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N2V defect in diamond is characterized by means of ab initio methods relying on density functional theory
calculated parameters of a Hubbard model Hamiltonian. It is shown that this approach appropriately describes
the energy levels of correlated excited states induced by this defect. By determining its critical magneto-optical
parameters, we propose to realize a long-living quantum memory by N2V defect in diamond.

I. INTRODUCTION

Paramagnetic point defects in diamond are candidates for
quantum bit and quantum information applications. Vari-
ous defects were identified as optically active color centers1,
most notable is the nitrogen-vacancy (NV)2. NV is formed
in diamond by trapping of a mobile vacancy by the substi-
tutional nitrogen atom. In nitrogen rich diamond aggrega-
tion of subtitutional nitrogen atoms may occur. The neigh-
bor substitutional nitrogen pair is an example for such aggre-
gation (A-aggregate). Similar to NV defect, N2V defect is
formed by an A-aggregate trapping a mobile vacancy3. Uni-
axial stress measurements already established N-V-N struc-
ture of the N2V defect with C2V symmetry [see Fig. 1(a)]4.
The effective one-electron picture of the defect is described by
Lowther5. The defect in its neutral charge state was assigned
to H3 color center6 with zero phonon line (ZPL) of 2.463 eV,
where this signal was associated with the optical transition
between 1A1 ground and 1B1 excited state7. The H3 photolu-
minescence (PL) center has a PL lifetime of 17.5 ns and out-
standing 0.95 quantum yield8 that makes the defect a stable
single photon source9. An optically inactive 1A1 state with
absorption line at 2.479 eV was revealed under uniaxial stress
measurements7. Furthermore, H13 absorption band with ZPL
at 3.364 eV was also observed and interpreted as transition to
higher excited states10. The H3 center shows delayed lumi-
nescence, that was interpreted as a reversible transition from
the 1B1 excited state to metastable triplet states, with radiative
decay time in the order of tens of milliseconds11. Its paramag-
netic metastable triplet state was investigated by electron spin
resonance (ESR) spectroscopy, called W26 center, under il-
lumination at room temperature. The experimental zero-field
splitting (ZFS) tensor principal values are Dxx = 1.43 GHz
and Dzz = −2.63 GHz. The measured hyperfine parameters
of 14N nuclei are A⊥ = 10.2 MHz and A‖ = 21.5 MHz12.

Our study is motivated by the success of optically de-
tected magnetic resonance (ODMR) applications of single NV
defect13 and the readout and control of single nuclear spin
with ST1 defect in diamond14. The latter employs optical
pumping to metastable triplet state where initialization of the
nuclear spin is achieved by spin polarization transfer exploit-
ing the hyperfine level anticrossing (LAC). As the metastable
triplet state relaxes to the singlet groundstate, the nuclear spin
coherence time is not reduced by the persistent electron spin.
As H3 center exhibits singlet groundstate and optically acces-

sible metastable triplet state we wished to explore the proper-
ties of N2V defect for quantum memory applications.

To this end, we characterize this defect in diamond by
means of advanced density functional theory (DFT) calcu-
lations. In this paper, we demonstrate that optical spin po-
larization of the triplet state and spin polarization transfer to
the existing nuclear spins is principally feasible, i.e., a long
living quantum memory may be realized with N2V defect.
Their magneto optical parameters is determined by means of
DFT calculations that go beyond the conventional Kohn-Sham
DFT methods. By combining von Barth theory15 and Hub-
bard model we developed an ab initio method to calculate the
energy of highly correlated multiplets with using only Kohn-
Sham DFT wavefunction and energies, and we apply this to
the neutral N2V defect.

We organized our paper as follows. In the next section
(Sec. II), details about the computational method are given
including test results on the negatively charged N2V defect.
We focus then on the proposed quantum memory application
of the neutral N2V defect in Sec. III that is the main topic of
our paper. In Sec. IV we describe the Hubbard Hamiltonian
analysis of the electronic structure of the neutral N2V defect.
We report the calculated ab initio magneto-optical parameters
in Sec. V that are taken in the quantum memory discussion in
Sec. III.

II. COMPUTATIONAL METHOD

We carried out DFT calculations for electronic structure
calculation and geometry optimization within spinpolarized
HSE06 hybrid functional16 using the plane wave and pro-
jector augmented-wave (PAW) formalism based Vienna Ab
initio Simulation Package (VASP)17–21. The model of N2V
in bulk diamond was constructed using a 512-atom diamond
simple cubic supercell within the Γ-point approximation. The
Γ-point approximation simplifies the process of ensuring the
proper symmetry of the Kohn-Sham wave functions which is
advantageous in our method. The Γ-point sampling of the
Brillouin-zone has proven sufficient for various defects in di-
amond for 512-atom supercell22,23. This implies that the em-
ployed parameters provide sufficiently converged results for
N2V. Most of the calculations were performed with 370 eV
plane wave cutoff energy that is sufficient for electronic struc-
ture of nitrogen-vacancy type defects calculations22. Hyper-
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(a) (b) (c)

FIG. 1. (a) Geometry of N2V defect in diamond. (b) Representation of defect levels of double negatively charged N2V with closed-shell
orbitals relative to the valence band maximum (VBM). (c) Analysis of ODMR contrast of the neutral N2V. Straight line illustrates radiative
decay, dashed and dotted lines represent ISC with first order and second-order spin-orbit couplings (λ), respectively. Curved lines and blue
arrows indicate phonon and microwave transition, respectively. The calculated zero field splitting parameters are given for 3B1 state at 0 K
temperature.

fine interaction parameters were obtained with core correction
included24 with an increased cutoff energy of 500 eV. Zero
field splitting parameters were calculated with a home built
code with the use of the same parameters and methods that
are given in Ref. 25.

HSE06 calculations provide excellent results for the nega-
tively charged N2V defect which has a spin doublet with no
high correlation between the electron states. To demonstrate
this, we compare the experimental hyperfine constants26 with
our HSE06 DFT calculations in Table I, and we found excel-
lent agreement. This supports to apply HSE06 functional for
orbitals that are not highly correlated. However, we found
that the neutral N2V is very challenging for Kohn-Sham DFT
functionals because of the highly correlated open-shell or-
bitals. We present a method in Sec. IV that properly calculate
these states that involves a Hubbard model Hamiltonian. Our
method can be useful in the study of other quantum bits with
highly correlated electronic states.

TABLE I. HSE06 DFT calculated and experimental (in parentheses)
hyperfine principal values for the first neighbor nitrogen and first car-
bon atoms around the vacancy of the negatively charged N2V defect.
The experimental data are taken from Ref. 26.

atom Axx (MHz) Ayy (MHz) Azz (MHz)
15N 4.0(3.47) 4.5(4.09) 5.0(4.51)
13C 190.8(202.3) 191.6(202.3) 314.3(317.5)

III. PROPOSED QUANTUM MEMORY APPLICATION OF
THE N2V DEFECT

By using HSE06 we found in an earlier study22 that the
(+|0) and (0|−) charge transition levels of N2V defect are at
EC−4.8 eV and EV + 3.3 eV, respectively, where EC and EV
is the conduction and valence band edge, respectively. This
explains the stability of its neutral charge state at various dop-
ing concentrations. Furthermore, its H13 absorption band can
be associated with the transitions from the valence band to the
empty in-gap defect level of the neutral defect. The method
to calculate the lower energy states and electronic structure is
given in the next Sections. Our basic results are summarized
in Fig. 1 that shows the optically induced electron spinpolar-
ization process. We find two optically active excited states
(1B1 and 1A1 with small energy gap) and an optically for-
bidden dark state (1A2). After the excitation to the phonon
sideband of the optically allowed singlet excited states, it can
relax to the vibronic groundstate of 1B1, and then back to the
1A1 electronic groundstate with emitting a photon. Alterna-
tively, intersystem crossing (ISC) from 1B1 to 3B1 may take
place too as a second order process, where mixing of the ex-
cited 1B1 and 1A1 states caused by B1-type phonons makes
the intersystem crossing feasible via spin-orbit interaction. At
elevated temperatures, the 1A1 excited state may be thermally
occupied (experimental gap is 16 meV in Ref. 7) and then a
first order ISC to 3B1 can occur. This is a spin selective tran-
sition to mS = ±1 as only λy of B1 symmetry can couple
these states, where λy is the y-component of the spin-orbit
coupling. We note that the spin sublevels of the triplet split
even at zero magnetic field that is caused by the electron spin -
electron spin dipolar interaction (zero-field splitting) because
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of the low-symmetry crystal field. Thus, the spin selective
ISC will indeed populate only the mS = ±1 states. From this
metastable triplet, an ISC can occur to the singlet groundstate.
Again, the transition from the triplet mS = ±1 and mS = 0
substates to the singlet 1A1 groundstate is a first order and
a second order process, respectively, because of the selection
rules. The singlet-triplet ISC is expected to be significantly
slower than the rate of the radiative decay, because the large
gap between the excited state singlet and the metastable triplet
according to our ab initio result. This is in contrast to the inter-
pretation of an experiment11, that we will discuss below. This
ab initio result may explain the large quantum yield of the
defect. In the optical cycle, ODMR contrast can be achieved
by microwave excitation, owing to the lifetime differences of
first and second order transitions from the different triplet sub-
states to the singlet groundstate.

The system shows characteristics that makes it a promising
candidate for quantum memory applications. Electron spinpo-
larization can be achieved in the ODMR cycle by populating
the mS = ±1 sublevel of the metastable triplet. The 14N
(or 15N nuclei of the defect and 13C nuclei in their vicinity
are candidates for quantum memory. The calculated hyperfine
constants are listed for these nuclear spins in Sec. V. Spinpo-
larization transfer between electron and nearby nuclear spins
can be realized at LAC condition by optical pumping of the
defect (see detailed analysis of this process in Refs.27,28). LAC
condition can be realized by a constant external magnetic field
which is perfectly aligned with the symmetry axis of the de-
fect and its magnitude equals the zero-field-splitting14,29. Af-
ter the nuclear spin was set, the electron will naturally decay
to the singlet groundstate that does not decohere the nuclear
spin.

IV. HUBBARD MODEL OF THE ELECTRONIC STATES

Next, we discuss the nature of electronic structure of the
neutral N2V and methods to calculate it properly. The four
dangling bonds of the defect under C2v symmetry produces
b2, a1 and b1 Kohn-Sham levels in the gap, in ascending en-
ergy order (see Fig. 2), that may be derived from a split t2
state of the vacancy. In addition, another a1 forms resonant
with the valence band. These states are occupied by six elec-
trons. The highest energy occupied in-gap a1 state (HOMO) is
a stretched C-C bonding state while the lowest energy empty
b1 state (LUMO) is a C-C antibonding state30. As we will
show below, HSE06 DFT calculations cannot describe the var-
ious multiplet states of the defect caused by the strong corre-
lation of open-shell orbitals. In the following we will use a
Hubbard model Hamiltonian to represent the strongly corre-
lating electrons. We particularly focus on the HOMO a1 and
LUMO b1 states as active space for the correlated electrons
that contribute to the lowest energy excitation configurations.

Our active space with a1 and b1 states may be labeled sim-
ply a and b, respectively. Then these states may be given as
a = 1√

2
(A+B) and b = 1√

2
(A−B) where A and B are

dangling bonds on the two nearest neighbor carbon atoms.
The singlet determinants with A1 symmetry are

∣∣1A1(g)

〉
=

(a) (b)

(c) (d)

(e)

FIG. 2. Visualisation of geometric structure and defect wavefunc-
tions of N2V. Brown and blue balls represent the carbon and nitro-
gen atoms, respectively. Defect states are labeled by their irreducible
representation and localization. (a) a1(N), (b) b2(N), (c) a1(C), (d)
b1(C), (e) defect levels.

∣∣a↑a↓〉, ∣∣1A1(e)

〉
=
∣∣b↑b↓〉, ∣∣1B1

〉
= 1√

2

(∣∣a↑b↓〉− ∣∣a↓b↑〉).
The triplet determinants are

∣∣3B1

〉
=
∣∣a↑b↑〉 ;

∣∣a↓b↓〉 for
mS = ±1, respectively, and

∣∣3B1

〉
= 1√

2

(∣∣a↑b↓〉+
∣∣a↓b↑〉)

for mS = 0. Substituting a and b in the above formulas, the
atomic orbital form of the determinants can be obtained. The
electronic structure of the neutral N2V defect can be described
by a Hamilton operator derived from configurational interac-
tion with zero differential overlap (ZDO) approximation and
Heisenberg spin coupling. The full Hamiltonian then can be
described as a Hamiltonian familiar with the Hubbard model31

(Ĥ ′) plus the Hamiltonian of the bath of weakly interacting
electrons (Ĥ0)

Ĥ = Ĥ ′ + Ĥ0 =

U (n̂A↑ n̂A↓ + n̂B↑ n̂B↓)

− t
4

(
ĉ†
A↑ ĉB↑ + ĉ†

A↓ ĉB↓ + ĉ†
B↑ ĉA↑ + ĉ†

B↓ ĉA↓

)
+C (n̂A↑ n̂B↑ + n̂A↓ n̂B↓ + n̂A↑ n̂B↓ + n̂A↓ n̂B↑)

−2J
(
ĉ†
A↑ ĉA↓ ĉ†

B↓ ĉB↑ + ĉ†
A↓ ĉA↑ ĉ†

B↑ ĉB↓

)
−J (n̂A↑ n̂B↑ + n̂A↓ n̂B↓ − n̂A↓ n̂B↑ − n̂A↑ n̂B↓) + Ĥ0 (1)

where the first term is the onsite repulsion, the second is the
hopping, the third is the Coulomb repulsion and the last two
terms are from the Heisenberg exchange interaction in the
Hubbard Hamiltonian. n̂ is the particle number operator while
ĉ† and ĉ is the creation and annihilation operators, respec-
tively. The eigenvalue of H0 is E0 that is the total energy of
the bath of weakly interacting electrons that should be added
to the solution of Ĥ ′. We use the symmetry adapted basis
above to write down the matrix of the Ĥ ′ Hubbard Hamilton
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operator,

H ′ =


∣∣1A1(g)

〉 ∣∣1A1(e)

〉 ∣∣1B1

〉 ∣∣3B1

〉
U−t+C+3J

2
U−C−3J

2
U−C−3J

2
U+t+C+3J

2
U

C − J

,

(2)
where we here neglected the zero-field splitting in the 3B1

state. In the HSE06 DFT functional calculations the off-
diagonal terms are completely neglected, with resulting in Ψ1

and Ψ3 states with 1A1 symmetry. The 1B1 state is a multi-
determinant state, and HSE06 DFT cannot calculate the true
eigenstate, and as a consequence, the true eigenenergy of the
system. Instead, one can calculate

E (Ψ2) =
〈
a↑b↓ |H| a↑b↓

〉
=
U + C − J

2
+ E0. (3)

Finally, one can calculate the HSE06 DFT total energies for
Ψ1, Ψ3, 3B1 (corresponding diagonal terms in Eq. 2) and for
Ψ2 (Eq. 3), that provides four equations for the full Hamilto-
nian parameters. In the full Hamiltonian there are five param-
eters, however, we are interested in the excitation energies for
which three combined parameters, t, J , and U − C, are left
(see Eqs. A5-A7 in the Appendix) that can be derived from
the total energy expressions of Ψ1−3 and 3B1.

The HSE06 DFT total energies for these various states can
by obtained by ∆SCF calculations32. In order to work with a
"non-correlated" basis for ∆SCF energy calculations required
in the Hubbard Hamiltonian, we used the basis functions of
the closed shell system of the defect in its double negatively
charged state N2V [Fig. 1(b)], calculated in the N2V0 ground-
state geometry. This choice provides a basis that is free from
spin contamination and strong correlation effects. We note
that the relaxed orbitals within unrestricted spinpolarized DFT
Kohn-Sham formalism resulting in lower total energies (see
Sec. B in the Appendix). However, our main purpose here is
to calculate the excitation energies. As the same restriction on
the Kohn-Sham orbitals applies in all the electronic configura-
tions (ground state and excited states), we implicitly assumed
that this restriction has the same effect for all the electronic
configurations. Finally, the calculated excitation energies are
in order.

Other basis that prevents spin contamination could be the
neutral state with partially occupied defect levels. However,
these basis functions cannot prevent strong correlation effects
via Coulomb interaction because of the open shell electronic
structure. This is manifested as Kohn-Sham orbitals with bro-
ken symmetry which is not a good basis set for a Hubbard
calculation. We conclude that the only proper basis is to se-
lect the Kohn-Sham wave functions (orbitals) from the closed
shell (2−) charge state. The total energies in the various occu-
pation of Kohn-Sham states representing the Ψ1, Ψ2, Ψ3, 3B1

multiplets were calculated by keeping these orbitals fixed. We
note that this procedure is very different from the usual self-
consistent unrestricted spinpolarized DFT method. Conse-
quently, the two approaches result in different excitation en-
ergies by ∆SCF method (see Sec B in the Appendix). Our

TABLE II. HSE06 total energies of considered states of neutral N2V
relative to that of Ψ1 obtained by fixed orbital calculation from the
double negatively charged N2V basis states in the optimized geom-
etry of the neutral N2V by the self-consistent spinpolarized HSE06
calculation. We note that the chosen relative energies correspond to
an energy shift of t−U−C−3J

2
in (H ′) (see Eq. 2).

state relative energy (eV)
Ψ1 0.00
Ψ2 1.01
Ψ3 2.23
3B1 −0.05

procedure with fixed orbitals guarantees the proper spin state
and symmetry of the single determinant many-body state.

By calculating the HSE06 DFT energies for the Ψ1−3 and
3B1 states (summarized in Table II), the parameters in the
Hubbard Hamiltonian can be calculated ab initio, and the
resultant values are t = 2.23 eV, U − C = 2.05 eV, and
J = 0.05 eV, respectively. The singlet-triplet coupling is mi-
nor, and the U − C terms and the hopping term t dominate,
U −C ≈ t ≈ 2 eV. A very important finding is that the calcu-
lated Ψ1 → Ψ2 excitation energy by the self-consistent spin-
polarized DFT method scales up by ≈ 1 +

√
2/2 ≈ 1.7, with

respect to the the correct 1A1(g) → 1B1 excitation energy
obtained by the Hubbard model. In other words, the vertical
excitation energy associated with 1B1 state increases in the
order of eV in the Hubbard model with respect to the HSE06
Kohn-Sham DFT result. As a consequence, the excitation en-
ergies of the 1A1(g) → 1B1 and 1A1(g) → 1A1(e) transi-
tions are close to each other in the Hubbard model. The error
in the self-consistent spinpolarized Kohn-Sham DFT HSE06
functional is much larger than the usual 0.1 eV22. Our Hub-
bard model Hamiltonian derivation clearly shows that the 1B1

state is a particularly highly correlated multiplet which cannot
be properly treated by Kohn-Sham hybrid density functionals.

V. AB INITIO MAGNETO-OPTICAL PARAMETERS

For direct comparison to the experimental ZPL data, one
has to calculate the relaxation energy of ions upon excita-
tion. The relaxation energy was very roughly estimated by
self-consistent spinpolarized HSE06 ∆SCF method on Ψ1−3
states. We find that the relaxation energy on 1A1(e) state is
≈ 0.6 eV whereas it is ≈ 0.2 eV on 1B1 state. The relaxation
energy on 3B1 is small, 0.06 eV. The final results are depicted
in Fig. 3 that are directly compared to experimental data and
the self-consistent spinpolarized Kohn-Sham HSE06 results.
Our Hubbard model Hamiltonian with ab initio parameters
provides significantly improved results over those obtained
by the usual self-consistent unrestricted spinpolarized Kohn-
Sham HSE06 method. We find that the 1A1(g) → 1B1 ZPL
energy is indeed around 2.4 eV, and the 1A1(g) → 1A1(e)

ZPL energy is slightly above that. These are the optically
allowed transitions. Higher energy singlet and triplet states
with b2 → b1 excitation may form with optically forbidden
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A2 symmetry. The 1A2 state cannot absorb light but can play
a role in the non-radiative decay when the electron is excited
to the H13 band which corresponds to the valence band to b1
transition (see Fig. 3). The total energy of the 3A2 could be
calculated ∆SCF procedure from 3B1 → 3A2 excitation en-
ergy whereas the total energy of 1A2 should be slightly higher
due to the small singlet-triplet coupling J .

Regarding the triplet energy levels, their energies in the
region of 270 − 480 meV below the 1B1 level were pro-
posed from PL lifetime measurements where they found a de-
layed luminescence of millisecond lifetime11 that they associ-
ated with a spin-orbit mediated tunneling process33 from the
metastable triplets to the lowest energy singlet excited state
with the formula

W (T ) =
K√
kT ∗

coth

(
h̄ω

2kT

)
exp

(
− Ea

kT ∗

)
(4)

K =
|Csl|2 ω

√
2π√

2EM

(5)

Csl =

〈
s
∣∣∣ĤSO

∣∣∣ l〉 Jsl
Es − El

, (6)

with kT ∗ = 1
2 h̄ω coth (h̄ω/2kT ), Ea is the barrier energy

between the corresponding states, h̄ω dominant phonon fre-
quency, EM is the relaxation energy between the two states, k
is the Boltzmann constant and T is the temperature in Kelvin.
Csl is the coupling of states s and lwhere ĤSO is the spin-orbit
coupling operator, Jsl is the electron-phonon coupling. We
found that the 3B1 level is rather far (> 2 eV) from the excited
singlet states, thus we estimated its delayed luminescence. As
the transition from 3B1 to 1B1 is a second order process which
should be presumably slow, we calculated the transition to
1A1 with first order ISC process. The estimated strength of
spin-orbit coupling is around 10 GHz and that of the electron-
phonon coupling is 0.1

√
eV, similar to the values in NV

center34,35. From our vibrational analysis, calculated with the
computationally less expensive PBE functional36 using PBE
optimized geometries, we obtained the average phonon en-
ergy of 84 meV weighted by the partial Huang-Rhys factors37

for the vibrational coupling for this transition. The relaxation
energy between 1A1 and 3B1 is estimated to be 0.4 eV. With
these parameters we obtain a lifetime in the order of 106 s at
various temperatures. This implies that the observed delayed
luminescence is not intrinsic to the defect. As the delayed
luminescence was observed for the ensemble of N2V defects
we speculate that it originates from the interaction with other
defects in diamond. Future single defect measurements may
conclude the nature of this emission.

In the following, we present the calculated hyperfine inter-
action of the electron spin with 14N and proximate 13C nuclear
spins. The identification of 13C sites with dominant hyperfine
parameters in the vicinity of N2V defect is of great impor-
tance in quantum memory realization with this defect as they
can store the quantum information for relatively long time.

1A1

1B1

1A1

3B1

1A2
3A2

1A1

1B1

1A1

3B1

1A2
3A2

HSE
ΔSCF

Exp.
Hubbard

model

1A1

1B1

1A1

triplet

E (eV)

0.5

0.0

1.0

1.5

2.0

2.5

3.0

} }

}

~

~

~

~
~
~

FIG. 3. Excitation energies of the neutral N2V defect in diamond.
States that are very close in energy are enclosed with brackets. The
lowest optically allowed excitation energies are highlighted with red.
Left panel: self-consistent unrestricted spinpolarized Kohn-Sham
HSE06 ∆SCF results. The tilde on the labels of the wavefunctions
signs that not the true eigenstate of the system is calculated (see text
for more details). Middle panel: experimental zero-phonon-line en-
ergies for the singlets (Ref. 7) and the proposed energies of triplets
(Ref. 11). Right panel: Hubbard model Hamiltonian results.

These sites are highlighted in Fig. 4 and the corresponding
calculated hyperfine parameters are listed in Table III.

FIG. 4. Visualization of atomic sites with dominant hyperfine param-
eters shown in Table III for N2V0.

TABLE III. HSE DFT calculated hyperfine constants for N2V0 for
14N and 13C nuclei. The location of 13C nuclei is depicted in Fig. 4.

site Axx (MHz) Ayy (MHz) Azz (MHz)
14N 9.6 9.5 14.5
C1 82.3 81.7 198.9
C2 −11.5 −8.5 −12.1
C2’ −11.2 −8.3 −11.6
C3 15.9 15.7 24.2
C3’ 16.1 15.9 24.4
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VI. SUMMARY

We analyzed the neutral N2V defect in diamond by means
of ab initio calculations, and concluded that a quantum mem-
ory can be realized by this defect controlled by optical excita-
tion and microwave manipulation. We showed that the elec-
tronic structure of this defect is a prototype of highly corre-
lated states that can be treated by our method that is a combi-
nation of density functional theory and a Hubbard model.
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Appendix A: Additional formulas for the Hubbard model

In this section, we explicitly show the connection between
the DFT total energies of the single determinant states and
the multiplets, and write down the formulas that we applied
to obtain the Hubbard parameters and calculate the excitation
energies.

By using the definitions of a and b orbitals in the main text,
one can express the corresponding wavefunctions in terms of
A and B dangling bonds as∣∣1A1(g)

〉
=

1

2

(∣∣A↑A↓〉+
∣∣B↑B↓〉)+

1

2

(∣∣B↑A↓〉− ∣∣B↓A↑〉)
(A1)∣∣1A1(e)

〉
=

1

2

(∣∣A↑A↓〉+
∣∣B↑B↓〉)− 1

2

(∣∣B↑A↓〉− ∣∣B↓A↑〉)
(A2)∣∣1B1

〉
=

1√
2

(∣∣A↑A↓〉− ∣∣B↑B↓〉) (A3)

∣∣3B1

〉
=


∣∣A↑B↑〉
1√
2

(∣∣B↑A↓〉+
∣∣B↓A↑〉)∣∣A↓B↓〉 . (A4)

By applying the Hubbard Hamiltonian in the main text, one
obtains Hamiltonian matrix in the basis of

∣∣1A1(g)

〉
,
∣∣1A1(e)

〉
,∣∣1B1

〉
,
∣∣3B1

〉
as shown in the main text. After diagonalization

of the Hubbard Hamiltonian, the resultant vertical excitation
energies are

E
(
1A1(g) → 1A1(e)

)
=

√
t2 + (U − C − 3J)

2
. (A5)

E
(
1A1(g) → 1B1

)
=
U − C − 3J +

√
t2 + (U − C − 3J)

2

2
(A6)

E
(
1A1(g) → 3B1

)
=
C − U − 5J +

√
t2 + (U − C − 3J)

2

2
.

(A7)

TABLE IV. HSE06 total energies of considered states of neutral N2V
relative to that of 1Ã1(g) are obtained by self-consistent unrestricted
spinpolarized HSE06 calculation in the optimized geometry of the
neutral N2V. The tilde over the electronic states labels that those
states are not the true symmetrical eigenstates of the system.

state relative energy (eV)
1Ã1(g) 0.00
1B̃1 1.67

1Ã1(e) 2.92
3B̃1 0.25

TABLE V. Vertical excitation energies in the Hubbard model calcu-
lated from self-consistent unrestricted spinpolarized HSE06 Kohn-
Sham orbitals

excitation vertical excitation energy (eV)
1A1(g) → 3B1 1.07
1A1(g) → 1B1 3.91

1A1(g) → 1A1(e) 4.39

Appendix B: Additional information about the raw DFT total
energies

We show in Table V that calculation of the total energies
in the Hubbard model from unrestricted spinpolarized Kohn-
Sham DFT HSE06 orbitals is not appropriate.

The total energy of 1Ã1(g) relative to that of Ψ1 is−6.75 eV
as listed in Table IV because we applied restriction to the
Kohn-Sham orbitals as explained in the main text. The cal-
culated excitation energies within the Hubbard model taking
the values in Table IV are given in Table V. These results
are very far from the experimental data. This can be under-
stood by considering the fact that the unrestricted spinpolar-
ized HSE06 Kohn-Sham orbitals are spin contaminated and
break the symmetry of the system. Thus, these orbitals are
not suitable for serving as basis for Hubbard model as Hub-
bard model requires orbitals with appropriate symmetry and
spin state.
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