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Neutrino Pair Cerenkov Radiation for Tachyonic Neutrinos
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The emission of a charged light lepton pair by a superluminal neutrino has been identified as a
major factor in the energy loss of highly energetic neutrinos. The observation of PeV neutrinos by
IceCube implies their stability against lepton pair Cerenkov radiation. Under the assumption of
a Lorentz-violating dispersion relation for highly energetic superluminal neutrinos, one may thus
constrain the Lorentz-violating parameters. A kinematically different situation arises when one as-
sumes a Lorentz-covariant, space-like dispersion relation for hypothetical tachyonic neutrinos, as an
alternative to Lorentz-violating theories. We here discuss a hitherto neglected decay process, where
a highly energetic tachyonic neutrinos may emit other (space-like, tachyonic) neutrino pairs. We
find that the space-like dispersion relation implies the absence of a q2 threshold for the produc-
tion of a tachyonic neutrino-antineutrino pair, thus leading to the dominant additional energy loss
mechanism for an oncoming tachyonic neutrino in the medium-energy domain. Surprisingly, the
small absolute value of the decay rate and energy loss rate in the tachyonic model imply that these
models, in contrast to the Lorentz-violating theories, are not pressured by the cosmic PeV neutrinos
registered by the IceCube collaboration.

PACS numbers: 31.30.jh, 31.30.J-, 31.30.jf

I. INTRODUCTION

After early attempts at the construction of tachyonic
neutrino theories [1–7], progress in the theoretical devel-
opment was hindered by difficulties in the construction
of a viable field theory involving tachyons (a particularly
interesting argument was presented in Ref. [8]). Despite
the difficulties, work on tachyonic theories has contin-
ued up to this day, for both classical theories as well as
spin-zero and spin-1/2 quantum theories [9–12]. A very
interesting hypothesis was brought forward by Chodos,
Hauser and Kostelecky [13], who developed a tachyonic
neutrino model based on the so-called tachyonic Dirac
equation. They recognized that a simple modification of
the mass term in the Dirac equation, according to the re-
placement m → γ5m, induces a dispersion relation of the

form E =
√

~p 2 −m2 (with the “tachyonic” sign in front
of the mass term), while preserving the spin-1/2 charac-
ter of the equation. Recently, it has been recognized [14]
that the modified Dirac Hamiltonian corresponding to
the tachyonic solutions has a property known as pseudo–
Hermiticity, which has been recognized as a viable gener-
alization of the concept of Hermiticity, for quantum me-
chanical systems [15–25]. Furthermore, the bispinor solu-
tion of the tachyonic equation have been determined [26],
and they have been shown to fulfill sum rules which enter
the calculation of the time-ordered product of tachyonic
field operators. The tachyonic pseudo-Hermitian quan-
tum dynamics of wave packets composed of the bispinor
solutions has been discussed in [14]. A surprising feature
of the tachyonic Dirac equation is the natural appear-
ance of the fifth current in the equation. In particular,
the appearance of γ5 elevates the helicity basis to the
most natural ansatz for the solution of the equation and
induces parity-breaking in a natural way. States with
the “wrong helicity” are eliminated from the theory by a

Gupta–Bleuler type condition [26].

Just to fix ideas, we should point out here that the
tachyonic neutrino differs from other faster-than-light
neutrino models in that the dispersion relation is Lorentz-
covariant. Explicit breaking of the Lorentz symmetry
may induce faster-than-light dynamics for neutrino wave
packets, with a time-like four-vector product pµ pµ > 0
(see Refs. [27, 28]). An example is the Lorentz-breaking
dispersion relation E = |~p| v with v > 1 (units with
~ = c = ǫ0 are used throughout this paper). This dis-
persion relation follows [29, 30] from a Lorentz violating
“metric” g̃µν = diag(1,−v,−v,−v). A quite illuminating
analysis of the model dependence of the calculation [29],
with reference to conceivably different forms of the inter-
action Lagrangian, is given in Ref. [30]. By contrast, the
tachyonic theory implies a space-like four-vector product
pµ pµ = −m2 < 0, thus leaving Lorentz symmetry intact
and enabling the construction of bispinor solutions in the
helicity basis [26].

Despite some “seductive” observations regarding
the tachyonic neutrino model (most of all, pseudo–
Hermiticity and natural emergence of the helicity eigen-
states, as well as the suppression of states with the
“wrong” helicity), any alternative neutrino model must
also pass various other tests concerning the stability
of highly energetic neutrinos against the emission of
particle-antiparticle pairs. The IceCube collaboration
has registered “big bird”, an Eν = (2.004 ± 0.236)PeV
highly energetic neutrino [31, 32]. If neutrinos in this
energy range are stable against lepton pair Cerenkov ra-
diation, then this sets rather strict bounds on the values
of the Lorentz-violating parameters [33, 34]. In a recent
paper, lepton pair Cerenkov radiation has been analyzed
as an energy loss mechanism for high-energy tachyonic
neutrinos [35]. The kinematics in this case implies that
the oncoming, decaying neutrino decays into a tachyonic
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FIG. 1. (Color online.) The decay process in Fig. (a) in-
volves a faster-than-light neutrino decaying into an electron-
positron pair, with a threshold q2 = 4m2

e for the virtual
Z0 boson. In Fig. (b), a neutrino-antineutrino pair is emit-
ted from an oncoming energetic neutrino. Both processes
are kinematically allowed if one assumes that neutrinos are
tachyons described by a dispersion relation of the form

pµpµ = E2
− ~k 2 = −m2

ν .

state of lower energy, emitting an electron-positron pair
[see Fig. 1(a)]. For the creation of an electron-positron
pair, the threshold momentum for the virtual Z0 boson
is q2 = 4m2

e where me is the electron mass.

For both the Lorentz-violating as well as the tachyonic
neutrino models, one has not yet considered the addi-
tional decay and energy-loss channel which proceeds via a
virtual Z0 boson and has a neutrino-antineutrino pair (as
opposed to an electron-positron pair) in the exit channel
[see Fig. 1(b)]. This process is not parametrically sup-
pressed in comparison to the one with electrically charged
particles in the exit channel, because of the weakly rather
than electromagnetically interacting virtual particle (the
Z0 boson) in the middle. For the Lorentz-violating theo-
ries, the kinematics in this case becomes involved because
one has to implement Lorentz-violating parameters for all
four particle in the process: (i) the oncoming and exiting
neutrino, and (ii) the created neutrino-antineutrino pair.
Previous studies [29, 30] have rather concentrated on the
lepton pair Cerenkov radiation process as the dominant
energy loss mechanism than the neutrino pair Cerenkov
radiation; the kinematics in this case appears to be a lot
easier to analyze than for neutrino-pair Cerenkov radia-
tion.

For the tachyonic case, one needs to calculate the
process of neutrino-antineutrino pair Cerenkov radiation
in full tachyonic kinematics, for both the in and out
states. In particular, it is necessary to generalize the
pair production threshold to the creation of a tachyonic
neutrino-antineutrino pair. We organize this paper as
follows. In Sec. II, we derive the kinematic conditions for
tachyon-antitachyon pair production. The calculation of
the threshold conditions and the energy loss mechanism
for neutrino pair Cerenkov radiation proceeds in Sec. III.
Consequences for tachyonic neutrino theories are sum-
marized in Sec. IV.

II. PAIR PRODUCTION THRESHOLD

For two tardyonic (“normal”) particles of mass me,
pair production threshold is reached when the pair is

emitted collinearly, with two four-vectors pµ = (E,~k) =

(E1, ~k1) = (E2, ~k2) that fulfill

E =

√
~k 2 +m2

e , (1a)

q2 = 4pµpµ = 4 (~k2 +m2
e)− 4~k 2 = 4m2

e . (1b)

The situation is completely different for the production
of a tachyonic pair. Here, a well-defined lower threshold
for q2 is missing. E.g., we have for the collinear pair

with tachyonic mass parameter E2 − ~k 2 = −m2
ν , and

pµ = (E,~k) = (E1, ~k1) = (E2, ~k2),

E =

√
~k 2 −m2

µ , (2a)

q2 = 4pµpµ = 4 (~k2 −m2
µ)− 4~k 2 = −4m2

µ , (2b)

which is negative. For two neutrinos of different energy,

emitted collinearly (~k1 = k1 êz and ~k2 = k2 êz), one has

E1 =
√
k 2
1 −m2

µ , E2 =
√
k 2
2 −m2

µ , (3a)

q2 =
(√

k 2
1 −m2

µ +
√
k 2
2 −m2

µ

)2

− (k1 + k2)
2 . (3b)

In the limit of a small tachyonic mass parameter mν , a
Taylor expansion of the latter term leads to the expres-
sion

q2 = −
(
2 +

k1
k2

+
k2
k1

)
m2

ν +O(m4
ν) . (4)

In the limits k1 → 0, k2 → ∞ or alternatively k1 → ∞,
k2 → 0, the latter expression may assume very large neg-
ative numerical values (see also Fig. 2). There is thus no
lower threshold for tachyonic pair production, expressed
in q2.
One might ask if arbitrarily large q2 are compatible

with the relativistic tachyonic pair production kinemat-
ics. In order to answer this question, we consider the
production of an anti-collinear pair,

~k1 = k1 êz , ~k2 = −k2 êz , (5a)

E1 =
√
k 2
1 −m2

µ , E2 =
√
k 2
2 −m2

µ , (5b)

q2 =
(√

k 2
1 −m2

µ +
√
k 2
2 −m2

µ

)2

− (k1 − k2)
2 (5c)

= 4k1k2 +O(m2
ν) . (5d)

For large k1 and k2, this expression assumes arbitrarily
large positive numerical values.
The conclusion is that the tachyonic kinematics do not

exclude any range of q2 from the kinematically allowed
range of permissible momentum transfers, and neutrino
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FIG. 2. (Color online.) Plot of q2 given in Eq. (3b) for tachy-
onic pair production (mν = 1) in the region −100 < k1 < 0
and −107 < k2 < 0, demonstrating that q2 may become
large and negative even for small tachyonic mass parame-
ters, when one of the momenta is significantly larger than
the other [Eq. (4)].

pair Cerenkov radiation (or, more generally, tachyon–
antitachyon pair production) is allowed in the entire
range

−∞ < q2 < ∞ , q0 > 0 . (6)

The latter condition only ensures that the energy emit-
ted into the pair is positive. For a decaying tachy-
onic neutrino, the condition (6) implies that there is no
lower energy threshold for the production of a tachyon-
antitachyon pair from an oncoming neutrino, within the
process depicted in Fig. 1(b).

III. CALCULATION OF THE PAIR

PRODUCTION

We calculate the decay width of the incoming tachy-
onic neutrino, in the lab frame, employing a relativisti-
cally covariant (tachyonic) dispersion relation, with both
incoming as well as outgoing neutrinos on the tachyonic

mass shell (Ei =

√
~k2i −m2

ν for i = 1, 2, 3, 4), in the con-

ventions of Fig. 1. In the lab frame, the decay rate is

Γ =
1

2E1

∫
d3p3

(2π)3 2E3

(∫
d3p2

(2π)3 2E2

∫
d3p4

(2π)3 2E4

×(2π)4 δ(4)(p1 − p3 − p2 − p4)

[∑̃
spins

|M|2
])

.

(7)

Here,
∑̃

spins refers to the specific way in which the aver-
age over the oncoming helicity states, and the outgoing
helicities, needs to be carried out for tachyons [35].
We use the Lagrangian

L = − gw
4 cos θW

[
ν γµ(1− γ5) ν

]
Zµ , (8)

where θW is the Weinberg angle, Zµ is the Z0 boson field,
and ν is the neutrino field. The effective four-fermion
interaction is

L =
GF

2
√
2

[
ν γµ(1− γ5) ν

] [
ν γµ(1− γ5) ν

]
, (9)

where GF is the Fermi coupling constant. The matrix
element M is

M =
GF

2
√
2

[
uT (p3) γλ (1− γ5)uT (p1)

]

×
[
uT (p4) γ

λ (1 − γ5) vT (p2)
]
, (10)

where uT (p) is a tachyonic positive-energy bispinor (par-
ticle) solution, while vT (p) is a tachyonic negative-energy
(antiparticle) solution. The positive-energy solutions
read as follows [26],

uT
+(

~k) =




√
|~k|+m a+(~k)√
|~k| −m a+(~k)


 , (11a)

uT
−(

~k) =




√
|~k| −m a−(~k)

−
√
|~k|+m a−(~k)


 , (11b)

while the negative-energy solutions are given by

vT+(~k) =


 −

√
|~k| −m a+(~k)

−
√
|~k|+m a+(~k)


 , (11c)

vT−(~k) =


 −

√
|~k|+m a−(~k)√
|~k| −m a−(~k)


 , (11d)

where we identify the on-shell spinors uT (p) with the

uT (~k), where pµ = (E,~k) and E =

√
~k 2 −m2

ν . The

symbols a±(~k) denote the fundamental helicity spinors
(see p. 87 of Ref. [36]). We note that the helicity of

the antineutrino solution vT−(~k) is positive, while in the
massless limit, it has negative chirality.
For the tachyonic spin sums, one has the following sum

rule for the positive-energy spinors [37],

∑

σ

(−σ) uT
σ (

~k)⊗ uT
σ (k̂) γ

5

=
∑

σ

(
−~Σ · k̂

)
uT
σ (

~k)⊗ uT (~k) γ5 = ✁p− γ5 m, (12)

where k̂ = ~k/|~k| is the unit vector in the ~k direction.

Upon promotion to a four-vector, one has k̂µ = (0, k̂).
The sum rule can thus be reformulated as

∑

σ

uT
σ (p)⊗ uT

σ (p) =
(
−~Σ · k̂

)
(✁p− γ5 mν) γ

5

= −γ5 γ0 γi k̂i (✁p− γ5 mν) γ
5

= −✁τ γ
5 ✁✁̂k (✁p− γ5mν) γ

5 , (13)
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where τ = (1, 0, 0, 0) is a time-like unit vector.
In Refs. [26, 37], it has been argued that a consistent

formulation of the tachyonic propagator is achieved when
we postulate that the right-handed neutrino states, and
the left-handed antineutrino states, acquire a negative
Fock-space norm after quantization of the tachyonic spin-
1/2 field. Hence, in order to calculate the decay process
of an oncoming, left-handed, positive-energy neutrino, we
must first project onto negative-helicity states, according
to Ref. [35],

1

2

(
1− ~Σ · k̂

) ∑

σ

uT
σ (

~k)⊗ uT
σ (

~k)

= uσ=−1(p)⊗ uσ=−1(p)

=
1

2

(
1− ✁τ γ

5 ✁✁̂k
)
(✁p− γ5mν) γ

5 . (14)

The squared and spin-summed matrix element for the
tachyonic decay process thus is

∑̃

spins

|M|2 =
G2

F

8
T13 T24 =

G2
F

8
S(p1, p2, p3, p4) , (15)

where the latter identity provides for an implicit defini-
tion of the function S(p1, p2, p3, p4). The traces T13 and
T24 are

T13 = Tr

[
1

2

(
1− ✁τ γ

5✁✁̂k3
)

(✁p3 − γ5 mν) γ
5 γλ (1− γ5)

×1

2

(
1− ✁τ γ

5 ✁✁̂k1
)

(✁p1 − γ5 mν) γ
5 γν (1− γ5)

]
,

(16a)

T24 = Tr

[
1

2

(
1− ✁τ γ

5✁✁̂k4
)
(✁p4 − γ5mν) γ

5 γλ(1 − γ5)

×1

2

(
1− ✁τ γ

5✁✁̂k2
)
(✁p2 + γ5mν) γ

5 γλ(1− γ5)

]
.

(16b)

We have chosen the convention to denote the by p2 the
momentum of the outgoing antiparticle.
For the outgoing pair, we use the fact that the helicity

projector is approximately equal to the chirality projec-
tor in the high-energy limit, which simplifies the Dirac
gamma trace somewhat. On the tachyonic mass shell,
one has p21 = p22 = p23 = p24 = −m2

ν . After the trace over
the Dirac γ matrices, some resultant scalar products van-
ish, e.g., the scalar product of the time-like unit vector τ

and the space-like unit vector (τ · k̂ = 0).
The result of the Dirac γ traces from Eq. (15) is in-

serted into Eq. (7), and the d3p2 and d3p4 integrals are
carried out using the following formulas,

I(q) =

∫
d3p2
2E2

∫
d3p4
2E4

δ(4)(q − p2 − p4)

=
π

2

√
1 +

4m2
ν

q2
, (17a)

Jλρ(q) =

∫
d3p2
2E2

∫
d3p4
2E4

δ(4)(q − p2 − p4) (p2λ p4ρ)

=

√
1 +

4m2
ν

q2

[
gλρ

π

24

(
q2 + 4m2

ν

)

+qλ qρ
π

12

(
1− 2m2

ν

q2

)]
, (17b)

K(q) =

∫
d3p2
2E2

∫
d3p4
2E4

δ(4)(q − p2 − p4) (p2 · p4)

=
π

4

√
1 +

4m2
ν

q2
(
q2 + 2m2

ν

)
. (17c)

After the d3p2 and d3p4 integrations, we are left with an
expression of the form

Γ =
G2

F

8

1

(2π)5

∫

q2>4m2
e

d3p3
2E3

F(p1, p3) , (18)

where

F(p1, p3) =

∫
d3p2
2E2

∫
d3p4
2E4

δ(4)(p1 − p2 − p3 − p4)

×S(p1, p2, p3, p4) .
(19)

Both the expressions for S(p1, p2, p3, p4) as well as
F(p1, p3) are too lengthy to be displayed in the context
of the current paper.
For the kinematics, we assume that

pµ1 = (E1, 0, 0, k1) ,

pµ3 = (E3, k3 sin θ cosϕ, k3 sin θ sinϕ, k3 cos θ) ,

E2
3 − k23 = −m2

ν , k3 > mν . (20)

The condition k3 > mν is naturally imposed for tachyonic
kinematics. The squared four-momentum transfer then
reads as

q2 = 2

(√
E2

1 +m2
ν

√
E2

3 +m2
ν cos θ − E1E3 −m2

ν

)

= 2

(
k1 k3 u−

√
k21 −m2

ν

√
k23 −m2

ν −m2
ν

)
, (21)

where it is convenient to define u = cos θ.
The integrations are done with the kinematic condi-

tions that all 0 < E3 < E1, and all q2 = (p2 + p4)
2 for

the pair are allowed (see Sec. II), leading to

Γ =
G2

F

8

1

(2π)5

2π∫

0

dϕ

kmax∫

k3=mν

dk3 k
2
3

2E3

1∫

−1

duF(E1, E3, u)

=
G2

F

16

1

(2π)4

E1∫

0

dE3

√
E2

3 +m2
ν

1∫

−1

duF(E1, E3, u) ,

(22)
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where kmax =
√
E2

1 +m2
ν and we have used the identity

dk3 k3 = dE3 E3 , k3 =
√
E2

3 +m2
ν . (23)

The differential energy loss, for a particle traveling at
velocity vν ≈ c, undergoing a decay with energy loss E1−
E3, due to the energy-resolved decay rate (dΓ/dE) dE,
in time dt = dx/c, reads as follows,

d2E1 = −(E1 − E3)
dΓ

dE3
dE3

dx

c
. (24)

Now we set c = 1, divide both sides of the equation by dx
and integrate over the energy E3 of the outgoing particle.
One obtains

dE1

dx
= −

∫
dE3 (E1 − E3)

dΓ

dE3
. (25)

Hence, the energy loss rate is obtained as

dE

dx
= − G2

F

4

1

(2π)4

E1∫

0

dE3

√
E2

3 +m2
ν (E1 − E3)

×
1∫

−1

duF(E1, E3, u) . (26)

After a long, and somewhat tedious integration one finds
the following expressions,

Γ =
1

3

G2
F m4

ν

192π3
E1 , (27a)

dE1

dx
=

1

3

G2
F m4

ν

192π3
E2

1 . (27b)

These formulas are valid for E1 ≫ mν , which is easily
fulfilled for all neutrino masses mν . There is no thresh-
old energy; i.e., formulas (27a) and (27b) are, in partic-
ular, valid in the range E1 & 1 eV ≫ mν . Parametri-
cally, they are of the same order-of-magnitude as those
given in Ref. [35] for (charged) lepton pair Cerenkov ra-
diation, but the threshold is zero for the neutrino pair
emission. Hence, neutrino pair emission is the dominant
decay channel in the medium-energy domain, for an on-
coming tachyonic neutrino flavor eigenstate.

IV. DISCUSSION AND CONCLUSIONS

In principle, tachyonic spin-1/2 theories have a num-
ber of properties which make them more attractive than
their spin-zero counterparts. One distinctive feature is
that the mass parameters enters only linearly in the La-
grangian [26], thus preventing the vacuum from becom-
ing manifestly unstable against tachyon-antitachyon pair
production. Also, it has been possible to calculate the

time-ordered product of field operators, which leads to
the Feynman propagator of the tachyonic field [26, 37].
One also observes that the generalized Dirac Hamiltonian
for the tachyonic spin-1/2 fields is pseudo-Hermitian, so
that it becomes possible to formulate the quantum dy-
namics of tachyonic wave packets without having to over-
come unsurmountable challenges [14]. In Ref. [38], it has
been argued that in view of the small neutrino interaction
cross sections, it would be difficult to transport informa-
tion faster than the speed of light using a neutrino beam,
if neutrino are just a bit superluminal (tachyonic). The
sign of the mass square of neutrinos has not yet been
determined experimentally, in contrast to differences of
mass squares among neutrino flavor eigenstates.
Here, we calculate the decay rate and energy loss rate,

for a hypothetically tachyonic neutrino flavor, against
neutrino-pair Cerenkov radiation. It needs to be checked
if the absence of a threshold would lead to a disagree-
ment with high-energy data on neutrinos of cosmic ori-
gin. In fact, the IceCube experiment [31, 32] has ob-
served 37 neutrinos having energies Eν > 10TeV dur-
ing the first three years of data taking. Three of these
events (“Ernie”, “Bert” and “Big Bird”) had energies
Eν > 1PeV, while “Big Bird” is famous for having an
energy of Eν = (2.004 ± 0.236)PeV. A blazar has been
identified as a possible source of this highly energetic neu-
trino [39]. Neutrinos registered by IceCube have to “sur-
vive” the possibility of energy loss by decay, and if they
are tachyonic, then lepton and neutrino pair Cerenkov
radiation processes become kinematically allowed.
The results given in Eqs. (27a) and (27b) for the decay

rate and energy loss rate due to neutrino pair Cerenkov
radiation are not subject to a threshold energy; paramet-
rically are of the same order-of-magnitude as those given
for lepton pair Cerenkov radiation in Ref. [35], but the
threshold energy is zero. Let us estimate the relative en-
ergy loss due to neutrino pair Cerenkov radiation over a
distance

L = 15× 109 ly = 1.42× 1026m , (28)

assuming a (relative large) neutrino mass parameter of
m0 = 10−2 eV. One obtains for the relative energy loss
according to Eq. (27b),

L

E1

dE1

dx
=

1

3

G2
F m4

0

192π3
E1 L = 5.02× 10−20 E1

MeV
. (29)

This means that even at the large “Big Bird” energy of
Eν = (2.004±0.236)PeV, the relative energy loss over 15
billion light years does not exceed 5 parts in 1011, which
is negligible.
The decay rate is obtained as follows (again, assuming

that mν = 10−2 eV),

Γ =
1

3

G2
F m4

0

192π3
E1 = 1.06× 10−37

(
E1

MeV

) (
rad

s

)
.

(30)
Even for “Big Bird”, this means that the decay rate does
not exceed 2.12 × 10−28 rad

s , which is equivalent to a



6

lifetime of ∼ 1020 years, far exceeding the age of the
Universe. The neutrino pair Cerenkov radiation process,
even if threshold-less, has such a low probability due to
the weak-interaction physics involved, that it cannot con-
strain the tachyonic models. Indeed, even for relatively
large tachyonic neutrino mass parameters of the order of
10−2 eV, and for the largest neutrino energies observed,
the process leads only to a vanishingly small relative
energy loss for an oncoming neutrino of cosmic origin
15 billion light years away. The lifetime of the tachyonic
neutrino far exceeds the age of the Universe. Our quick
estimate shows that “Big Bird” would have survived the
travel from the blazar PKS B1424-418 (see Ref. [39]). In
other words, neutrino pair Cerenkov radiation does not
pressure the tachyonic neutrino hypothesis.
We thus take the opportunity here to correct claims re-

cently made by by one of us (U.D.J.) in Ref. [35], where
a hypothetical cutoff of cosmic neutrino spectrum at the
Big Bird energy was related to the threshold energy for
(charged) lepton pair Cerenkov radiation, and thus, to a
neutrino mass parameter. In Ref. [35], it was overlooked
that (i) a further decay process exists for tachyonic neu-
trinos which is not subject to a threshold condition, and
(ii) that the absolute value of both (charged) lepton as
well as neutrino pair Cerenkov radiation is too small
(both above as well as below threshold) to lead to any ap-
preciable energy loss of an oncoming tachyonic neutrino
flavor eigenstate, over cosmic distances and time scales.
Hence, it is not possible, in contrast to the conclusions of
Ref. [35], to relate the lepton pair threshold to the tachy-
onic mass parameter. The (more optimistic) conclusion
thus is that neither lepton nor neutrino pair Cerenkov
radiation processes pressure the tachyonic model.
However, for the Lorentz-violating models, important

limits on the available parameter space have been set in
Refs. [33, 34], based on (charged) lepton pair Cerenkov
radiation alone. Roughly speaking, the reason for the
pressure on the Lorentz-violating models is that even
small Lorentz violations at PeV energies correspond
to high “virtualities” of the superluminal particles and
hence, relatively large (energy-dependent) mass param-
eters. It is quite imperative that the additional de-

cay process studied here should also be calculated for
the different kinematic conditions in Lorentz-violating
models, where it will further limit the available param-
eter space for the Lorentz-violating parameters. Note
that, e.g., employing a Lorentz-violating dispersion re-
lation E = v |~p| [29, 30], with v > 1, a quick calcu-
lation shows the absence of a neutrino pair production
threshold in the Lorentz-violating model; the reason be-
ing simple: namely, one has E → 0 for |~p| → 0, and it
thus becomes possible to generate Lorentz-violating neu-
trino pairs with near-zero four-momenta. The additional
decay process uncovered here thus has the potential of
fundamentally changing the bounds to be inferred for
the Lorentz-violating parameters, from the cosmic high-
energy neutrinos, within the Lorentz-violating models.

To conclude, the Lorentz-violating model is pressured
at high energies, where even numerically tiny values of
the Lorentz-violating parameters induce large deviations
from the light-like dispersion relation, corresponding to
a numerically large value of the “effective mass” m∗ with
E2 − ~p 2 = m2

∗ = (v2 − 1) ~p 2 (where we assume the dis-
persion relation E = v |~p| given in Refs. [29, 30]). By
contrast, the tachyonic model is fully compatible with
astrophysical data collected at high energies, while the
tachyonic dispersion relation predicts noticeable devia-
tions from the speed of light only for comparatively low-
energy neutrinos. A proposal to test the tachyonic hy-
pothesis, in the low-energy domain, has recently been
published in Ref. [38]. Finally, we also refer to Ref. [38]
for clarifying remarks on general aspects of the tachyonic
model.
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