness, with càdlàg trajectories.

We will need the following extension of the FKG inequality to increasing events of

dynamical percolation, an immediate consequence of [Lig05, Corollary II.2.21]. A weaker

form (with a very different proof) was given in [HamMP12, Lemma 4.2].

Lemma 1.9 (Dynamical FKG inequality). Let ω, ω′ : H × R −→ {0, 1} denote two re-

alizations of dynamical percolation on the hexagonal lattice H . We say that ω ≤ ω′ if

ωt(x) ≤ ω′
t(x) for all (x, t) ∈ H × R . Let A,B ⊆ {0, 1}H×R be two increasing events (i.e.,

if ω ∈ A and ω ≤ ω′ , then ω′ ∈ A). Then P(A ∩ B) ≥ P(A)P(B).
The same holds if the dynamics is not stationary, but started at time 0 from an arbitrary

distribution on {0, 1}H that satisfies the static FKG inequality.

Proof. Corollary II.2.21 of [Lig05] states this for increasing events that depend on the

configuration at finitely many time instances t1 < · · · < tn , proved using induction on

n and the infinitesimal generator of the process. Since all measurable dynamical events
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can be approximated by events depending on finitely many time instances, our statement

follows.

1.5 The Fourier spectrum of critical percolation

A key tool for the analysis of dynamical percolation is discrete Fourier analysis. Here

we provide the definition of the Fourier spectrum of a percolation event, explain the basic

relation between the spectrum and decorrelation for the event under dynamical percolation,

and collect the results from the literature that we will use. A far more thorough overview

of this theory is provided by the survey article [GS12].

Let A denote a percolation event in BR , so that A is a subset of percolation configura-

tions in BR . Define the usual inner product on the L2 -space on percolation configurations

on BR by 〈f, g〉 = E(fg) = 2−|BR|∑
ω∈{−1,1}BR f(ω)g(ω), and note that the collection{

χS :=
∏

i∈S ω(i) : S ⊆ BR

}
is an orthonormal basis for this L2 -space. As such, the

{−1, 1}-indicator function fA of A has a Fourier decomposition fA =
∑

S⊆BR
f̂A(S)χS .

Parseval’s identity
∑

S⊆BR
f̂A

2
(S) = 1 allows us to define a random variable SpecA , the

spectral sample of A , on subsets of BR according to P(SpecA = C) = f̂A
2
(C) for C ⊆ BR .

Recall that the dynamical percolation process {ωt}t∈R is defined using i.i.d. rate one

Poissonian updates for each bit. Now, the basic relation between the spectral sample and

decorrelation under this dynamics is that, for percolation events A and B in BR ,

E(ω0 ∈ A, ωt ∈ B) =
∑

S⊆BR

f̂A(S)f̂B(S)e−t|S| . (1.13)

This shows that if most of the measure for at least one of the spectral samples SpecA , SpecB
is supported on large sets S , then fast decorrelation occurs.

The spectral sample SpecA is a random subset of BR with some similarities to, and

marked differences from, the random set PivA of hexagons in BR that are pivotal for the

occurrence of A under critical percolation. As first observed by Gil Kalai, the two random

variables share their first and second moments (see [GPS10, Section 2.3]),

E|PivA| = E|SpecA| , E|PivA|2 = E|SpecA|2 , (1.14)

but not the higher ones, and their large deviations usually differ (see [GPS10, Remark 4.6]).

Of particular import to us is the case where A is a crossing event from one boundary

arc to another in some planar domain. Let us first consider A(R, 2R) =
{
R ↔ 2R}. A

standard second moment argument yields the conclusion that there exists C > 0 such that,

for all R , E|PivA(R,2R)|2 ≤ C E|PivA(R,2R)|2 . In light of (1.14) and the second moment

method, we see that for some small c > 0,

P
(
|SpecA(R,2R)| ≥ cE|SpecA(R,2R)|

)
≥ c .

10



Thus, (1.14) shows that, for each s > 0, there exists c(s) < 1 (with the supremum of c(s)

strictly less than one over any interval of the form (ǫ,∞)) such that, for all R ∈ N ,

P
(
ω0 ∈ A(R, 2R), ωt ∈ A(R, 2R)

)
≤ c(s) where t = sE|PivA(R,2R)| ; (1.15)

thus, the characteristic time-scale for at least partial decorrelation of the crossing event is

determined by the mean number of pivotals. We will also need the much stronger assertion,

proved in [GPS10], that, as s→∞ ,

P
(
ω0 ∈ A(R, 2R), ωt ∈ A(R, 2R)

)
→ 0 where t = sE|PivA(R,2R)| , (1.16)

uniformly in R ∈ N ; on H we have the sharp upper bound s−2/3+o(1) . That is, the crossing

event in fact decorrelates fully at large multiples of the scale determined by the mean pivotal

number. The bound (1.16) arises from a detailed examination of the lower-tail of the size

|SpecA(R,2R)| of the spectral sample.

Similar sharp results are proved in [GPS10] for the decorrelation of the crossing events

A(0, R) = {0 ↔ R}, which are the key for the applications to exceptional times. Namely,

[GPS10, Equation (9.2)] says that, for all s, t ≥ 0,

P
(
11{0 ωs←→R}11{0 ωt←→R}

)

P(0←→ R)2
≤ O(1)

1

α1(ρ(1/|t − s|)) (1.17)

≤ O(1) |s − t|−1+δ+o(1) (1.18)

for some δ > 0, uniformly in R ∈ N+ , the o(1) term being understood as |s − t| → 0.

On H , also the sharp result δ = 31/36 is known. For exceptional times, the importance of

these decorrelation bounds lies in the fact that the exponent δ of (1.18) is a lower bound

on the Hausdorff dimension of the set E , using the so-called Mass Distribution Principle.
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2 Construction and basic properties of the local time

In this section, we present the proof of Theorem 1.6, and collect some basic and less basic

properties of the finite and the limiting local time measures. We begin by examining the
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martingale property for the approximating local time measures µr[a, b] and µr[a, b] , defined

in (1.1) and (1.4).

Note that MR(ω) is a martingale with respect to the filtration FR of the percolation

space generated by the variables
{
11{0↔ r} : r ≤ R

}
; indeed, for any r′ > r ,

E

(
11{0↔ r′}
P(0↔ r′)

∣∣∣∣F r

)
=

P(0↔ r′ | 0↔ r)

P(0↔ r′)
11{0↔ r} = 11{0↔ r}

P(0↔ r)
.

Similarly, it is clear from (1.2) that Mr(ω) is a martingale with respect to the full filtration

Fr generated by ωBr . Being a martingale w.r.t. this larger sigma-algebra is more useful:

E
(
µR[a, b]

∣∣∣ Fr[a, b]
)
=

∫ b

a
E
(
MR(ωs)

∣∣∣ Fr[a, b]
)
ds

=

∫ b

a
E
(
MR(ωs)

∣∣∣ Fr(ωs)
)
ds =

∫ b

a
Mr(ωs) ds = µr[a, b] ;

(2.1)

that is, µr[a, b] is a martingale w.r.t. Fr[a, b] . On the other hand, µr[a, b] does not seem

to be a martingale w.r.t. F r[a, b] , since

E
(
MR(ωs)

∣∣∣ F r[a, b]
)
6= E

(
MR(ωs)

∣∣∣ F r(s)
)

in general, because of the extra information provided by F r(t), t ∈ [a, b] \ {s}.
Consequently, it is much simpler to prove the convergence of µr to some limit µ than

the convergence of µr , though we expect that the latter also holds: as we will see in the

forthcoming proof, the local time densities M r and Mr are closely related to each other.

MR(ωs)

M r(ωs)

Mr(ωs)
time

Figure 2.1: Schematic pictures of the approximate local time densities for µr and µr .

Proof of Theorem 1.6. The main task is to prove the statements for any fixed interval

[a, b] . This implies the claims for all (a, b) ∈ Q2 simultaneously, and then, since rational

intervals generate the Borel sigma-algebra, we have the statement simultaneously for all

(a, b) ∈ R2 .

First recall the quasi-multiplicativity relation (1.5), which implies, for R > r > 0,

P(0↔ R |ωBr)

P(0↔ R)
≍ P(0↔ R |ωBr)

P(0↔ r)P(r ↔ R)
≤ P(r↔ R |ωBr )11{0↔ r}

P(0↔ r)P(r↔ R)
=

11{0↔ r}
P(0↔ r)

.
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Therefore, with an absolute constant C1 <∞ ,

Mr(ω) ≤ C1M r(ω) and µr[a, b] ≤ C1µr[a, b]. (2.2)

Second, recall from (1.18) the bound O(1)|s − t|−1+δ+o(1) , with δ > 0. Integrating over s

and t , this gives the second moment estimate

E
(
µr[a, b]

2
)
≤




|b− a|1+δ+o(1) as |b− a| → 0 ,

C2 |b− a| for all a < b ,
(2.3)

uniformly in r , with an absolute constant C2 < ∞ . Therefore, by (2.2), the sequence

µr[a, b] is an L2 -bounded martingale w.r.t. Fr[a, b] , and the L2 martingale convergence

theorem implies the existence of the limit

µr[a, b]
a.s.−−−→
L2

µ[a, b] . (2.4)

Now, we turn to the sequence µr[a, b] . If we fix r > 0, and take R→∞ , then

E
(
MR

∣∣ Fr

)
=

P(0↔ R |Fr)

P(0↔ R)

a.s.−−−→
L∞

Mr ,

by the very definition of Mr , a random variable on the finite space Br . Thus, for fixed r ,

the random variables E
(
MR

∣∣ Fr

)
are uniformly bounded in R , and

∫ b

a
E
(
MR(ωs)

∣∣∣ Fr(ωs)
)
ds

a.s.−−−→
L∞

∫ b

a
Mr(ωs) ds = µr[a, b].

On the other hand, for random variables, convergence in L2 is stronger than in L1 , hence

the hypothetical L2 -convergence of the unconditional µR[a, b] implies

∫ b

a
E
(
MR(ωs)

∣∣∣ Fr(ωs)
)
ds =

∫ b

a
E
(
MR(ωs)

∣∣∣ Fr[a, b]
)
ds

= E
(
µR[a, b]

∣∣∣ Fr[a, b]
)
−→
L2

E
(
µ[a, b]

∣∣∣ Fr[a, b]
)
.

One sequence can have only one L2 -limit, and convergence in L∞ is stronger than in L2 ,

thus

E
(
µ[a, b]

∣∣∣ Fr[a, b]
)
= µr[a, b] in L2, hence almost surely. (2.5)

As r → ∞ , Fr[a, b] converges to the full sigma-algebra, hence the left-hand side of (2.5)

converges a.s. to µ[a, b] by Lévy’s zero-one law, while the right-hand side converges to µ[a, b] ,

by (2.4). The two limits coincide a.s., thus the proof of Theorem 1.6 is complete.

Conjecture 2.1. The L2 -limit µ[a, b] = limr→∞ µr[a, b] exists, and then, by Theorem 1.6,

µ = µ almost surely.
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We collect now some basic properties of the dynamical percolation process, the excep-

tional set, and the associated local time.

Lemma 2.2 (Ergodicity). The dynamical percolation process ω on the infinite lattice (in

particular, the local time µ = µ(ω)) is ergodic with respect to time shifts.

Proof. For any dynamic event A and any ǫ > 0, there exists a radius r ∈ N , a time T > 0,

and an event Ar,T measurable with respect to ωBr(−T, T ) such that P
(
A△Ar,T

)
< ǫ .

Now, by the ergodicity of dynamical percolation in Br (a Markov chain on a finite state

space), there exists t = t(r, T ) such that
∣∣P(Ar,T ∩ (Ar,T + t))−P(Ar,T )

2
∣∣ < ǫ , where Ar,T+

t represents the event Ar,T evaluated for the dynamical configuration shifted back by time

t . Now, if A is invariant under time shifts, then
∣∣P(A ∩ (A + t))− P(Ar,T ∩ (Ar,T + t))

∣∣ ≤
P
(
A△ (Ar,T ∩ (Ar,T + t))

)
< 2ǫ . Altogether,

∣∣P(A)− P(A)2
∣∣ < 2ǫ+ ǫ+ ǫ2 . This holds for

any ǫ > 0, hence P(A) ∈ {0, 1}.

Lemma 2.3 (Perfectness). Almost surely, the set E of exceptional times

(i) is disjoint from the set of times at which the status of a hexagon is updated;

(ii) is topologically closed;

(iii) has no isolated points.

Proof. Parts (i) and (ii) are proved in [HägPS97, Lemma 3.2]. Part (iii) is proved in

[HägPS97, Lemma 3.4] and the remark following it.

Lemma 2.4 (No atoms). There are almost surely no atoms in any of the measures µr , µr

or µ.

Proof. Fix any large n ∈ N , and cover the interval [0, 1] by the intervals Ii := [ i
2n ,

i
2n +

1
n ] ,

i = 0, 1, . . . , 2n − 2. By (2.3) and Chebyshev’s inequality, for any c > 0 and any index

i , we have P(µr(Ii) > c) ≤ n−1−δ+o(1) as n → ∞ , uniformly in r . By a union bound,

P(∃i : µr(Ii) > c) ≤ n−δ+o(1) → 0, which implies the claim for µr . Then (2.2) implies it for

µr , and (2.4) implies it for µ .

It is clear that µ is supported inside E . The following statement is very natural, but it

seems hard to prove:

Conjecture 2.5. The support of the local time measure µ is almost surely the entire ex-

ceptional time set E .

This conjecture cannot fail by much: the Hausdorff dimension of suppµ is the same

as the dimension of E , namely 31/36. The reason is that the proof of the lower bound in

[GPS10] (just like in [SchSt10]) uses the approximate local time measures µr and a version

of the Mass Distribution Principle, and, via (2.2), it could also have used the measures µr ,

hence it actually yields a lower bound on dimH(suppµ). The next lemma, which will be of

use later, provides a little further evidence for the conjecture.
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Lemma 2.6. For any ǫ > 0, let µǫ denote µr[0, ǫ] or µr[0, ǫ] or the limit µ[0, ǫ]. Then

there is an absolute constant C <∞ such that

E
(
µ2
ǫ

∣∣ µǫ > 0
)
≤ C E

(
µǫ

∣∣ µǫ > 0
)2

, (2.6)

and another such constant c > 0 such that

P
(
µǫ > cEµǫ

∣∣ E ∩ [0, ǫ] 6= ∅
)
> c . (2.7)

Proof. The left-hand side of (2.6) equals E(µ2
ǫ)/P(µǫ > 0), while the right-hand side equals

E(µǫ)
2/P(µǫ > 0)2 = ǫ2/P(µǫ > 0)2 . Hence, we need to show that

E
(
µ2
ǫ

)
≤ C

ǫ2

P(µǫ > 0)
.

By a usual coupling between dynamical and near-critical percolation, in which dynamical

updates lead always to the opening of hexagons in the latter case, we have

P(µǫ > 0) ≤ P(E ∩ [0, ǫ] 6= ∅) ≤ Ppc+O(ǫ)(0←→∞)

= O(1)α1(ρ(1/ǫ)) ,
(2.8)

by Kesten’s scaling relation (1.12). On the other hand, taking the double integral of (1.17)

over s, t ∈ [0, ǫ] , we claim that

E
(
µ2
ǫ

)
≤ O(1)

ǫ2

α1(ρ(1/ǫ))
, (2.9)

which will finish the proof of (2.6).

By (2.2) and (2.4), it is enough to verify (2.9) for µǫ = µr[0, ǫ] . Set R = ρ(1/ǫ) and

Ai = [CiR,Ci+1R] , i ∈ N , where C > 0 is a large constant to be specified shortly. For

i ∈ N , write

Bi =
{
(s, t) ∈ [0, ǫ]2 : ρ

(
|s− t|−1

)
∈ Ai

}
,

so that

E
(
µ2
ǫ

)
=

∫

[0,ǫ]2

P
(
11{0 ωs←→ r}11{0 ωt←→ r}

)

P(0←→ r)2
ds dt ≤ O(1)

∑

i≥0

φi ,

with φi =
∫
Bi

1
α1(ρ(1/|t−s|)) ds dt ; the latter inequality is due to (1.17).

Note that ρ(·) is a non-strictly increasing function. By (1.6), there exists an absolute

constant K > 0 such that s2α4(s) < (Ks)2α4(Ks) for all s ∈ Z+ , hence ρ(s2α4(s)) ∈
(s/K, s] for all s ∈ Z+ . This implies that

ρ−1(Ai) ⊆
[
(CiR)2α4(C

iR), (Ci+1KR)2α4(C
i+1KR)

]
. (2.10)
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If C is large enough, so that (CR)2α4(CR) > 2(KR)2α4(KR), then (1/ǫ, 2/ǫ) ⊆
ρ−1(A0), hence the Lebesgue measure of B0 is at least ǫ2/2. Therefore,

φ0 =

∫

B0

1

α1(ρ(1/|t − s|)) ds dt ≥
ǫ2

2
α1

(
ρ(1/ǫ)

)−1
.

On the other hand, for i ≥ 1, using (2.10),

φi =

∫

Bi

1

α1(ρ(1/|t − s|)) ds dt ≤ 2ǫC−2iR−2α4

(
CiR

)−1
α1

(
Ci+1R

)−1
.

Thus,

φi

φ0
≤ 4ǫ−1C−2iR−2 α1(R)

α4(CiR)α1(Ci+1R)

≤ 4C−2i

α4(R,CiR)α1(R,Ci+1R)
,

where in the second inequality we used that ǫ−1 ≤ R2α4(R). Now, [GPS10, Appendix]

says that the sum of the 1-arm and 4-arm exponents is strictly less than 2 — properly

interpreted in the case of Z2 where these exponents are not known to exist. That is, there

exists some c ∈ (0, 1) such that φi/φ0 ≤ O(1) ci for all i ≥ 1. Thus,

∫

[0,ǫ]2

1

α1(ρ(1/|t − s|)) ds dt ≤ O(1)

∫

A0

1

α1(ρ(1/|t − s|)) ds dt ≤ O(1) ǫ2α1

(
ρ(1/ǫ)

)−1
,

and we have confirmed (2.9).

By the Paley-Zygmund second moment inequality (a simple consequence of Cauchy-

Schwarz; see, e.g., [LyP11, Section 5.5]), the above computations show that

P(µǫ > 0) ≥ (Eµǫ)
2

E(µ2
ǫ)
≥ c1 α1(ρ(1/ǫ)) ,

matching the upper bound (2.8) up to a constant factor. Therefore,

P
(
µǫ > 0

∣∣ E ∩ [0, ǫ] 6= ∅
)
> c2 > 0 .

On the other hand, again by the Paley-Zygmund inequality, (2.6) implies that

P
(
µǫ > c3 Eµǫ

∣∣ µǫ > 0
)
> c3 > 0 ,

for some c3 > 0. Combining the last two displayed inequalities proves (2.7).

We conclude this section with a natural question:

Question 2.7. Is the local time µ the 31/36-dimensional Minkowski content of the set E ?
Is µ the Hausdorff measure of E for some Hausdorff gauge function?
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3 Finding the Incipient Infinite Cluster

Given the description of the local time measure using (1.3), it is natural to guess that

the infinite cluster at a “typical” exceptional time (typical with respect to µ) has the law

of IIC . The first exceptional time having been discredited as a candidate for the IIC by

Theorem 1.3, we now prove Theorems 1.7 and 1.8, thereby verifying what may be the

simplest relationship between exceptional times and the IIC .

Unsurprisingly, the proofs go through the finite approximations, about which we provide

a further definition.

Definition 3.1. Let IICr denote the law on percolation configurations in Br given by

Ppc

(
·
∣∣ 0↔ r

)
.

Note that M r(ω) is the Radon-Nikodym derivative dIICr/dP , while Mr(ω) is the Radon-

Nikodym derivative dIICBr/dP , where P = Ppc is critical percolation. Since both IICr and

IICBr converge to IIC as r →∞ , both µr and µr can be useful in studying the relationship

between dynamical percolation and the IIC . Indeed, in the forthcoming lemmata, the

versions about µr will be used in finding the IIC in dynamical percolation, while the versions

for µr will be used in Section 4 to prove that FETIC 6= IIC . The finite versions of our results

will be slightly stronger than the infinite ones, in that they identify not only a moment where

we get IICBr or IICr , but also an equality of entire processes. We will use the stronger,

dynamic version for µr in Section 4.

Lemma 3.2 (Finite r quenched sampling). Let {ω(s) : s ∈ [0,∞)} be dynamical percolation

in Br . Let χr,T ∈ R be a random time sampled from µr/µr[0, T ], defined only when

µr[0, T ] > 0. Then, the finite dimensional distributions of
{
ω(χr,T + s) : s ∈ [0,∞)

}

converge for almost all ω as T → ∞ to those of standard dynamical percolation started

from IICr at time zero. Moreover, the law of the entire process in the Skorokhod topology

converges in probability to the same limit process.

Similarly, if χr,T ∈ R is a random time sampled from µr/µr[0, T ], then the same results

hold for the process
{
ω(χr,T + s) : s ∈ [0,∞)

}
.

Lemma 3.3 (Finite r annealed sampling).

(a) Let {ω∗(s) : s ∈ [0,∞)} be dynamical percolation in Br size-biased by µr[0, T ], and

χ∗
r,T ∈ R be a random time with law µr/µr[0, T ] for µr = µr(ω

∗). Then the process{
ω∗(χ∗

r,T + s) : s ∈ [0,∞)
}

is equal in law to standard dynamical percolation started

from IICr at time zero.

Similarly, if {ω∗(s) : s ∈ [0,∞)} is dynamical percolation in Br size-biased by

µr[0, T ], and χ∗
r,T ∈ R is a random time with law µr/µr[0, T ] for µr = µr(ω

∗),

then the process
{
ω∗(χ∗

r,T + s) : s ∈ [0,∞)
}

is equal in law to standard dynamical

percolation started from IICBr at time zero.
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(b) The Palm version (ω∗,Π
∗
r) of the process (ω,Πµr(ω)

) in Br is standard dynamical

percolation started from IICr at time zero. A somewhat concrete way to realize the

Palm version is Liggett’s extra head construction [Lig02], see Figure 3.1:

µr[0, · ]

p1

p2

p3

Θ

qr,1 qr,2 qr,J Πµr

Figure 3.1: Depicting Liggett’s extra head construction.

Let
{
pi ∈ [0,∞) : i ∈ N

}
enumerate a Poisson point process Θ with intensity measure

Lebesgue on [0,∞), and set qr,i = inf
{
t > 0 : µr[0, t] > pi

}
. Clearly, Πµr

:=
{
qr,i :

i ∈ N
}

is a Poisson point process with intensity µr . Set mr := Eµr[0, 1]. Now let

J ∈ N be the first integer with
∣∣Πµr

∩ [0,m−1
r J ]

∣∣ > J . Then shifting back time by qr,J

gives the Palm version of (ω,Πµr
).

Similarly, the Palm version (ω∗,Π∗
r) of the process (ω,Πµr(ω)) in Br is standard

dynamical percolation started from IICBr at time zero.

It should be intuitively quite clear why the ergodic quenched limits in Lemma 3.2 lead

to the size-biased finite averages in Lemma 3.3: each dynamic configuration of a finite

time interval appears in the ergodic quenched limit with a frequency proportional to its

probability.
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Proof of Lemma 3.2. Note that for any percolation configuration ζ on Br satisfying

0←→ r , by definition, P
(
ω(χr,T ) = ζ

)
= E

(∫ T
0 11{ωt = ζ}dt/µr[0, T ]

)
, where the event on

the left-hand side is taken to be unsatisfied and the ratio on the right-hand side is taken to

be zero on the event that µr[0, T ] = 0. Similarly and more generally, for any time instances

0 = s0 ≤ s1 ≤ · · · ≤ sk and configurations ζ0, . . . , ζk ,

P
(
ω(χr,T + si) = ζi, i = 0, . . . , k

)
= E

( 1

µr[0, T ]

∫ T

0
Mr(ζ0)

k∏

i=0

11{ωt+si = ζi}dt
)
, (3.1)

where the random variables on both sides are again interpreted appropriately if 0←→ r at

no time in [0, T ] . There is a very similar multi-point formula in the case of χr,T ; in fact,

the entire argument for the first part of the lemma runs in parallel to that for the second,

and we omit it.

Dynamical percolation in Br is a tail trivial process, hence not only is it ergodic, but

also the process of the entire configuration along a finite time interval is ergodic. Thus, by

the ergodic theorem and the Markov property, the integral in (3.1), divided by T , converges

almost surely as T →∞ to

IICBr(ζ0)

k−1∏

i=0

P
(
ωsi+1 = ζi+1

∣∣ ωsi = ζi
)
, (3.2)

while µr[0, T ]/T → Eµr[0, 1] = 1, almost surely. Therefore, in (3.1), we are taking the

expectation of a random variable that converges almost surely to the formula in (3.2). This

random variable is bounded, and hence convergence in expectation also follows. We have

thus shown that, for almost all ω , the finite dimensional distributions of
{
ω(χr,T + s) : s ∈

[0,∞)
}
converge as T →∞ to those of standard dynamical percolation started from IICBr .

To ameliorate this conclusion to hold for the Skorokhod topology (but only in probability,

not almost surely), note that, alongside finite-dimensional distributional convergence and

the càdlàg nature of all the sample paths concerned, it is enough to argue that, for any

given K > 0 and ǫ > 0, the probability that the process [0,K] → R : t→ ω(χr,T + t) has

two hexagon switches at times differing by less than ǫ vanishes in the high T then low ǫ

limit. To see this, note that the Lebesgue measure of the set AT of times t ∈ [0, T ] such

that [t, t+K] contains two such switch times behaves like aǫT (1+ o(1)) as T →∞ , where

limǫ→0 aǫ = 0; on the other hand, the Lebesgue measure of the set BT of times t ∈ [0, T ]

such that ω
∣∣
Br

is the completely open configuration behaves almost surely like bT (1+o(1))

as T → ∞ , where b > 0. Since the Radon-Nikodym derivative of χr,T is maximized by

each point in BT , we see that P
(
χr,T ∈ AT

)
≤ |AT |/|BT | ≤ 2aǫ/b almost surely for T

sufficiently high, where | · | denotes Lebesgue measure. Since aǫ ց 0 as ǫ ց 0, we verify

the claim needed for convergence in the Skorokhod topology, and complete the proof.

Proof of Lemma 3.3. The Palm version of a stationary process (ω, ξ) on R , where ξ is a

random measure, is defined in [Kal02, Chapter 11] as follows. For any Borel set B ⊂ R of
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positive Lebesgue measure, and any nonnegative measurable function f on configurations

(ω, ξ), consider ξf (B) :=
∫
B f(θs(ω, ξ)) ξ(ds), where θs is the shift by −s . Then the Palm

version is the law defined by Qω,ξ[f ] := Eξf (B)/Eξ(B). It is not hard to show that this

does not depend on B .

If we take ξ = µr or µr and B = [0, T ] , then this construction specializes to the

processes defined in part (a). Since we know from Lemma 2.2 that (ω, µr, µr) is ergodic, we

can apply [Kal02, Theorem 11.6], saying that these Palm versions equal the limit processes

defined in Lemma 3.2, hence the claim of part (a) follows from that lemma.

For part (b), there will be no difference between the proofs for µr and µr , so let us just

work with µr . Take ξ = Πµr , and the Borel sets Bǫ := (−ǫ, ǫ). [Kal02, Theorem 11.5]

says that the Palm version of (ω,Πµr ) is the same as conditioning on |Bǫ ∩ Πµr | ≥ 1 or

on |Bǫ ∩ Πµr | = 1, then taking the limit ǫ → 0. This is the most common form of taking

the “Palm version of a point process”. Note that for the equivalence of definitions here, we

need that µr does not have atoms (by Lemma 2.4), hence Πµr is a simple point process.

(Let us give a two-sentence intuitive explanation of why the quoted theorem on the

equality between the Palm process and the ǫ-conditioning holds, at least for the time-zero

configuration. Since µr has a density, Mr , for any static percolation configuration ζ in Br ,

we have

P
(
Bǫ ∩Πµr 6= ∅

∣∣ ω(0)Br = ζ, µr

)
= 1− exp

(
−

∫ ǫ

−ǫ
Mr(ωt) dt

)

∼ 2ǫMr(ζ) a.s. as ǫ→ 0 ,

by the Lebesgue integration theorem and Fubini. Therefore, Mr(ζ) being the Radon-

Nikodym derivative dIICBr/dP , the ǫ-conditioning gives

lim
ǫ→0

P
(
ω(0)Br = ζ

∣∣ Bǫ ∩Πµr 6= ∅
)
= IICBr(ζ) ,

as desired.)

Since Πµr is obtained from µr using independent stationary randomness (the Lebesgue

Poisson point process Θ), the ω∗ marginal in the Palm version of (ω,Πµr ) is the same as

in the Palm version of (ω, µr), which we already described in part (a).

Finally, regarding Liggett’s extra head construction, [Lig02, Corollary 4.18] says that

shifting back by qr,J as defined in the statement of part (b) produces the Palm version of

Πµr . Now we need to extend this result from the marginal Πµr to (ω,Πµr ); we will certainly

need to use that Liggett’s shift coupling acts nicely also on the level of ω and Θ, since the

result clearly would not hold for an arbitrary measurable map (ω,Θ) 7→ f(ω,Θ) with the

property that Πµr(f(ω,Θ))
d
= Π∗

µr(ω)
. The niceness of Liggett’s construction lies in the fact

that it gives a random time shift TJq,r that is measurable with respect to Πµr , where each

time shift Tx is a measure-preserving transformation on the space of configurations (ω,Θ).

Therefore, if A and B are arbitrary events for the Palm version Π∗
µr
, and Ã and B̃ are
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the events for (ω∗,Π∗
µr
) that project to A and B in the second coordinate, then

P∗(A)
P∗(B) =

P
(
T−1(A)

)

P
(
T−1(B)

) =
P
(
T−1(Ã)

)

P
(
T−1(B̃)

) ,

whenever the denominator on either side of this equation is positive. See Figure 3.2. Since
P∗(A)
P∗(B) = P∗(Ã)

P∗(B̃) by definition, we get that the effect of T is the same as conditioning on

{0 ∈ Πµr} not only on Πµr but also on (ω,Πµr ), and we are done.

We can now turn to sampling from the limit measure µ[0, T ] .

Proof of Theorem 1.7. We must argue that µ[0, T ] > 0 for all T sufficiently high, and

also that, for each r ∈ N , ω(χT )
Br converges weakly, as T →∞ , to IICBr .

For n ∈ N , set Ini = [i/n, (i + 1/n)). For R ∈ N , define fn
R : [0,∞)→ [0,∞) according

to fn
R(x) = nµR(I

n
i ) if x ∈ Ini for i ∈ N . Similarly define fn

∞ : [0,∞) → [0,∞) according

to fn
∞(x) = nµ(Ini ) if x ∈ Ini for i ∈ N . We now argue that, for each ǫ > 0 and n ∈ N ,

there exists R ∈ N such that

lim sup
T

∫ T

0

∣∣∣ fn
R(t)

∫ T
0

fn
R(s)ds

− fn
∞(t)

∫ T
0

fn
∞(s)ds

∣∣∣dt ≤ ǫ . (3.3)

Note that this assertion allows us to construct couplings Q of χR,T and χT with the

following property: for each ǫ > 0 and n ∈ N , there exists R ∈ N such that, for all large

enough T simultaneously, χR,T and χT are coupled under Q = QR so that

lim sup
T

Q
(
|χR,T − χT | ≥ 1/n

)
≤ ǫ . (3.4)

Note that (3.3) is a consequence of the next three assertions. First, for each ǫ > 0, there

exists R ∈ N such that

lim sup
T

T−1

∫ T

0

∣∣fn
R(t)− fn

∞(t)
∣∣dt ≤ ǫ , P-almost surely . (3.5)

Second, for each ǫ > 0, and for this same value of R ∈ N ,

lim sup
T

T−1
∣∣∣
∫ T

0
fn
R(s)ds−

∫ T

0
fn
∞(s)ds

∣∣∣ ≤ ǫ , P-almost surely . (3.6)

Third,

lim
T

T−1

∫ T

0
fn
∞(s)ds = 1 , P-almost surely . (3.7)

We now justify (3.5), (3.6) and (3.7).

To confirm (3.5), note that
∫ 1/n
0 |fn

R(t) − fn
∞(t)|dt =

∫
|µ(0, 1/n) − µR(0, 1/n)|dP . We

fix R ∈ N by Theorem 1.6 so that E
∫
|µ(0, 1/n) − µR(0, 1/n)|dP ≤ ǫ/n . Lemma 2.2 then

provides (3.5).

Note that (3.6) is a trivial consequence of (3.5).
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Figure 3.2: A schematic picture of the effect of Liggett’s extra head time shift T on (Πµr , ω).

(For simplicity, the figure pretends that Π is a measurable function of ω , instead of (ω,Θ).)

Different Palm point process realizations Π∗
1 and Π∗

2 may arise from a different “amount”

of Palm dynamical percolation realizations Ω∗
1 = {ω∗

1,i : i ∈ I1} and Ω∗
2 = {ω∗

2,i : i ∈ I2} (a

ratio 4:2 on the right side of the picture), and the preimages T−1(Π∗
1) and T−1(Π∗

2) might

also have different sizes (which gives the reweighting of the Palm measure compared to the

ordinary measure, a ratio 3:2 in the middle of the picture). The product of these ratios is

the same as the ratio for the preimages T−1
(
(Π∗

1,Ω
∗
1)
)
and T−1

(
(Π∗

2,Ω
∗
2)
)
.
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To show (3.7), note that, by definition, E(µr[0, 1]) = 1 for each r ∈ N . Thus Theo-

rem 1.6 implies that E(µ[0, 1]) = 1. Lemma 2.2 then implies that limT T−1µ(0, T ) = 1,

P-almost surely. This limit coincides with that in (3.7), which establishes this claim. Note

that in this derivation we have confirmed that indeed µ(0, T ) > 0 for T sufficiently high,

P-almost surely.

We conclude the proof by arguing that, for each ǫ > 0 and r ∈ N , there exists R ∈ N

such that

lim inf
T

Q
(
ω(χR,T )

Br = ω(χT )
Br

)
≥ 1− ǫ . (3.8)

This indeed suffices for Theorem 1.7, by the following argument. Recall that we must

argue that, for each r ∈ N , ω(χT )
Br converges weakly as T → ∞ to IICBr . We know by

Lemma 3.2 that the weak limit as T →∞ of ω(χR,T ) equals IICBR . Thus, fixing any ǫ > 0

and any R ≥ r , for large enough T , the total variation distance between ω(χR,T )
Br and

IICBr is at most ǫ . (Note here that on the discrete topological space {0, 1}Br , convergence

in law is the same as in total variation distance.) On the other hand, by (3.8), ω(χT )

coincides with ω(χR,T ) on Br with Q-probability at least 1 − ǫ for all high enough T .

Thus the total variation distance between ω(χT )
Br and IICBr becomes less than 2ǫ , and

we are done.

It remains only to verify (3.8). In light of (3.4), it is enough to argue that, for given

ǫ > 0 and r ∈ N , there exists n ∈ N such that, for all R ≥ r and all T sufficiently high,

the Q-probability that a hexagon in Br flips during
[
χR,T − 1/n, χR,T +1/n

]
is at most ǫ .

However, by Lemma 3.2, the times of hexagon flips in Br during
[
χR,T − 1/n, χR,T +1/n

]
,

shiftward backwards in time by χR,T , converges weakly as T →∞ to a Poisson process of

rate |Br|/2 on [−1/n, 1/n] . Choosing n ≥ Cǫr
2 thus gives the desired statement.

Proof of Theorem 1.8. Part (a) follows from Theorem 1.7 — by Lemma 2.2 and [Kal02,

Theorem 11.6] — just as Lemma 3.3 followed from Lemma 3.2.

Part (b) follows from Lemma 3.3(b) and the next two lemmas.

Lemma 3.4. If τ ∈ E is an exceptional time, and τn → τ , then, for any r > 0, we have

ω(τn)
Br = ω(τ)Br for all sufficiently high n .

Proof. By Lemma 2.3(i), there is an open interval I which contains the exceptional time

τ such that, for t ∈ I , ω(t)Br = ω(τ)Br ; hence τn → τ implies the lemma.

Lemma 3.5. For the times qr,J defined in Lemma 3.3 (b), the limit qJ := limr→∞ qr,J

exists almost surely and is an exceptional time.

Proof. If fn : [0,∞) → [0,∞) is a sequence of non-decreasing functions converging

pointwise on [0,∞) to a function f : [0,∞)→ [0,∞), and we write

f−1
n (x) = inf

{
t > 0 : fn(t) > x

}
,
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then, whenever x ∈ [0,∞) is a point of increase of f : [0,∞) → [0,∞), we have that

limn→∞ f−1
n (x) = f−1(x). The following thus suffices for Lemma 3.5:

Lemma 3.6. For any ρ ∈ Θ , tρ := inf
{
s > 0 : µ(0, s) > ρ

}
is almost surely a point of

increase of µ(0, ·); in particular, it is contained in the support of µ.

Proof. Note that the set of ρ ∈ (0,∞) for which tρ is a point of increase of µ(0, ·) is given

by R \ µ(0, Q), with µ(0, Q) =
{
µ(0, q) : q ∈ Q

}
, where Q is the collection of left-hand

endpoints of intervals comprising supp(µ)c . Note that Q is countable, and, thus, is so

µ(0, Q). Thus, Θ ∩ µ(0, Q) = ∅ a.s., because Θ is independent of µ(0, Q).

4 FETIC is not IIC

In this section, we prove Theorem 1.3.

4.1 The skeleton of the argument

Definition 4.1. Let ω be a sample of dynamical percolation in the R-ball BR . Write ER
for the set of times such that 0↔ R . Let FETR = inf

{
t ≥ 0 : 0

ωt←→ R
}
, and let FETICR

be the law of ωFETR
conditioned on FETR > 0. (Since C0(ω0) is almost surely finite, it

takes positive time for the first bit on its boundary to change, and hence the event FETR > 0

is the same as 0 6←→ R in ω0 , which is almost surely satisfied for large enough R .)

These finite approximations will be very useful. On the one hand, IICR is the law of

the configuration at a typical point of ER , as we saw in Lemmas 3.2 and 3.3. On the other

hand, by [HamMP12, Lemma 4.5], we have that FETR → FET almost surely as R → ∞ ;

hence FETICR converges to FETIC in law (by Lemma 3.4).

There is a natural line of attack if we want to distinguish IICR from FETICR . Let us

call the left-isolated points of ER arrivals, and the right-isolated points departures. As

we will see, the law of a typical arrival configuration can be easily obtained from IICR (and

will be denoted by IIC′
R ): we get it by size-biasing with respect to the number of pivotal

hexagons for the event {0 ↔ R}. This is different from IICR , but not by much: it can

be shown (though we will not do so) that its weak limit as R → ∞ coincides with IIC .

However, FETICR is not given by a typical arrival: as usual when waiting for the first

arrival of a stationary point process, the time between FETR and the last departure before

it (somewhere in the negative half-line) is a size-biased sample of the typical reconnection

time between departures and arrivals, and if an arrival configuration typically occurs at the

end of longer disconnection intervals, then it is more likely to appear in FETICR . Since it is

harder to think about dynamical percolation ending at a certain configuration than about

starting it at such a configuration, our strategy to understand FETICR will be to reverse

time, start dynamical percolation from certain typical IIC′
R configurations, condition on
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immediate termination of {0 ↔ R}, and then estimate the expected time of reconnection.

If we can exhibit two events at time zero that have the same positive probability under the

limit measure IIC , but for which the expected reconnection times differ, then these events

will turn out to have different probabilities under FETIC , and we will be done.

Roughly, of these two events under IIC′
R , the first will be that the configuration looks

“normal” in a bounded neighbourhood of 0, while the second will be that the configuration

is “thinner” in the same neighbourhood. (We will in fact define a thinning procedure on

normal static configurations satisfying 0 ↔ R , changing the configuration in a bounded

neighbourhood of 0.) A thinner configuration falls apart more easily, and hence reconnects

to distance R with more difficulty; and so, one may expect that such a configuration is more

probable under FETICR than is a normal configuration, which is to say, FETICR is thinner

than IICR . This is certainly the case if the thin configuration is, say, given by a single straight

line segment of open hexagons from 0 to ∂BR , with all other hexagons in BR being closed.

However, this R-dependent configuration has a vanishing probability in the limit measure

IIC ; therefore, while the imbalance in probability of this configuration distinguishes FETICR

from IICR , a distinction between FETIC and IIC cannot be deduced. This is why we want

to require the configuration to be thin only in a bounded neighbourhood of 0. However, the

main difficulty now is that normal reconnection times are very short if R is large, and that,

with high probability, the configuration is entirely static in a bounded neighbourhood of the

origin; hence it is not clear that our thinning will have a noticeable effect on the reconnection

time. The solution will be that the expected reconnection time, though tiny, turns out to

be dominated by times that are macroscopically large (independently of R): large enough

that if the configuration close to 0 is thin then it does indeed start falling apart, making

expected reconnection time noticeably larger when the thinning procedure has been applied.

To argue this, we will need the result from [HamMP12] that FET has finite expectation

(in fact, an exponential tail): this will tell us that the normal reconnection time is well

behaved, making it possible to prove that, in expectation, it is strictly dominated by the

reconnection time of thinned configurations.

In this introductory subsection, we first explain the time-reversal and the size-biasing

effects determining the relationship between IICR and FETICR , then define the thinning

procedure, and will finally show that a noticeable difference between expected reconnection

times indeed implies that FETIC and IIC are different. In the subsequent subsections, we

will prove that there is such a difference.

Recall from the above discussion that, in standard càdlàg dynamical percolation, a time

t ∈ ER for which there exists ǫ > 0 such that [t− ǫ, t) ∩ ER = ∅ is called an arrival. Write

AR for the set of arrivals. Furthermore, for a static percolation configuration ζ in BR that

satisfies 0↔ R , denote by Piv = Piv0↔R(ζ) the set of hexagons in BR that are pivotal in

the configuration ζ for 0↔ R , and recall that IIC′
R denotes the law on configurations in BR

whose Radon-Nikodym derivative with respect to IICR is given by |Piv| up to normalization.
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Lemma 4.2. The following three definitions for the process P( · | 0 ∈ AR) are equivalent:

(i) consider dynamical percolation in BR conditionally on the event {0 ↔ R} occurring

at time 0 but not at time −ǫ, and take the weak limit as ǫ ↓ 0;

(ii) for large T > 0, pick uniformly an element τ ∈ AR ∩ [0, T ], consider the shifted

dynamical percolation configuration {ωt−τ : t ∈ R}, and take the weak limit as T →∞
(conditionally on ω , or averaged);

(iii) let ω0 be distributed according to IIC′
R , choose uniformly an element S ∈ Piv(ω0),

obtain the configuration ω0− by closing the hexagon S , and let the rest of the evolution

{ωt : t ∈ R} be given by càdlàg dynamical percolation updates independently of the

values of ω0 and S .

Proof. While the weak limits in (i) and (ii) might not exist a priori, the definition of (iii) is

clearly well formulated. We first prove the equivalence of (i) and (iii), implying the existence

of the weak limit in (i), in particular. It is enough to show that, for all configurations ζ in

BR such that 0↔ R ,

lim
ǫ→0

dP
(
·
∣∣ 0 ∈ ER, −ǫ 6∈ ER

)

dIICR
(ζ) = Z−1

1 |Piv0↔R(ζ)| , (4.1)

where Z1 ∈ (0,∞) is a normalization.

Given a configuration ζ such that 0 ↔ R , let pǫ(ζ) be the probability that dynamical

percolation given ω0 = ζ satisfies 0 6↔ R at time −ǫ . If ǫ is tiny (depending on R), then the

probability of having at least two hexagons flipping in the time interval (−ǫ, 0) is much less

than the probability of any specific hexagon flip. Therefore, limǫ→0 pǫ(ζ)/ǫ = |Piv0↔R(ζ)| ,
which implies (4.1).

To prove the equivalence of (ii) and (iii), let us reformulate the T -dependent law defined

in (ii) as taking uniformly one from all pairs of configurations (ωt−, ωt) ∈ EcR × ER , with

t ∈ [0, T ] , and then running dynamical percolation in the two directions from here. By the

ergodicity of {ωt : t ∈ R} (Lemma 2.2), the weak limit of this law is the same as taking a

pair of static configurations (ζ1, ζ2) that differ only in one hexagon such that 0↔ R in ζ2

but not in ζ1 to start the dynamics. This is clearly the same as the law defined in (iii).

The equivalence of (i) and (ii) follows from the above two equivalences; or, just like in

Lemma 3.3, we can also quote [Kal02, Theorem 11.6] on the equivalent definitions of the

Palm version of the process (ω,AR).

Now, as we promised, in order to understand the effect of waiting for the first exceptional

time on the distribution of the configuration at that time, we time-reverse the dynamics,

started from typical arrival times:

Definition 4.3. Let Pnorm denote the time-reversal of P( · | 0 ∈ AR) (i.e., t 7→ −t for all

t ∈ R). More explicitly, it is the càglàd (left-continuous with right limits) Markov process
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given as follows. Under Pnorm , the distribution of ω0 is IIC′
R . Given ω0 , a uniform element

S ∈ Piv is selected, with the configuration ω0+ being set equal to ω0 modified by closing

the hexagon S . The rest of the evolution of {ωt : t ∈ R} is given by càglàd dynamical

percolation updates independently of the values of ω0 and S .

Lemma 4.4. Under the law Pnorm , recall that 0↔ R is satisfied by ω0 but not by ω0+ ; let

the reconnection time N ∈ (0,∞) be given by N = inf
{
t > 0 : 0

ωt←→ R
}
. For each static

BR configuration ζ , we have that

dFETICR

dIICR
(ζ) = Z−1Enorm(N | ω0 = ζ) |Piv0↔R| ,

where Z ∈ (0,∞) is a normalization.

Proof. We claim that

dFETICR

dP
(
·
∣∣ 0 ∈ AR

)(ζ) = Z−1
2 Enorm(N | ω0 = ζ) , (4.2)

where Z2 ∈ (0,∞) is another normalization. From (4.1) and (4.2) follows the statement of

the lemma.

To prove (4.2), let φ : EcR −→ AR associate to each moment of disconnection 0 6↔ R

in càdlàg dynamical percolation the first connection time to its right (which is necessarily

an arrival). Condition the process on EcR ∩ [−n, 0] 6= ∅ and pick a random time χ whose

conditional law is given by normalized Lebesgue measure on EcR∩ [−n, 0]; note that FETICR

is the weak limit as n → ∞ of ωφ(χ) . Note that, in this weak limit, the probability that

ωφ(χ) is a given static configuration ζ (for which 0 ↔ R) is proportional to the mean

length of an interval in EcR at whose right-hand endpoint the configuration is ζ . Thus we

obtain (4.2).

Here is a straightforward variant of (4.2). For any non-negative random variable X of

finite mean, X̂ will denote the size-biased version; i.e., P
(
X̂ ≥ t

)
= E

(
X
)−1

E
(
X11X≥t

)
.

Lemma 4.5. Let N̂ be the size-biased version of the reconnection time N under the law

Pnorm , and let U be an independent Unif[0, 1] random variable. Then N̂ U has the distri-

bution of FETR .

The following useful fact was proved in [HamMP12].

Lemma 4.6. In dynamical percolation we have

P
(
FETR > t

)
≤ exp

{
− ct

}

for all t > 0, where c > 0 may be chosen uniformly in R ∈ N .
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Note that the preceding two lemmas imply that P(N̂ > t) ≤ exp{−c t}, uniformly in

R . In particular, this random variable has finite moments: for each k ∈ N , E(N̂k) =

E(Nk+1)/EN <∞ , again uniformly in R .

We now introduce the thinning procedure which is central to our technique for showing

that FETIC differs from IIC .

Definition 4.7. A circuit Γ is a finite self-avoiding path of hexagons such that for no

vertex in the hexagonal lattice are all three of the neighbouring hexagons visited by Γ and

such that H\Γ has exactly two connected components: a finite one, denoted by Int(Γ), and

an infinite one. Note that a partial order on circuits Γ is provided by containment of the

enclosed regions Int(Γ).

Let ζ be a percolation configuration in BR such that 0↔ R . Note that if some ζ -open

circuit Γ satisfies Br ⊆ Int(Γ), then there is a unique ζ -open circuit which encloses Br

and is minimal in the partial order among such circuits. If ζ is such that this circuit exists,

we label the circuit by Γr .

Definition 4.8. Recall the exponent η ∈ (0, 1) from (1.6), and fix ǫ > 0 small enough that

(1 + 2ǫ)(1 − η) < 1. Now assume that r satisfies r2(1+2ǫ)α4(r
1+2ǫ) < r/2, which holds for

all large enough r , by (1.7). Let R ∈ N satisfy R ≥ r1+2ǫ . A configuration ζ in BR is

said to satisfy ζ ∈ Fine if the following conditions hold:

• 0←→ R ;

• the circuit Γr exists and satisfies Γr ⊆ Br1+ǫ ;

• the pivotal set Piv0↔Γr = Piv0↔R ∩ Int(Γr) satisfies |Piv0↔Γr(ζ)| ≤ r2(1+2ǫ)α4(r
1+2ǫ).

Finally, a dynamical configuration {ωt : t ∈ R} is said to satisfy Fine if ω0 ∈ Fine.

Definition 4.9. Let r ∈ N be even. Let Γ denote a circuit such that Br ⊆ Int(Γ).

Let a ∈ {0, . . . , r/2}. The (r,Γ, a)-slim configuration χr,Γ,a is a particular percolation

configuration in Int(Γ), as shown in Figure 4.1, whose set of open hexagons in Int(Γ)∩Br/2

consists of the hexagons in Br/2 that intersect the x-axis, and for which |Piv0↔Γ| = a.

Definition 4.10. The thinning procedure Thinning = ThinningRr maps the set of configura-

tions in BR to itself. Let ζ be such a configuration. If ζ 6∈ Fine, then set Thinning(ζ) = ζ .

If ζ ∈ Fine, let Thinning(ζ) be the configuration in BR of the following form:

Thinning(ζ)(x) =

{
ζ(x) if x ∈ BR \ Int(Γr),

χr,Γr,|Piv0↔Γr |(x) if x ∈ Int(Γr).
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Br

Br/2

Γ

pivotals

for 0↔ Γ
in χr,Γ,a

Figure 4.1: The boundary paths delimiting B2 and B4 are black, and the circuit Γ is green.

The red and dark red hexagons are the open hexagons of χ4,Γ,2 : the red hexagonal circuit

is set in such a way that its distance from Γ is a = 2, and the dark red path is chosen in

some arbitrary but fixed way so that it realizes this distance a . Note that this dark red

path is the set of pivotals for 0↔ Γ.

We define a coupling of Pnorm with another dynamical process begun by pairing the

initial condition with its thinned counterpart. We denote by ω′ the process under Pnorm ,

and write ω′′ for the process under the measure Pthin which we now introduce by coupling

with Pnorm . We set Pthin by choosing its initial condition ω′′
0 = Thinning(ω′

0); if the hexagon

S selected for initial closure in the definition of Pnorm lies in the unbounded component

of the complement of Γr(ω
′
0), we set S′′ = S ; otherwise, we choose S′′ uniformly among

Piv0↔R(ω
′′
0 ) ∩ Int(Γr). We define ω′′

0+ by modifying ω′′
0 by closing S′′ . The subsequent

evolution of ω′′ is made in accordance with the càglàd dynamical updates used in defining

ω′ . Note that there might be updates that do not have an effect on ω′ (the new status

coinciding with the old one), and hence are not visible if we see only ω′ , while do have an

effect on ω′′ ; thus ω′′ is not entirely measurable w.r.t. ω′ , even though the extra randomness

in ω′′ is quite simple.

We denote by Pnorm and Pthin the above dynamics and its thinned counterpart, and

write N and T for the reconnection time inf
{
t > 0 : 0

ωt←→ R
}
under Pnorm and Pthin . We

will often use the above coupling of the two càglàd processes, but will not need a separate

notation to denote it. The principal result we need is now stated.

Proposition 4.11 (Thinned versus Normal). As in Definition 4.8, fix ǫ > 0 small, and

consider all large enough r ∈ N . Then, uniformly in R ≥ r1+2ǫ , we have Ethin(T11Fine)
Enorm(N11Fine)

→∞
as r →∞.
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Proof of Theorem 1.3, assuming Proposition 4.11. We want to show that there exists

a circuit Γ in the annulus Ar,r1+ǫ and two configurations ζ ′ and ζ ′′ on Γ ∪ Int(Γ) with

Γ = Γr(ζ
′) = Γr(ζ

′′), such that IICR(ζ
′) = IICR(ζ

′′) for each integer R ≥ r1+2ǫ , with the

common value having a positive limit as R→∞ , while infR≥r1+2ǫ
FETICR(ζ′′)
FETICR(ζ′) > 1.

By Proposition 4.11, we may choose r ∈ N so that Ethin(T11Fine) > 2Enorm(N11Fine)

for all R sufficiently high. Hence, there exists a choice of circuit Γ in Ar,r1+ǫ , and a

configuration ζ ′ in Int(Γ) ∪ Γ, such that Γ = Γr(ζ
′), the second and third conditions for

Fine occur, and, setting ζ ′′ equal to the restriction of Thinning(ζ ′) to Int(Γ) ∪ Γ,

Enorm

(
N

∣∣∣ ω0

∣∣
Int(Γ)∪Γ = ζ ′′

)
> 2Enorm

(
N

∣∣∣ ω0

∣∣
Int(Γ)∪Γ = ζ ′

)
.

It is clear that IICR(ζ
′′) = IICR(ζ

′); moreover, IIC′
R(ζ

′′) = IIC′
R(ζ

′), since the number

of pivotals for {0 ↔ R} is left intact by Thinning . Hence, by Lemma 4.4, we have

FETICR(ζ
′′) > 2FETICR(ζ

′).

The rest of the section will be devoted to the proof of Proposition 4.11. Let us start by

collecting the main ingredients needed for the proof; these ingredients will then be proved

in the remaining subsections.

Thinning will make a difference only if there is enough time before reconnection for

the configuration in Int(Γr) to change significantly. To this end, as we will see, the events

{N > 1/r} and {T > 1/r} will be important to us. How different are these two events?

Although the set of open hexagons in Thinning(ζ) is not exactly a subset of its counterpart

for ζ , we can compare the thinned and normal reconnection times in this regime under a

certain event Good :

Good ∩
{
N > 1/r

}
⊆

{
T > 1/r

}
, (4.3)

where Good is defined as follows (and is applied in the above relation to the configuration

before thinning):

Definition 4.12. Let R, r ∈ N satisfy R ≥ r1+2ǫ where ǫ > 0 is specified in Definition 4.8.

Let ω be a dynamical configuration in BR . We say that ω ∈ Good if the following conditions

are satisfied:

• ω0 ∈ Fine , as specified in Definition 4.8;

• for each t ∈ [0, r−1], the inner and outer boundaries of the annulus Ar1+ǫ,r1+2ǫ are

separated by an ωt -open circuit;

• for each t ∈ [0, r−1], 0
ωt←→ r1+2ǫ .

Now, to see (4.3), note that the occurrence of Good implies that 0 is connected to some

open circuit Γ = Γ(t) such that Br1+ǫ ⊆ Γ for all 0 ≤ t ≤ r−1 . Hence, N > 1/r implies

that r1+ǫ 6←→ R for all t ∈ [0, r−1] under Pnorm . Since the dynamical percolations under
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Pnorm and Pthin agree at all positive times in Ar1+ǫ,R , we have that r1+ǫ 6←→ R for all

t ∈ [0, r−1] also under Pthin . Thus, T > 1/r and we obtain (4.3).

The event Good is of course useful only if it is reasonably likely to occur. Proposi-

tion 4.26, which is the main result of the upcoming Subsection 4.2, will show that

Pnorm(Good | N > 1/r) ≥ c1 .

This, (4.3) and Good ⊆ Fine imply the following “stochastic quasi-domination” between T

and N :

Pthin(T > 1/r,Fine) ≥ Pnorm(N > 1/r,Good) ≥ c1 Pnorm(N > 1/r) . (4.4)

Although the event {N > 1/r} has minute probability when R is large, a large portion

of the expectation E(N11Fine) is contributed by sample points realizing this event. This can

be proved using the size-biasing description of the connection time discussed in Lemma 4.5.

Indeed, by some rather general size-biasing arguments, together with the uniform bounded-

ness of the expectation E(N̂R) <∞ (due to Lemmas 4.5 and 4.6 above), alongside the fact

that Pnorm(Fine | N > 1/r) ≥ c1 (due to Good ⊆ Fine), it will be proved in Subsection 4.3

that

Enorm

(
N

∣∣ N > 1/r,Fine
)
< C2 <∞ , (4.5)

and that

Pnorm

(
N̂11Fine > 1/r

)
=

Enorm(N11N>1/r11Fine)

Enorm(N11Fine)
> c2 > 0 . (4.6)

Finally, as we will prove in Proposition 4.31 of Subsection 4.4, should the dynamics

begun under Thinning result in at least a short reconnection time, T > 1/r , then there is

a uniformly positive probability that connection will not be reestablished until very much

later:

Pthin

(
T > g(r)

∣∣ T > 1/r,Fine
)
> c3 > 0 , (4.7)

for some g(r)→∞ as r→∞ .

Proof of Proposition 4.11. From the above assemblage of facts, we find that

Ethin(T11Fine) ≥ Ethin(T11T>1/r11Fine)

= Ethin

(
T

∣∣ T > 1/r,Fine
)
Pthin(T > 1/r,Fine)

≥ c3 c1 g(r)Pnorm(N > 1/r,Fine) , by (4.7) and (4.4)

≥ c3 c1 g(r)
Enorm(N11N>1/r11Fine)

C2
, by (4.5)

≥ c3 c1 c2 g(r)
Enorm(N11Fine)

C2
, by (4.6) .

Therefore, the ratio Ethin(T11Fine)
Enorm(N11Fine)

tends to infinity as r → ∞ , uniformly in R ≥ r1+2ǫ , as

required.

We will now start proving the above ingredients.
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4.2 Understanding the law Pnorm(· |N > 1/r)

In this section, P will denote the law of càglàd dynamical percolation with time R . Recall

that ER is the set of times such that 0↔ R , now a union of left-open right-closed intervals.

It is hard to understand the conditioned measure P′ := Pnorm

(
·
∣∣ N ≥ 1/r

)
directly,

because the condition has a tiny probability. We will handle this issue by noticing that,

for large enough s ∈ Z+ , we have P
(
ER ∩ (s/r, (s+ 1)/r] = ∅

∣∣ 0 ∈ ER
)
> c > 0, uniformly

in r > 0 (see Lemma 4.18), and given the existence of this empty interval, γ := sup{ER ∩
[0, s/r)} is a moment such that the reconnection time from it is at least 1/r . If s is

bounded, then the law of dynamical percolation viewed from such a γ (to be denoted by

P′′ , see Lemma 4.15) turns out to be not very different from the law P′ (see Lemma 4.16).

Therefore, once we prove that ωt has certain good properties with high probability for all

t ∈ [0, (s+1)/r] under P
(
·
∣∣ 0 ∈ ER, ER ∩ (s/r, (s+ 1)/r) = ∅

)
, which is already a feasible

task, and hence that the dynamical configuration viewed from γ (i.e., the measure P′′ ) is

well behaved, we will be able to deduce almost the same for the measure P′ ; this will be

Proposition 4.26, the main goal of this subsection.

Definition 4.13. Call an element x ∈ ER a marker if
(
x, x + r−1

]
∩ ER = ∅. Write

M⊆ ER for the set of markers. For x ∈ M, set ℓx ≥ r−1 so that x+ ℓx is the first limit

point of ER encountered to the right of x. Let s ∈ Z+ be a (large) integer to be determined

later. For each x ∈M, set Lx =
[
x− sr−1, x− sr−1 + ℓx− r−1

]
if r−1 ≤ ℓx < (s+1)r−1 ;

if ℓx ≥ (s + 1)r−1 , take Lx =
[
x − sr−1, x

]
. Define the domain of attraction Dx of

x ∈ M by Dx = Lx ∩ ER . See Figure 4.2.

Note that Lemma 4.2 has a straightforward analogue for P
(
·
∣∣ 0 ∈ M

)
, and we have

P′ = Pnorm

(
·
∣∣ N ≥ 1/r

)
= P

(
·
∣∣ 0 ∈ M

)
. We now define the measure P′′ on dynamical

configurations on BR that will be our main tool for understanding P′ .

Definition 4.14. Define the law P′′ so that, for any càglàd dynamical percolation configu-

ration ω satisfying 0 ∈ M,
dP′′

dP′ (ω) = Z−1|D0|,

where | · | is Lebesgue measure, and Z > 0 is a normalization chosen to ensure that P′′ is

indeed a probability measure.

Lemma 4.15. Let P̃ denote the following dynamical process. Consider càglàd dynamical

percolation
{
ωt : t ∈ R

}
in BR with ω0 distributed as IICR , and with the update decisions

made independently of ω0 . Condition this process on the event that ER∩
(
sr−1, (s+1)r−1

)
=

∅. Let γ ∈ [0, sr−1] be given by γ = sup{ER∩ [0, sr−1)}. Now set P̃ equal to the conditional

law of ω(γ + ·). Then P̃ = P′′ .
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j ∈ J ⊂ ER j + s
r j + s+1

r

m := A(j) ∈ M m+ ℓm

m− s
r m− s

r + ℓm

Lm

Lm ∩ ER =: Dm = A−1(m)

Figure 4.2: The domain of attraction Dm appearing in the definition of P′′ , and the map

A : J −→M appearing in the proof of P′′ = P̃ (Lemma 4.15).

Proof. Under dynamical percolation on BR , let J denote the set of times j ∈ ER such

that
(
j+sr−1, j+(s+1)r−1

)
∩ER = ∅. Consider the map A : J −→M such that, for each

j ∈ J , A(j) is the largest element of M preceding j + sr−1 . Note that j ∈ ER implies

that j ≤ A(j) ≤ j + sr−1 . Note further that, for each m ∈ M , we have A−1(m) = Dm .

See Figure 4.2.

Consider now an experiment in which, for x > 0, dynamical percolation is sampled

conditionally on J ∩ [0, x] 6= ∅, and an element χ ∈ J ∩ [0, x] is chosen with the conditional

law of normalized Lebesgue measure on this set. Note that, by limx→∞ P(J ∩ [0, x] 6= ∅) =
1, the law of ωA(χ)+· (using the randomness in both ω and χ has the limit P̃ as x→∞ .

However, from the previous paragraph we also know that ωA(χ)+· has a weak limit whose

Radon-Nikodym derivative with respect to dynamical percolation given 0 ∈ M is |D0| up
to normalization.

Lemma 4.16 (Typical events of P′′ will appear in P′ ). The Radon-Nikodym derivative dP′′

dP′

has a second moment that is bounded above by some B < ∞ which might depend on the

parameter s but not on R . Consequently, P′(A) ≥ P′′(A)2/B for any event A .

Proof. The claim regarding the Radon-Nikodym derivative follows directly from Lemma 4.17

below. The second claim then follows by Cauchy-Schwarz:

P′′(A) =
∫

11A dP′′ =
∫

11A
dP′′

dP′ dP
′ ≤

√∫
112A dP′

√∫ (
dP′′

dP′

)2

dP′ ≤
√

P′(A)
√
B ,

as desired.

Lemma 4.17. Let mR,r denote the conditional mean under dynamical percolation of |ER∩(
0, r−1

)
| given that this intersection is non-empty. Consider dynamical percolation P on

BR conditionally on 0 ∈ M. Then the Lebesgue measure of the domain of attraction of the
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origin satisfies

P
(
|D0| ≥ cmR,r

∣∣ 0 ∈ M
)
≥ cs−2 (4.8)

and

E
(
|D0|2

∣∣ 0 ∈ M
)
≤ Cs2m2

R,r , (4.9)

for constants C > c > 0 which do not depend on r,R or s .

Before starting the proof of Lemma 4.17, we need to verify a basic decorrelation result.

In light of Lemma 4.15 (describing P′′ as P̃), it is far from surprising that this result will

be crucial in understanding the measures P′′ and P′ .

Lemma 4.18 (Ensuring an empty interval). There exists a large s ∈ Z+ and a small c > 0

such that, for each r ∈ Z+ and R > R0(r), the probability that dynamical percolation with

initial condition ω0 distributed according to IICR satisfies ER ∩
(
s r−1, (s + 1) r−1

)
= ∅

exceeds c.

An important element of the proof of Lemma 4.18 is the following claim. It is slightly

more convenient to reverse time once again, just for this claim. Recall that ρ(r) = inf{s :

s2α4(s) ≥ r}, and keep in mind that its magnitude is known to be r4/3+o(1) for percolation

on the faces of H and to lie between C−1 r1+η and C r1/η for some η ∈ (0, 1) and 0 < C <

∞ for bond percolation on Z2 .

Lemma 4.19. There exists c > 0 such that the following holds, independently of r ∈ N .

Let N denote the event that at no time in the interval [−r−1, 0] is there an open crossing

of the annulus Aρ(r), 2ρ(r) . For s > 0, let Ys denote the event that an open crossing of

Aρ(r), 2ρ(r) exists at time sr−1 . Then, for all large enough s > 0 (without dependence on

r), we have P
(
N ∩ Ys

)
≥ c.

Proof. By considering a coupling in which dynamical updates lead always to the closure

of hexagons, we know that P
(
N
)
≥ c by (1.9), Kesten’s result on the near-critical window.

Let N0 denote the time-0 static event that the conditional probability of N given the time

0 configuration is at least c . We have that P(N0) ≥ c by adjusting the value of c > 0.

Note then that, denoting by f and g the ±1-indicator functions of N0 and Y0 , and by f̂

and ĝ their Fourier series, the basic relation (1.13) yields

P
(
N0 ∩ Ys

)
− P

(
N0

)
P
(
Ys

)
=

∑

S 6=∅
f̂(S)ĝ(S) exp

{
− sr−1|S|

}
.

We apply Cauchy-Schwarz to bound above the absolute value of the right-hand side. Then,

the basic relation (1.13) and the decorrelation estimate (1.16) applied to g give the following
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bound on the resulting term:


∑

S 6=∅
f̂2(S)




1/2 
∑

S 6=∅
ĝ2(S) exp

{
− 2sr−1|S|

}



1/2

≤ ǫ1 +


 ∑

|S|≥ǫ2r

ĝ2(S) exp
{
− 2ǫ2s

}



1/2

≤ ǫ1 + exp
{
− ǫ2s

}
,

where ǫ1 depends on the choice of cutoff ǫ2 > 0 and may be chosen so that ǫ1 → 0 as

ǫ2 → 0. Noting that P
(
N0

)
P
(
Ys

)
≥ c1 > 0, we see that P

(
N0 ∩ Ys

)
≥ c1/2 by making a

suitable choice of ǫ1 , ǫ2 and s . Note that P
(
N ∩ Ys

)
≥ cP

(
N0 ∩ Ys

)
because N and Ys

are conditionally independent given the time-0 configuration. This completes the proof.

The next lemma relates the restriction of IIC to a dyadic annulus to the percolation

configuration in the annulus obtained by conditioning on an open crossing between the

annulus’ boundaries.

Lemma 4.20 (Localizing the IIC conditioning). Let PR
r denote the law of critical per-

colation in Ar,R given that r ←→ R , for 0 ≤ r < R ≤ ∞ (where the conditional law

P(· | r↔∞) on Bc
r is obtained as a weak limit of P(· | r↔ R) as R → ∞, constructed

by [Kes86]). Then, for each ǫ > 0 there exists δ > 0 such that if A ∈ σ{AR,2R} (i.e.,

an event measurable in the annulus), then P2R
R (A) ≥ ǫ implies that Pb

a(A) ≥ δ , for all

0 ≤ a ≤ R/2 and 4R ≤ b ≤ ∞ (in particular, for IIC = P∞
0 ).

Proof. For ζ a configuration in AR,2R such that R ↔ 2R , let Wa,R,b(ζ) denote the

conditional probability that a↔ b given the occurrence of the events ω
∣∣
AR,2R

= ζ , a↔ R

and 2R ↔ b . We will argue that for each ǫ > 0 there exists δ > 0 such that, for all large

enough R ∈ N and a, b ∈ N with 0 ≤ a ≤ R/2 and 2R ≤ b ≤ ∞ ,

P
(
Wa,R,b ≤ δ

∣∣∣ R←→ 2R
)
≤ ǫ . (4.10)

This easily implies the lemma, as follows. Note that

dPb
a

dP2R
R

(ζ) = Z−1
a,R,bWa,R,b(ζ) ,

where Za,R,b = P(a↔ b | a↔ R,R↔ 2R, 2R↔ b) ≤ 1. Given ǫ > 0, choose by means of

(4.10) an ǫ′ > 0 such that P2R
R

(
Wa,R,b ≤ ǫ′

)
≤ ǫ/2 for each R ∈ N . Thus, if A ∈ σ{AR,2R}

satisfies P2R
R (A) ≥ ǫ , then

Pb
a(A) = Z−1

a,R,b

∫

A
Wa,R,b(ω) dP

2R
R (ω) ≥ ǫ′ǫ/2 ,

where the inequality follows from restricting the integral to that part of A on which Wa,R,b >

ǫ′ . Hence the lemma holds with the choice δ = ǫ′ǫ/2.
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To prove (4.10), we introduce the function W ǫ
R(ζ) on configurations ζ in AR,2R , for

R ∈ N and ǫ ∈ (0, 1/2), which is the conditional probability of R(1 − ǫ) ←→ 2R(1 + ǫ)

under critical percolation given that ω
∣∣
AR,2R

= ζ .

Lemma 4.21. For each ǫ ∈ (0, 1/2), there exists a constant c = cǫ > 0 such that, for each

R, a, b ∈ N as before and for all configurations ζ in AR,2R , we have Wa,R,b(ζ) ≥ cW ǫ
R(ζ).

Proof. Let p1 denote the probability under critical percolation that there exists an open

surrounding circuit in the annulus AR(1−ǫ),R , and let p2 denote the corresponding probabil-

ity for the annulus A2R,2R(1+ǫ) . Note that p1, p2 ≥ cǫ > 0 for all R by a simple application

of RSW. We claim that

Wa,R,b(ζ) ≥ p1p2W
ǫ
R(ζ) . (4.11)

Indeed, consider the conditioning appearing in the definition of Wa,R,b(ζ): under the con-

ditional law, the configuration in Ac
R,2R stochastically dominates critical percolation, and

thus open surrounding circuits appear in the annuli AR(1−ǫ),R and A2R,2R(1+ǫ) with proba-

bility at least p1p2 ; the presence of such circuits being an increasing event, the conditional

law further conditioned on the presence of such circuits has probability at least W ǫ
R(ζ) of

realizing R(1 − ǫ) ←→ 2R(1 + ǫ). However, the event R(1 − ǫ) ←→ 2R(1 + ǫ) and the

presence of the two surrounding circuits is enough, alongside the conditions met under the

conditional law, to ensure that 0←→∞ . In summary, we obtain (4.11); applying p1p2 ≥ c2ǫ
completes the proof.

Lemma 4.22. For each δ > 0, there exists ǫ0 > 0 such that, for all large enough R ∈ N

and all ǫ ∈ (0, ǫ0),

P
(
W ǫ

R ≤ 1− δ
∣∣ R←→ 2R

)
≤ δ .

Proof. Note that for any δ1 > 0 there is an ǫ1 > 0 such that, for all ǫ < ǫ1 ,

E
(
W ǫ

R

∣∣ R←→ 2R
)
= P

(
R(1− ǫ)←→ 2R(1 + ǫ)

∣∣ R←→ 2R
)

= 1− P
(
R←→ 2R , but R(1− ǫ) 6←→ 2R(1 + ǫ)

)

P(R←→ 2R)

≥ 1− δ1 ,

because the event
{
R ←→ 2R , but R(1 − ǫ) 6←→ 2R(1 + ǫ)

}
implies that there are three

arms from one side of the annulus A(R(1− ǫ), 2R(1 + ǫ)), from radius about ǫR to radius

about R , and this event has probability of order ǫ , the 3-arm half-plane probability being

of order ǫ2 . See [Wer09, first exercise sheet].

From this bound, applying Markov’s inequality to 1−W ǫ
R , we get that

P
(
1−W ǫ

R ≥
√

δ1
∣∣ R←→ 2R

)
≤

√
δ1 ,

which implies the lemma immediately.
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Now note that (4.10) follows from Lemmas 4.21 and 4.22 immediately. This completes

the proof of Lemma 4.20 (localizing the IIC conditioning) for large enough R ∈ N ; on the

other hand, for R bounded, the lemma is trivial.

Proof of Lemma 4.18. (Ensuring an empty interval.) Let C ∈ σ
{
Aρ(r), 2ρ(r)

}
denote the

static event consisting of configurations ζ satisfying ρ(r)↔ 2ρ(r) and such that

P
(
ρ(r)↔ 2ρ(r) at no time in [sr−1, (s + 1)r−1]

∣∣∣ ω0 = ζ
)
≥ c .

By considering the process ω
(
sr−1 − ·

)
in Lemma 4.19, we see that

P
(
ρ(r)↔ 2ρ(r) at time 0 , ρ(r)↔ 2ρ(r) at no time in [sr−1, (s+ 1)r−1]

)
≥ c ;

in the notation of the statement of Lemma 4.20, we see that P
2ρ(r)
ρ(r) (C) ≥ c by reducing

the value of c > 0. By Lemma 4.20, we infer that for some δ > 0 and for R ≥ 4ρ(r),

IICR(C) > δ , as required for the statement of Lemma 4.18.

Proof of Lemma 4.17. We start by a simple corollary of Lemma 4.18 concerning the

density of markers.

Definition 4.23. Let {Ii =
(
i/r, (i+1)/r

)
: i ∈ N} enumerate the consecutive intervals of

length r−1 rightwards from the origin. Call any such interval active if it has non-empty

intersection with ER . For any i ∈ N , call Ii promising if Ii is an active interval with the

property that M intersects ∪i≤j≤i+sIj .

Lemma 4.24. There exists c > 0, independent of R , such that the conditional probability

under dynamical percolation BR given that I0 is active that I0 is promising is at least c.

Proof. Let P0 denote dynamical percolation on (0, 1/r) weighted according to the size∣∣ER∩(0, 1/r)
∣∣ ; under P0 , define τ to be an element of ER∩(0, 1/r) with conditional law given

by normalized Lebesgue measure on this set. Under P0 , the law of dynamical percolation at

times τ + t , t ≥ 0 is, by Lemma 3.3, dynamical percolation started from IICR . By Lemma

4.18, the conditional probability that
(
τ + sr−1, τ + (s + 1)r−1

)
∩ ER = ∅ exceeds some

R-independent constant c > 0. Whenever this disjointness condition is satisfied, there

exists an element of M somewhere in the interval between τ and τ + sr−1 , and thus in

the interval
(
0, (s + 1)r−1

)
.

We learn that the P0 -probability that I0 is promising exceeds an R-independent con-

stant c > 0. Lemma 4.24 will follow once we establish this assertion for dynamical perco-

lation conditioned on the interval Ii being active, a measure we label P1 . To make this

reduction, it is enough to argue that dP0
dP1

has a bounded second moment, in light of the proof

of Lemma 4.16, with the roles of P′′ and P′ being played by P0 and P1 . By Lemma 2.6,
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there exists C > 0 such that, for all R > 0,

∫ (dP0

dP1

)2
dP1 = E

(∣∣ER ∩ (0, r−1)
∣∣2
∣∣∣ ER ∩ (0, r−1) 6= ∅

)

≤ C

(
E
(∣∣ER ∩ (0, r−1)

∣∣
∣∣∣ ER ∩ (0, r−1) 6= ∅

))2

.

This completes the proof of Lemma 4.24.

We can now prove (4.9). Let
{
mi : i ∈ N+

}
enumerate the elements of M∩ (0,∞) in

increasing order. By ergodicity, we have almost surely that

E
(
|D0|2

∣∣ 0 ∈ M
)
= lim

n
n−1

n∑

i=2

|Dmi |2 , (4.12)

where the term with index i = 1 has been harmlessly omitted for later notational con-

venience. Let {λi} (or {αi}) enumerate the indices i ∈ N+ of promising (or active) in-

tervals Ii in increasing order. For i ≥ 1, consider the consecutive intervals Ij beginning

the interval after that containing mi and stopping at the one containing mi+1 . Among

these, there are at most s + 1 promising intervals, and Dmi+1 is contained in the union

of these promising intervals. Therefore,
∑n

i=2 |Dmi |2 ≤ (s + 1)
∑λ(s+1)n

i=2 |Ii ∩ ER|2 . By

Lemma 4.24 and the ergodicity Lemma 2.2, λn ≤ 2c−1αn for all large enough n . Hence,
∑n

i=2 |Dmi |2 ≤ (s+1)
∑2c−1α(s+1)n

i=1 |Ii∩ER|2 . By ergodicity again, this upper bound behaves

like

2c−1(s+ 1)2 nE
(
|ER ∩ (0, 1/r)|2

∣∣ ER ∩ (0, 1/r) 6= ∅
) (

1 + o(1)
)

as n → ∞ . Applying Lemma 2.6 to |ER ∩ (0, 1/r)| (which is just a scaled version of

µR(0, 1/r)) and using (4.12), we obtain (4.9).

To prove (4.8), in light of (4.9), the Paley-Zygmund second moment method says that

it suffices to verify that, for some c > 0 and all R, r, s ∈ N+ ,

E
(
|D0|

∣∣ 0 ∈ M
)
≥ cmR,r . (4.13)

We now verify this inequality. Let ρ = limn n
−1

∣∣M∩ (0, n)
∣∣ denote the mean number of

markers in [0, 1], or, alternatively, ρ = E(|M ∩ (0, 1)|) .
We claim the following.

Lemma 4.25. Recall that J denotes the set of times j such that the event 0↔ R occurs at

time j and at no time in the interval
(
j+ sr−1, j+(s+1)r−1

)
. Then ρE

(
|D0|

∣∣ 0 ∈ M
)
=

E
(
|J ∩ [0, 1]|

)
.

Proof. Recall that the subset J of ER is partitioned into disjoint classes given by domains

of attraction Dm and thus indexed by the set of markers m ∈ M .
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The quantity ρE
(
|D0|

∣∣ 0 ∈ M
)
is thus the mean Lebesgue measure of the union of the

domains of attractions indexed by markers lying in a given unit interval. By the above

partition and ergodicity, we arrive at the statement of Lemma 4.25.

By translation invariance, E(|J ∩ [0, 1]|) = limn n
−1E(|J ∩ [0, n]|) ; by Lemmas 3.2 and

4.18, there exists c > 0 such that, for n sufficiently high,

n−1E(|J ∩ [0, n]|) ≥ cn−1E(|ER ∩ [0, n]|) .

By translation invariance again, n−1E(|ER ∩ [0, n]|) = E(|ER ∩ [0, 1]|) which may be writ-

ten rmR,rP(I0 is active). To summarise the derivation of (4.13) thus far, the preceding

inequality and Lemma 4.25 yield

ρE
(
|D0|

∣∣ 0 ∈ M
)
≥ c r mR,r P(I0 is active). (4.14)

We will show that

ρ ≤ r P(I0 is active) ; (4.15)

note then that (4.14) and (4.15) yield (4.13).

To verify (4.15), recall that a marker is by definition an element of ER bordered on the

right by an interval of length r−1 having no intersection with ER . Thus, each marker lies

in an active interval, and no active interval contains more than one marker. This implies

that the mean rate ρ of markers is at most the mean number of active intervals in a given

unit interval, a quantity which may be expressed as r P(I0 is active). This verifies (4.15).

This completes the derivation of (4.13) and thus of (4.8), which concludes the proofs of

Lemmas 4.17 and 4.16 on the Radon-Nikodym derivative dP′′

dP′ .

We are now ready to address the main goal of this subsection. Recall the notion of Good

from Definition 4.12.

Proposition 4.26 (P′ is well behaved). There exists c > 0 such that, for any r > r0 and

R > R0(r),

P
(
ω ∈ Good

∣∣ 0 ∈M
)
≥ c .

In the proof, we will use the following notion and claim.

Definition 4.27. Fix ǫ > 0 and r ∈ N as in Definition 4.8, and let R ∈ N satisfy

R ≥ r1+2ǫ . We say that a dynamical configuration ω in BR is ω ∈ VeryGood if the

following conditions are satisfied:

• 0
ω0←→ R ;

• For each t ∈ [0, (s+1)r−1], the inner and outer boundaries of the annulus Ar1+ǫ,r1+2ǫ

are separated by an ωt -open circuit;
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• For each t ∈ [0, (s + 1)r−1], the circuit Γr exists and satisfies Γr ⊆ Br1+ǫ in ωt ;

• |Piv0↔Γr | ≤ |Piv0↔r1+ǫ(ωt)| ≤ r2(1+2ǫ)α4(r
1+2ǫ) for all such t.

• For each t ∈ [0, (s + 1)r−1], 0
ωt←→ r1+2ǫ .

Lemma 4.28. For any δ > 0, there exists r0 ∈ N such that, for all r ≥ r0 and R ≥ r1+2ǫ ,

P
(
ω ∈ VeryGood

∣∣ 0 ω0←→ R
)
≥ 1− δ . (4.16)

Proof. Let P1 denote dynamical percolation in Br1+2ǫ with ω0 having the distribution

P
(
·
∣∣ 0↔ R

)
, and with conditionally independent updates at rate one. Let P2 denote the

asymmetric dynamical process in Br1+2ǫ with the same initial distribution as in P1 , but

with the updates always leading to the closure of hexagons. As usual, we form the obvious

coupling Q of P1 and P2 such that the first marginal dominates the second for all t ≥ 0.

In this new notation, the statement of the lemma is equivalent to: for any δ > 0, there

exists r0 ∈ N such that, for all r ≥ r0 and R ≥ r1+2ǫ ,

P1(ω ∈ VeryGood′) ≥ 1− δ , (4.17)

where VeryGood′ is given by the second and later conditions defining VeryGood . We claim

that, to show (4.17), it is enough that

P2(ω ∈ VeryGood′) ≥ 1− δ . (4.18)

To see that (4.18) is enough for (4.17), note that, under the coupling Q , it is clear that

if the second (P2 -distributed) marginal satisfies the second, third and fifth conditions of

Definition 4.27, then so does the first (P1 -distributed) marginal, because these conditions are

monotone. In regard to the fourth condition, write Piv for Piv0↔r1+ǫ . Note that if ω1 and ω2

are two configurations in Br1+ǫ such that ω1 ≥ ω2 and 0↔ r1+ǫ under ω2 , then Piv(ω1) ⊆
Piv(ω2): indeed, were a hexagon h in Br1+ǫ to satisfy h ∈ Piv(ω1)\Piv(ω2), then its closure

would disable 0 ↔ r1+ǫ in ω1 but not in ω2 , a circumstance which stochastic domination

prevents. That is, whenever 0
ωt←→ r1+ǫ occurs under P2 , we have that |Piv(ω1

t )| ≤ |Piv(ω2
t )|

(where ω1 and ω2 denote the P1 and P2 marginals), and thus (4.18) implies (4.17) and

hence (4.16).

It remains to verify (4.18). We start with a simple lemma.

Lemma 4.29. Let P
↓
s denote asymmetric dynamical percolation {ωt : t ≥ 0} with ω0

having the distribution IICs , then closing hexagons at rate one. Then, restricted to the ball

Br , the Radon-Nikodym derivative
dP↓

R

dP↓
r

(
ω[0, t]Br

)
is bounded from above uniformly in r ,

R ≥ r , t ≥ 0, and all dynamical configurations ω[0, t]Br .
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Proof. We claim that

dP↓
R

dP↓
r

(
ω[0, t]Br

)
≤ P(0↔ r)P(r + 1↔ R)

P(0↔ R)
, (4.19)

with the right hand side understood simply in static critical percolation. From this, the

lemma follows by quasi-multiplicativity. For the claim, note that the Radon-Nikodym

derivatives with respect to asymmetric dynamical percolation P↓ started from criticality,

restricted to Br , can be written as

dP↓
s

dP↓
(
ω[0, t]Br

)
=

P↓(0↔ s in ω0

∣∣ω[0, t]Br
)

P↓(0↔ s in ω0)
,

for any s ≥ r ; in particular, for s ∈ {r,R}. On the other hand,

P↓(0↔ R in ω0

∣∣ω[0, t]Br
)
≤ P↓(0↔ r in ω0

∣∣ω[0, t]Br
)
P↓(r + 1↔ R in ω0) .

Since the distribution of ω0 under P↓ is simply critical percolation, from the last two

displays follows (4.19).

Proof of (4.18). Let P3 denote asymmetric dynamical percolation P
↓
r1+2ǫ in Br1+2ǫ , with

the notation of the previous Lemma 4.29. By that lemma, it is enough to verify (4.18) with

P3 in place of P2 . We are going to show that each of the four conditions defining VeryGood′

happens with probability close to 1 if r is large enough.

Let us first look at the four conditions at time zero. The fifth condition (that 0↔ r1+2ǫ )

is automatically satisfied under P3 . The second and third conditions (open circuits in

Ar1+ǫ,r1+2ǫ and in Ar1+ǫ,r ) are satisfied with high probability in critical percolation by

RSW along several scales, and also under the conditioning 0↔ r1+2ǫ by FKG. The fourth

condition (there are not too many pivotals for 0 ↔ r1+ǫ ) follows from standard quasi-

multiplicativity arguments. Namely, as illustrated on Figure 4.3, we have

P
(
x ∈ Piv0↔r1+ǫ

∣∣ 0↔ r1+2ǫ
)
≍ α4

(
dist(x, ∂Br1+ǫ) ∧ dist(0, x)

)
α3

(
dist(x, ∂Br1+ǫ), r1+ǫ

)
,

which can be summed up over the possible hexagons x ∈ Br1+ǫ to get

E
(
|Piv0↔r1+ǫ |

∣∣∣ 0↔ r1+2ǫ
)
= O(1) r2(1+ǫ)α4(r

1+ǫ) .

By quasi-multiplicativity and (1.6), we have

α4(r
1+ǫ)

α4(r1+2ǫ)
< C (rǫ)2−η ≪ r2ǫ ,

hence Markov’s inequality yields

P
(
|Piv0↔r1+ǫ | > r2(1+2ǫ)α4(r

1+2ǫ)
∣∣∣ 0↔ r1+2ǫ

)
→ 0 ,
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0

0

x

x

r1+ǫ

r1+ǫ

Figure 4.3: Conditioned on 0 ↔ r1+2ǫ , one 4-arm event (first picture) or one 4-arm and

one 3-arm events (second picture) are roughly equivalent to x being pivotal for 0↔ r1+ǫ .

as r→∞ , as desired.

We now have to prove that the four conditions are also satisfied with high probability

at time t = (s + 1)r−1 ; then, by the earlier monotonicity argument, we have the result for

all t ∈ [0, (s + 1)r−1] , as well.

By the exponent bound (1.7) and the choice (1 + 2ǫ)(1− η) < 1 made in Definition 4.8

and onwards, we have that r−1 ≪ 1/
(
r2(1+2ǫ)α4(r

1+2ǫ)
)
, as r → ∞ . Thus, the constant

closing of hexagons for time (s + 1)r−1 keeps the system Br1+2ǫ well inside the critical

window of percolation, established by Kesten, as described in (1.8) and (1.11). Therefore,

the above arguments for the second to fourth conditions of Definition 4.27 apply verbatim.

The fifth condition can be verified in a similar manner: using (1.11), we have

P↓
(
0

ω(s+1)r−1←→ r1+2ǫ
∣∣∣ 0 ω0←→ r1+2ǫ

)
= 1− o(1) ,

as r→∞ . This finishes the proof of (4.18) and Lemma 4.28.

Proof of Proposition 4.26. Whenever (4.16) holds, by Lemma 4.18 we also have that

P
(
ω ∈ VeryGood

∣∣ 0 ω0←→ R, ER ∩ (sr−1, (s + 1)r−1) = ∅
)

≥ P
(
ER ∩ (sr−1, (s + 1)r−1) = ∅

∣∣ 0 ∈ ER
)
− P

(
ω 6∈ VeryGood

∣∣ 0 ∈ ER
)

P
(
ER ∩ (sr−1, (s+ 1)r−1) = ∅

∣∣ 0 ∈ ER
)

≥ 1− δ
c . (4.20)

Note that if a realization of dynamical percolation in BR realizes VeryGood , then the process

ω(γ + ·) identified in Lemma 4.15 realizes Good. By Lemma 4.15 and (4.20), we find then

that P′′(ω ∈ Good) ≥ 1 − δ/c . Now Lemma 4.16 implies that an appropriate small choice
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of δ in (4.16) forces P′(ω ∈ Good) ≥ c′ for some absolute constant c′ > 0, concluding the

proof of Proposition 4.26.

4.3 Size-biasing arguments

In this subsection, we will prove the bounds (4.5) and (4.6), used in the proof of Proposi-

tion 4.11 at the end of Subsection 4.1. To start with, note that

P
(
N̂ > 1/r

)
=

E(N 11N>1/r)

EN
> c > 0 . (4.21)

Indeed, by Lemma 4.5, the distribution of N̂ = N̂R stochastically dominates that of FETR ,

which implies (4.21) trivially.

Deriving (4.5). Our goal is to show that

E
(
N

∣∣ N > 1/r
)
< C <∞ , (4.22)

uniformly in r and R for which R ≥ r1+2ǫ , since Proposition 4.26 and Good ⊆ Fine then

imply that, for such values of R and r ,

E
(
N

∣∣ N > 1/r,Fine
)
≤ E

(
N

∣∣ N > 1/r
)

P
(
Fine

∣∣ N > 1/r
) ≤ c−1 E

(
N

∣∣ N > 1/r
)
< c−1C <∞ ,

which was the statement of (4.5).

Lemmas 4.5 and 4.6 imply that E
(
N̂
)
< C for some constant C <∞ that is independent

of R . This, together with the lower bound (4.21), plugged into the next lemma with X := N

and t := 1/r , implies (4.22).

Lemma 4.30 (Rough size-biasing). If X is a non-negative random variable, and 0 < t < 1

is such that P(X̂ > t) > c > 0 and E(X̂) < C < ∞, then E
(
X

∣∣ X > t
)
< C ′ <∞, where

C ′ depends only on c and C , and not on t.

Proof. Note that E
(
X

∣∣ X > t
)
= P(X̂ > t) E(X)

P(X>t) . Hence, we need to show that E(X) ≤
C ′ P(X > t). We will need two ingredients for this:

(A) There exists an absolute constant A <∞ such that

E
(
X11t≥X

)
< AP(X > t) .

(B) For all b > 0 there is some K <∞ such that

E
(
X11X>K

)
< bE

(
X11X>t

)
,

and therefore E
(
X11X>K

)
< b′ E

(
X11K≥X>t

)
with b′ = b/(1 − b).
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How would we conclude from here?

E(X) = E
(
X11t≥X

)
+ E

(
X11K≥X>t

)
+ E

(
X11X>K

)

< AP(X > t) +K(1 + b′)P(K ≥ X > t)

< (A+K(1 + b′))P(X > t) ,

and we are done.

Now, for the proof of (A), let us look at

C ≥ E(X̂) =
E(X2)

E(X)
=

E
(
X211X>K

)
+ E

(
X211K≥X>t

)
+ E

(
X211t≥X

)

E
(
X11X>K

)
+ E

(
X11K≥X>t

)
+ E

(
X11t≥X

)

≥ E
(
X211X>K

)

E
(
X211X>K

)
/K +K P

(
K ≥ X > t

)
+ E

(
X11t≥X

) ,

hence

CK P
(
K ≥ X > t

)
+C E

(
X11t≥X

)
≥

(
1− C

K

)
E
(
X211X>K

)
,

for K > t to be fixed later. Assuming the opposite of (A), we have that E
(
X11t≥X

)
≥

AP
(
K ≥ X > t

)
, and the last displayed inequality implies that

(
CK

A
+C

)
E
(
X11t≥X

)
≥

(
1− C

K

)
E
(
X211X>K

)
≥ K

2
E
(
X11X>K

)
,

whenever K ≥ 2C . Therefore,

c <
E
(
X11X>t

)

E(X)
≤ E

(
X11K≥X>t

)
+ E

(
X11X>K

)

E
(
X11t≥X

)

≤ K P
(
K ≥ X > t

)

E
(
X11t≥X

) +
2
(
CK
A + C

)

K
≤ K

A
+

4C

K
,

whenever A ≥ K . The first inequality is due to P(X̂ > t) > c . By choosing K then A

large enough (depending only on c and C ), this gives a contradiction, proving (A).

Now, to prove (B), assume that it is not satisfied for some b > 0 and an arbitrarily large

K > 0. Then

C E(X) ≥ E(X2) ≥ E
(
X211X>K

)
≥ K E

(
X11X>K

)
≥ bK E

(
X11X>t

)
.

For large enough K , this contradicts the bound P(X̂ > t) > c > 0, and we are done.

Deriving (4.6). Recall that we want to show that P
(
N̂11Fine > 1/r

)
> c2 > 0, uniformly

in r and R . Because of the monotonicity in r , it is enough to prove this for some fixed

r = r0 (say, r0 = 2). We obviously have

E
(
N11N>1/r011Fine

)

E
(
N11Fine

) ≥ r−1
0 P

(
N > 1/r0,Fine

)

EN
.
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We have already noted that Proposition 4.26 implies that P(Fine | N > 1/r0) > c > 0,

hence the numerator is at least c r−1
0 P(N > 1/r0). For the denominator, in Lemma 4.30 we

have proved that EN < C ′ P(N > 1/r0). Thus we get that the ratio is at least c r−1
0 /C ′ ,

and we are done.

4.4 Reconnection from thinned configurations

The missing ingredient in the proof of Proposition 4.11 at the end of Subsection 4.1 is (4.7),

namely:

Proposition 4.31 (Things fall apart). For some g(r)→∞ as r→∞, we have that

Pthin

(
T > g(r)

∣∣ T > 1/r ,Fine
)
> c3 > 0 .

The main step in proving this proposition is:

Proposition 4.32 (The centre cannot hold). Consider dynamical percolation in Bn with

an initial condition in which only the hexagons intersecting the x-axis are open. Then, for

some function g : N −→ R+ satisfying g(r) → ∞ as r → ∞, the probability that at some

time between 1/(2n) and g(2n) there exists an open path realizing 0↔ n is bounded away

from one, uniformly in n .

Proof of Proposition 4.31 assuming Proposition 4.32. Recall the dynamics Pthin

specified after Definition 4.10, and note that

Pthin

(
T ≤ g(r)

∣∣ T > 1/r ,Fine
)

= Pthin

(
∃ t ∈ [1/r, g(r)] : 0

ωt←→ r
∣∣ T > 1/r ,Fine

)

≤ Pthin

(
∃ t ∈ [1/r, g(r)] : 0

ωt←→ r/2
∣∣ T > 1/r ,Fine

)
.

Under Pthin

(
· |Fine

)
, the starting configuration ω0 is specified in Definition 4.9; inside

Br/2 , this is a deterministic configuration with only the hexagons intersecting the x-axis

being open. Since a point mass trivially satisfies the static FKG inequality, we can apply

the dynamical FKG inequality Lemma 1.9 for Pthin(· | Fine) inside Br/2 . Namely, for any

s ∈ [0, 1], consider the dynamical event

As :=
{
[0,∞)

ω−→{0, 1}Br/2 càglàd : P
(
T > 1/r

∣∣ ω,Fine
)
≥ s

}

in Br/2 . This event is decreasing, so that Lemma 1.9 tells us that it is negatively correlated

with the increasing event {∃ t ∈ [1/r, g(r)] : 0
ωt←→ r/2}, that is,

Pthin

(
As ∩

{
∃ t ∈ [1/r, g(r)] : 0

ωt←→ r/2
} ∣∣∣ Fine

)

≤ Pthin

(
As

∣∣ Fine
)
Pthin

(
∃ t ∈ [1/r, g(r)] : 0

ωt←→ r/2
∣∣ Fine

)
.
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Integrating over s ∈ [0, 1] gives

Pthin

(
{T > 1/r} ∩

{
∃ t ∈ [1/r, g(r)] : 0

ωt←→ r/2
} ∣∣∣ Fine

)

≤ Pthin

(
T > 1/r

∣∣ Fine
)
Pthin

(
∃ t ∈ [1/r, g(r)] : 0

ωt←→ r/2
∣∣ Fine

)
.

Summarising,

P
(
T ≤ g(r)

∣∣ T > 1/r ,Fine
)
≤ Pthin

(
∃ t ∈ [1/r, g(r)] : 0

ωt←→ r/2
∣∣ Fine

)
.

By Proposition 4.32, the right hand side is bounded away from one, uniformly in r . This

completes the proof.

Proof of Proposition 4.32. Let Hn denote the set of hexagons in Bn intersecting the

x-axis. The elements of Hn will be labelled
{
hi : i ∈ {−n, . . . , n}

}
by the x-coordinate

of the triangular lattice point at the centre of the hexagon. We let Bn \ Hn = Un ∪ Ln

decompose Bn \Hn into its two components above and below the x-axis. The domain Un

has the shape of a half-hexagon, whose inner boundary naturally decomposes into four paths

of hexagons, each along a straight line segment: Hn ∪ ℓ1n ∪ ℓ2n ∪ ℓ3n , where ℓ2n denotes the

horizontal path of hexagons on the top side of Un (so that the “corner” hexagons containing

the points given in complex coordinates by neiπ/6 and neiπ/3 belong to ℓn2 ).

We will denote by PHn the dynamical percolation process of the proposition, under

which only elements of Hn are open at time 0.

Let CUn denote the event that there is a closed path in Un from ℓ1n to ℓ3n . For each

i ∈ {−n/2, . . . , n/2}, let SUn
hi

denote the event that there is a closed path γ in Un from

a hexagon bordering hi to ℓ2n . The events CUn and SUn
hi

have counterparts CLn and SLn
hi

defined verbatim after reflection in the x-axis. Finally, define

T n
+ :=

{
∃ i ∈ {0, . . . , n/2} : hi is closed, SUn

hi
, SLn

hi

}

and

T n
− :=

{
∃ i ∈ {−n/2, . . . , 0} : hi is closed, SUn

hi
, SLn

hi

}
.

Figure 4.4 illustrates that, for any t ∈ (0,∞),

{
ωt ∈ CUn ∩ CLn ∩ T n

+ ∩ T n
−
}
⊆

{
0 6←→ n in ωt

}
. (4.23)

Given (4.23), Proposition 4.32 will easily follow from the next two lemmas.

Lemma 4.33. For each t > 0,

PHn

( ⋂

0<s<t

{
ωs ∈ CUn ∩ CLn

})
→ 1

as n→∞.
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x

Figure 4.4: The events CUn , CLn , T n
+ , T n

− .

Proof. Initially the set of open hexagons in Un is empty; thus, at time s , it has the law

of a Bernoulli percolation P1
2 (1−e−s)

. For 0 < s < t <∞ , let ωs,t denote the configuration

in which a hexagon is open if the hexagon is open under PHn at some time during [s, t] .

Note then that the marginal law of ωs,t in Un is a percolation whose parameter is at most
1
2(1 − e−s) + 1

2(1 + e−s)(1 − e−(t−s)). For any given s > 0, the percolation parameter

of ωs,s+e−s/2 is subcritical. By a standard subcritical percolation estimate, then, for each

s > 0, PHn

(⋂
s<t<s+e−s/2

{
ωt ∈ CUn

})
→ 1. By a union bound over at most 2ses sets, we

see that PHn

(⋂
0<t<s

{
ωt ∈ CUn

})
→ 1. The statement of the lemma follows by symmetry

in the x-axis.

Lemma 4.34. There exists c > 0 such that, for all C > 0 and for all n sufficiently high,

PHn

( ⋂

1/n≤t≤C

{
ωt ∈ T n

+

})
≥ c .

Proof. We will argue that, for some c > 0, and for all n ,

PHn

( ⋂

1/n≤t≤c

{
ωt ∈ T n

+

})
≥ c , (4.24)

and also that, for any s ∈ (0,∞),

lim
n→∞

PHn

( ⋂

s≤t≤s+e−s/2

{
ωt ∈ T n

+

})
= 1 . (4.25)

Note that (4.24) and (4.25) prove the lemma.

Note that each of the percolations ωt for s ≤ t ≤ s+ e−s/2 is stochastically dominated

in Un ∪Ln by ωs,s+e−s/2 which, as we just noted, is a subcritical percolation, of parameter

ps < 1/2.

Let Qn denote the set of hexagons in H that lie in the upper-half plane and that

intersect the rectangle with vertices −n1/4e1 , n1/4e1 , −n1/4e1 + n
2 e2 and n1/4e1 + n

2 e2 .
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Let R+
n denote the event that there exists a closed path in Qn from a hexagon on the

top side of Qn to one that borders h0 . By [Gri99, Theorem 11.55], for any p < 1/2,

lim infn Pp(R+
n ) > 0.

Let R−
n denote the event R+

n defined after reflection in the y -axis, and let Rn =

R+
n ∩ R−

n ∩ {h0 is closed}. Clearly, c = lim infn Pp(Rn) > 0. By partitioning {0, . . . , n/2}
into order n1/4 disjoint intervals and considering the analogue of Rn for each one, we see

that

P(∃ i ∈ {0, . . . , n/2} : hi is closed, SUn
hi
∩ SLn

hi
under ωs,s+e−s/2 ) ≥ 1−

(
1− cs

)n1/4

,

where for each s > 0, cs > 0. Hence, we obtain (4.25).

It is a simple matter to verify (4.24). With a probability that is bounded away from zero

uniformly in n , some hexagon hi , 0 ≤ i ≤ n/2, closes during [0, 1/n] , and remains closed

until at least time one. For some c > 0, the marginal of ω0,c in Un ∪ Ln is a subcritical

percolation. Thus, SUn
hi
∩ SLn

hi
occurs with positive probability under all ωs for 0 ≤ s ≤ c .

This verifies (4.24) and completes the proof of Lemma 4.34.

Proof of Proposition 4.32, continued. Note that Lemma 4.34 has a verbatim counter-

part for the event T n
− . Combining these two lemmas with the aid of the dynamical FKG

Lemma 1.9 for the process PHn , and using Lemma 4.33, we find that, for any C > 0, the

left-hand side of (4.23) is satisfied simultaneously for 1/n ≤ t ≤ C with probability tending

to one as n→∞ . Hence, (4.23) proves the result.

5 The collapse of the connection near the exceptional set

In this section, we address the question of how quickly the infinite cluster C0 in dynamical

percolation disintegrates as time varies away from a typical exceptional time. In view of

Theorems 1.7 and 1.8, we may rephrase the question as how rapidly this collapse occurs at

small positive times in dynamical percolation where ω0 is chosen to have the law IIC . In

constructing approximative local times in Section 2, we mentioned that there are several

natural measurements for how close a finite cluster C0 is to being infinite. We write size(C0)

as a label for any such notion, and consider three possibilities for it: the volume |C0| ,
the radius sup{‖x‖ : x ∈ C0}, or the “helpfulness” (in providing the event 0 ↔ ∞)

help(C0) = MC0
(ω) which was defined in (1.2). Using any of these notions of size, one

may try to define a static percolation exponent σsize that measures the robustness of the

infinite cluster C0(ω0), a dynamical percolation exponent δsize that measures how the size

of C0(ωt) degrades with time, and then may try to relate the two exponents, a relation

that is expected to reflect the fact that the “speed” of the dynamical process is governed by

the number of pivotals in critical percolation. We first give a rough heuristic description of

such a general scaling relation; however, since the existence of classical critical exponents is
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known only for H , our actual theorem will reformulate the relation in a way that does not

use the existence of exponents, and is valid also for the case of Z2 .

To understand the robustness of the initial infinite cluster C0(ω0), we measure the size

of its restrictions to finite balls. Thus, we define the static percolation exponents by

σsize := lim
n→∞

logEIIC

(
size(C0 ∩Bn(0))

)

log n
, size ∈ {vol,radius,help}. (5.1)

From [LSW02] and [Kes87b] we know the existence and values of the classical critical

exponents

1

ρ
:= lim

n→∞
− log P

(
radius(C0) > n

)

log n
=

5

48
,

1

δ
:= lim

n→∞
− log P

(
|C0| > n

)

log n
=

1

2ρ− 1
=

5

91
,

which imply, with some work, that the exponents (5.1) can be given as

σvol =
δ

ρ
= 2− 1

ρ
, σradius =

ρ

ρ
= 1 , σhelp =

1

ρ
. (5.2)

The first one was established in [Kes86, Theorem (8)]. The second one is a triviality. For the

third one, an upper bound on EIIC

(
help(C0 ∩Bn)

)
follows from (2.2), while a lower bound

can be given by the following argument. Under IIC , the smallest open circuit Γn/2 that

surrounds Bn/2 is contained in Bn with a uniform probability c > 0. When conditioning

on ωBn , let us restrict ourselves to the part of the probability space where Γn/2 ⊂ Bn ,

condition first on ωInt(Γn/2) , and then, for R > n , use the bound

EIIC

(
P
(
0↔ R

∣∣ ωBn
))
≥ EIIC

(
11{Γn/2⊂Bn} EIIC

(
P
(
0↔ R

∣∣ ωBn
) ∣∣∣ ωInt(Γn/2)

))

≥ EIIC

(
11{Γn/2⊂Bn} P

(
n/2↔ R

))

≥ cP
(
n/2↔ R

)

to find that

EIIC

(
lim

R→∞
P
(
0↔ R

∣∣ ωBn
)

P(0↔ R)

)
≥ lim sup

R→∞

cP(n/2↔ R)

P(0↔ R)
≥ c′ P(0↔ n/2)−1 .

In the first inequality, we used quasi-multiplicativity to obtain the uniform boundedness

P
(
0↔ R

∣∣ ωBn
)
/P(0↔ R) ≤ C/P(0↔ n) and are thus able to apply the dominated con-

vergence theorem; the second inequality likewise uses quasi-multiplicativity. This concludes

the argument for the third equality of (5.2) above.

For the dynamical scaling relation, we will also need the static exponent for the number

of pivotals for left-right and annulus crossings:

τ := lim
n→∞

logEpc

∣∣PivA(n)

∣∣
log n

= lim
n→∞

logEpc

∣∣PivA(n,2n)

∣∣
log n

=
3

4
,
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following from [SmW01], as already mentioned in Subsection 1.4.

Now, we define the dynamic percolation exponents by

δsize = inf
{
y ≥ 0 : lim inf

t↓0
ty size(C0(ωt)) = 0

}
,

starting the process from ω0 having the law of IIC . Note that this is a reasonable notion

of measuring the collapse of the IIC near ω0 : time 0 is a limit point of exceptional times,

hence size(C0(ωt)) is infinite along some sequence tn ↓ 0, but at typical times the cluster

is finite and should indeed get smaller with time, according to the following mechanism.

As we will see, for short times t > 0, a fragment of the original infinite cluster C0(ω0)

survives at all times s ∈ [0, t] , with the radius of this fragment determined by the maximal

scale on which a pivotal hexagon rings during [0, t] . As such, we expect that, for any of the

above three notions of size,

τ δsize = σsize . (5.3)

In the interests of concision, we will prove this relation only when size = radius . The

next theorem reformulates the relation in this case, in a way that is valid even for the case

of Z2 . The rest of the section is devoted to the theorem’s proof.

Theorem 5.1. Consider dynamical percolation PIIC with ω0 having the distribution IIC .

For t > 0, set χt = infs∈[0,t] radius
(
C0(ωs)

)
. We then have logχt ∼ log ρ(1/t) P-a.s. as

tց 0, with ρ(·) introduced in (1.12). In particular, on H , we have χt = t−4/3+o(1) .

Proof. We start by showing the upper bound on the radius, i.e., by proving that the cluster

of the origin falls apart fast enough. The following lemma will be a key step.

Lemma 5.2. There exists c > 0 such that the following holds. Let t ∈ (0, 1) and r ≥
ρ(1/t). Let ζ denote a configuration in the annulus Ar,2r . Let N t

r(ζ) denote the event that

the conditional probability of the inner and outer boundaries of Ar,2r not being connected

by an open path at time t, given that ω0 in Ar,2r equals ζ , exceeds c > 0. Then IIC
(
{ζ :

N t
r(ζ)}

)
≥ c. Moreover, the same conclusion holds for the measure IIC( · |O is open),

where O is any given circuit in Ar/4,r/2 surrounding Br/4 , and where c > 0 may be chosen

independently of O .

Proof. Let C denote the event that r ←→ 2r . That

P(C(ω0) ∩ C(ωt)
c) ≥ c , (5.4)

where c > 0 is uniform in r ∈ N and t ≥ 1/(r2α4(r)), is a standard and simple consequence

of the discrete Fourier analysis approach to critical percolation, already stated as (1.15).

Note that (5.4) implies the statement of the lemma when ω0 has the law of critical

percolation conditioned to have the crossing. To obtain the same statement when ω0 has
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the law IIC , we can apply Lemma 4.20. For the case of IIC( · |O is open), we can apply a

direct analogue of Lemma 4.20, using P∞
O = P( · | O ↔∞) in place of Pb

a .

We want to argue that, for any ǫ > 0, we have PIIC -a.s., for all small enough t > 0, that

χt ≤ ρ(1/t) t−ǫ . (5.5)

We define an iterative procedure in an effort to prove (5.5). Let ℓ1 ∈ N be minimal such that

2ℓ1 ≥ ρ(1/t). Write ω
(ℓ1)
0 for ω0 restricted to A1 := A2ℓ1 ,2ℓ1+1 . If N t

2ℓ1
(ω(ℓ1)) occurs, and if

no open path connects the inner and outer boundaries of A1 at time t , then the procedure

terminates. If one or other of these conditions is unsatisfied, let ℓ∗1 be the minimal ℓ ≥ ℓ1+1

such that A2ℓ,2ℓ+1 contains an open circuit which encloses B2ℓ . Set ℓ2 = ℓ∗1 + 2. Write

A2 = A2ℓ2 ,2ℓ2+1 and denote by ω
(ℓ2)
0 the configuration ω0 restricted to A2 . If N t

2ℓ2
(ω(ℓ2))

occurs, and if no open path connects the inner and outer boundaries of A2 at time t , then

the procedure terminates. Otherwise, it continues to its next step. The generic step has a

similar description to the second one.

Lemma 5.3. Let J ≥ 1 denote the index of the step at which the procedure terminates.

Then there exists c > 0 such that, for each k ∈ N , P
(
ℓJ − ℓ1 ≥ k

)
≤ exp

{
− ck

}
.

Proof. Note that, by Lemma 5.2, there exists c > 0 such that J = 1 with PIIC -probability

at least c2 . Under the law PIIC given the event that either N t
2ℓ1

(ω(ℓ1)) does not occur, or

N t
2ℓ1

(ω(ℓ1)) occurs and 2ℓ1
ωt←→ 2ℓ1+1 , note that the conditional distribution of ω0 in Bc

2ℓ1+1

stochastically dominates critical percolation. (This statement is true because it is valid for

PIIC conditionally on an arbitrary configuration in B2ℓ1+1 that satisfies 0 ↔ 2ℓ1+1 at time

zero.) By RSW, FKG and independence on disjoint sets, each dyadic annulus with index at

least ℓ1 +1 independently has probability at least c > 0 to contain an open circuit discon-

necting its boundaries. Thus, conditionally on the value of ℓ1 , the random variable ℓ∗1 − ℓ1

is stochastically dominated by a geometric random variable (which we call X1 ). Let O1

denote the innermost of the surrounding open circuits located in A2ℓ1 ,2ℓ1+1 . Conditionally

on ω0 taking a given form on O ∪ Int(O), the conditional distribution of ω0 in the exterior

of O is given by IIC given that O is open. Thus, we may apply the IIC( · |O is open) case

of Lemma 5.2 to learn that there is probability at least c that Nℓ2(ω
(ℓ2)) occurs. Should

this event not occur, or should this event occur alongside the event 2ℓ2
ωt←→ 2ℓ2+1 , then, as

previously, the conditional distribution of ℓ∗2−ℓ2 is stochastically dominated by a geometric

random variable, which we call X2 .

In this way, we see that ℓJ − ℓ1 is stochastically dominated by
∑G1−1

i=1 Xi + 2(G1 − 1),

where G1 is a geometric random variable and
{
Xi : i ∈ N

}
is an independent sequence of

i.i.d. geometric random variables. This completes the proof of Lemma 5.3.

Note that the inner and outer boundaries of A2ℓJ ,2ℓJ+1 are disconnected at time t .

Therefore, by Lemma 5.3, χt ≤ ρ(1/t) t−ǫ has probability at least 1 − clog2(t
−ǫ) . We have

thus verified (5.5).
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To complete the proof of Theorem 5.1, it remains to argue that, PIIC -a.s.,

χt ≥ ρ(1/t) tǫ (5.6)

for all small enough t > 0. To prove this, we need the following lemma.

Lemma 5.4. Let R ∈ N . For each ǫ > 0, there exists δ > 0 such that if A ∈ σ{BR}
satisfies IIC(A) ≥ ǫ, then IICR(A) ≥ δ .

Proof. Recalling the definitions made in (1.1, 1.2), the Bayes’ rule computation (1.3),

and the quasi-multiplicativity bound (2.2), we have that, for each configuration ζ in BR

realizing 0←→ R ,
dIIC

dIICR
(ζ) =

MR(ζ)

MR(ζ)
≤ C1 ,

with an absolute constant C1 <∞ . This readily implies the claim.

Starting dynamical percolation from IICR , and using the coupling in which bits always

turn off, Kesten’s near-critical one-arm stability (1.11) shows that the probability of still

having the connection 0 ←→ R at all times until
(
R2(1−ǫ)α4(R

1−ǫ)
)−1

is 1 − o(1), as

R → ∞ . By Lemma 5.4, the same statement holds when the initial condition is IIC-

distributed. From this, (5.6) follows readily. This completes the proof of Theorem 5.1.
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[BHPS03] I. Benjamini, O. Häggström, Y. Peres, and J. E. Steif. Which properties of a

random sequence are dynamically sensitive? Ann. Probab. 31 (2003), 1–34.

[BKS99] I. Benjamini, G. Kalai, and O. Schramm. Noise sensitivity of Boolean func-

tions and applications to percolation. Inst. Hautes Ètudes Sci. Publ. Math. 90
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http://www.math.ethz.ch/u/sznitman/SpecialTopics.pdf

[Wer09] W. Werner. Lectures on two-dimensional critical percolation. In Statistical

Mechanics, IAS/Park City Math. Ser., 16, pp. 297–360. Amer. Math. Soc.,

Providence, RI, 2009. arXiv:0710.0856 [math.PR]

55

http://front.math.ucdavis.edu/0708.4287
http://front.math.ucdavis.edu/1110.5269
http://front.math.ucdavis.edu/math.PR/9904022
http://front.math.ucdavis.edu/1101.5820
http://front.math.ucdavis.edu/math.PR/0504586
http://front.math.ucdavis.edu/0909.4499
http://front.math.ucdavis.edu/0708.0032
http://front.math.ucdavis.edu/math.PR/0109120
http://front.math.ucdavis.edu/0901.4760
http://www.math.ethz.ch/u/sznitman/SpecialTopics.pdf
http://front.math.ucdavis.edu/0710.0856


Alan Hammond

Department of Statistics, University of Oxford

http://www.stats.ox.ac.uk/~hammond/
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