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Maximum scattered linear sets and MRD-codes
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Abstract

The rank of a scattered F,-linear set of PG(r — 1,¢"), rn even, is
at most rn/2 as it was proved by Blokhuis and Lavrauw. Existence
results and explicit constructions were given for infinitely many values
of v, m, ¢ (rn even) for scattered F,-linear sets of rank rn/2. In this
paper we prove that the bound rn/2 is sharp also in the remaining
open cases.

Recently Sheekey proved that scattered Fy-linear sets of PG(1, ¢™)
of maximum rank n yield F,-linear MRD-codes with dimension 2n
and minimum distance n — 1. We generalize this result and show that
scattered [Fy-linear sets of PG(r — 1, ¢") of maximum rank rn/2 yield
F,linear MRD-codes with dimension rn and minimum distance n — 1.

1 Introduction

Let A = PG(V,Fyn) = PG(r — 1,¢"), ¢ = p", p prime, V a vector space of
dimension r over Fy», and let L be a set of points of A. The set L is said to
be an F,-linear set of A of rank k if it is defined by the non-zero vectors of
an [F,-vector subspace U of V' of dimension £, i.e.

L =Ly ={(w)p,, :uelU\{0}}. (1)

q

We point out that different vector subspaces can define the same linear
set. For this reason a linear set and the vector space defining it must be
considered as coming in pair.

Let Q = PG(W,Fyn) be a subspace of A and let Ly be an Fy-linear set of
A. Then QN Ly is an Fy-linear set of €2 defined by the F,—vector subspace
UNW and, if dimp, (W NU) = i, we say that Q has weight i in L. Hence
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a point of A belongs to Ly if and only if it has weight at least 1 and if Ly
has rank k, then |Ly| < ¢*™' + ¢* "2 + --- 4 ¢ + 1. For further details on
linear sets see [40], [27], [28], [34], [35], [29], [12] and [13].

An F -linear set Ly of A of rank k is scattered if all of its points have
weight 1, or equivalently, if Ly has maximum size ¢* 1 4+ ¢* 2 4+ .- 4+ ¢ +
1. A scattered IF,-linear set of A of highest possible rank is a mazimum
scattered F,—linear set of A; see [4]. Maximum scattered linear sets have a
lot of applications in Galois Geometry, such as translation hyperovals [19],
translation caps in affine spaces [2], two-intersection sets ([4], [5]), blocking
sets ([41], [31], [32] [7], [1]), translation spreads of the Cayley generalized
hexagon ([9], [6], [37]), finite semifields (see e.g. [33], [10], [38], [15], [34],
[24], [25], [26]), coding theory and graph theory [§]. For a recent survey on
the theory of scattered spaces in Galois Geometry and its applications see

[23].

The rank of a scattered Fg-linear set of PG(r —1,¢"), rn even, is at most
rn/2 ([, Theorems 2.1, 4.2 and 4.3]). For n = 2 scattered F,-linear sets of
PG(r — 1,¢?) of rank r are the Baer subgeometries. When r is even there
always exist scattered FF,-linear sets of rank = in PG(r —1,¢"), for any
n > 2 (see [22, Theorem 2.5.5] for an explicit example). Existence results
were proved for r odd, n —1 < r, n even, and ¢ > 2 in [4, Theorem 4.4], but
no explicit constructions were known for r odd, except for the case r = 3,
n = 4, see [I, Section 3|. Very recently families of scattered linear sets of
rank rn/2 in PG(r — 1,4¢"), r odd, n even, were constructed in [2] Theorem
1.2] for infinitely many values of r, n and q.

The existence of scattered F,-linear sets of rank 37" in PG(2,¢"), n>6
even, n = 0 (mod 3), ¢ Z 1 (mod 3) and ¢ > 2 was posed as an open
problem in [2] Section 4]. As it was pointed out in [2], the existence of such
planar linear sets and the construction method of [2, Theorem 3.1] would
imply that the bound 5 for the maximum rank of a scattered F,~linear set
in PG(r — 1,¢") is also tight when r is odd and n is even. In Theorem
we construct linear sets of rank 3n/2 of PG(2,4¢"), n even, and hence we
prove the sharpness of the bound also in the remaining open cases. Our
construction relies on the existence of non-scattered linear sets of rank 3t of
PG(1,¢%) (with t = n/2) defined by binomial polynomials.

In [42], Section 4] Sheekey showed that maximum scattered I -linear sets
of PG(1,¢") correspond to [Fy-linear maximum rank distance codes (MRD-
codes) of dimension 2n and minimum distance n— 1. In Section 3 we extend
this result showing that MRD-codes can be constructed from every scattered
linear set of rank rn/2 of PG(r — 1,¢"), rn even, and we point out some



relations with Sheekey’s construction. Finally, we exhibit the MRD-codes
arising from maximum scattered linear sets constructed in Theorem 23] and
those constructed in [2, Theorems 2.2 and 2.3]

2 Maximum scattered linear sets in PG(r — 1,¢")

As it was pointed out in the Introduction, the existence of scattered F,linear
sets of rank 22 in PG(2,¢"), n > 6 even, n =0 (mod 3), ¢ # 1 (mod 3) and
q > 2 would imply that the bound %* for the rank of a maximum scattered
[F,-linear set in PG(r — 1,¢") is tight in the remaining open cases (cf. [2]
Remark 2.11 and Section 4]).

In this section we show that binomials of the form f(z) = az? + bz?*

defined over [F s: can be used to construct maximum scattered [F,—linear sets
in PG(2,¢?) for any t > 2 and for any prime power q.

Consider the finite field Fje: as a 3-dimensional vector space over its
subfield F2¢, t > 2, and let P = PG(F ¢, F 2:) = PG(2, ¢*") be the associated
projective plane. From [2] Section 2.2], the F,-subspace

U:={wr+ f(x): x € Fpa}, (2)

of Fyor with w € Foor\Fye, f(2) = az? +b27""", a,b € Fiy, 1 < i < 3t—1 and
ged(i,2t) = 1, defines a maximum scattered Fy-linear set in the projective
plane P of rank 3¢ if @ ¢ Fy for each x € Fpy, (cf. [2 Prop. 2.7]). The
g-polynomial f(x) also defines an Fy-linear set L; := {((x,f(x)))ngt tx €
F7s:} of the projective line PG(Fgor, Fyae) = PG(1, ¢*"). In what follows we
determine some conditions on Ly in order to obtain maximum scattered
[Fy-linear sets in P of rank 3¢.

If b | n, then by Ngn/on(a) we will denote the norm of o € Fyn over the
subfield Fyn, that is, Nyn 0 () = al+0"++0""" We will need the following

preliminary result.
2t+1

Lemma 2.1. Let f := fiap : ® € Fpze = az? + bzt € Fyse, with
a,b € Frar, Nysejge(a) # — Nysejgu (b) and ged(i,t) = 1. If
Ly :={{(z, f(2))F 3 x € Fai} (3)
is not a scattered Fq-linear set of PG(1, ¢, then there exists c € Fzgt such
that
ge(z) = fl’m’TCb(x) ¢Fy for each x € Fis. (4)



. qi_l o q2t+i_1
Proof. First we show that 0 ¢ I'mg. for each c. If caxi ~ = —cbx

q'(¢*'-1)
0

for some g € IF'Z:,,“ then —a/b = x , where the right hand side is a

(¢" — 1)-th power and hence Nyst /¢ (—a/b) = 1, a contradiction.
The non-zero elements of the one-dimensional I :-spaces of Fzgt yield a

partition of Fzgt into ¢?' + ¢' + 1 subsets of size ¢* — 1. More precisely, if u
is a primitive element of F s, then

q2t+qt
Fth = U /,LkFZt
k=0
Let Gy = ,ukIFZt. We show that, for each k, either Img; N Gy = 0, or

[Im g1 NGyl = (¢ = 1)/(¢ — 1).
Suppose g1(zg) € Gg. Then for each v € th we have

g1(y20) =77 g1 (o).
Since ged(i,t) = 1, it follows that

{g1(ywo): v € Fpe} = g1(wo){z € Fye: Nyejg(x) = 1} C Gy,

and hence [Im g1 NG| > (¢ —1)/(q — 1).

Next we show that there exists Gy such that Im g1 NGy = (). Suppose to
the contrary I'm g; NG; # () for each j € {0,1,...,¢* +¢'}. Then [Im g1| >
(¢ + ¢ +1)(g' — 1)/(q—1) = (¢* —1)/(g — 1) and since | Imgy| = |Ly]| we
get a contradiction.

Suppose that Im g1 NGy = § and let ¢ = =% Then I'm geNFe=0. O

Hence, by the previous lemma and by [2, Prop. 2.7], the existence of
a non-scattered linear set in PG(1,¢") of form (@) implies the existence
of a binomial polynomial producing maximum scattered [Fy-linear set in

PG(2,¢*) of rank 3t.

Lemma 2.2. Let f = fiqp: @ € Fpze az? + bzt € Fs¢, with a,b €

Fth and 1 <1 <3t —1. For any prime power q > 2 and any integer t > 2
there exist a,b € F;gt, with

Nq3t/qt (b) 75 - Nq3t/qt (CL), (5)

such that
Lfi,a,b = {<(x=fi,a,b(x))>1f’q3t LR Fth},

is a non-scattered F,—linear set in PG(1,¢%) of rank 3t.



Proof. First suppose d := ged(i,t) > 1. Then f is Fa-linear and hence each
point of Ly has wight at least d, i.e. Ly cannot be scattered. Since ¢* > 4
we can always choose a,b such that (Bl) holds. From now on we assume
ged(i, t) = 1.

The linear set Ly of PG(1,¢%) is not scattered if there exists a point
Py, = <(a;0,f(a;0))>1pq3t of rank greater than 1, i.e. if there exist zg € Fya"
and A € Fgse \ Fy such that f(Azg) = Af(zo). The latter condition is
equivalent to

i i 2t+1 7
azd (A=) = b (AT ). (6)
Since ged (2t + 4,3t), ged (4, 3t) € {1,3}, the expressions in the two sides of
(@) are non-zero when A ¢ I s. We first prove that there exists A € Fa: \Fys
such that

NqSt/qt(aj\) 75 —1, (7)
where a5 = % .
By way of contradiction, suppose that Ngs: /. (ay) = —1 for each M€

3¢ \ Fys. Then the polynomial

t t4i 2t i+2t
T

g(x) = (z—2) (2" ~a* —z)(@? —a?)(@ " 2
(8)
vanishes on Fa: \ Fs. It also vanishes on Fy, thus it has at least Pt—¢P+q
roots. Put i = ¢+ mt, with m € {0,1,2} and 1 < ¢ < t, the degree of g(z)
is

2t+c + q ‘|‘ q (9)

when m = 0 and
2t+c + q + qt+c (10)

when m € {1,2}. Since ¢ —2 > ¢° we obtain
2t+c _|_q +qt+c _ QC(q2t + qt) + q2t < (qt _ 2)(q2t + qt) + q2t — q3t . 2qt.

For t > 2 this is a contradiction since ¢% — 2¢* < ¢3' — ¢®> 4+ ¢. If t = 2, then
ged(i, t) = 1 yields ¢ = 1 and hence we obtain

degg < ¢’ +q¢*+¢* <q®—¢*+gq,

again a contradiction. It follows that there always exists an element \ €
IF 3¢ \ F,s which is not a root of g(x), and oy satisfies Condition ().



Choose a,b € Fs, such that Nq3t/qt(§) = Ngsijqt(y), then there exists
an element x( € F’;St such that
2t4i _ 40 a
‘/Eg T = EO‘X’

and hence zg is a non-zero solution of the equation f(\x) = Af(x), i.e. with
these choices of a and b the linear set Ly, ., is not scattered. O

Now we are able to prove the following result.
Theorem 2.3. Let w € F2: \ Fye. For any prime power q and any integer
t > 2, there exist a,b € Fzgt and an integer 1 < i < 3t — 1 such that the F-
linear set Ly of rank 3t of the projective plane PG(F o, F21) = PG(2, ),
where _ s

U = {aqu T S = I3t },

18 scattered.
Proof. According to Lemma for any prime power ¢ and any integers
t>21<i<3t—1 with ged(i,2t) = 1 we can choose a,b € Fzgt, with
Nyst /gt (b) # — Ngst /g (@) such t_hat%the linear set Ly of the line PG(F jot, F 3¢ ) =
PG(1,¢%) with f(z) = az? + bz?" " is non-scattered. Then by Lemma 2]
there exists ¢ € IF:;& such that

aca? + bext™ "
F
x £ Eye
for each x € F ;. Then the theorem follows from [2L Proposition 2.7] with
a = ac and b = be. O

As it was pointed out in [2], the existence of maximum scattered F,—
linear sets of rank 3n in the projective plane PG(2,¢*') (proved in Theorem
2.3) and the construction method of [2, Theorem 3.1] imply the following.

Theorem 2.4. For any integers r,n > 2, rn even, and for any prime power
q > 2 the rank of a mazimum scattered Fy-linear set of PG(r—1,¢") is rn/2.

Taking into account the previous result, from now on, a scattered F,—
linear set Ly of PG(W,Fgn) = PG(r — 1,¢") of rank Tt (rn even) will be
simply called a mazimum scattered linear set and the IFy-subspace U will be
called a maximum scattered subspace.

We complete this section by showing a connection between scattered IF-
linear sets of PG(l,qT”/ %), r even, and scattered F,-linear sets of PG(r —

Lq").



Proposition 2.5. Every mazimum scattered IFq-linear set of PG(l,qT”/2),
r even, gives a maximum scattered F,-linear set of PG(r —1,4¢").

Proof. Let Ly be a maximum scattered Fg-linear set of PG(WV, Fyrns2) =

PG(l,qm/ 2). Then for each v € W the one dimensional I ;rn/2-subspace
(V)F ., meets U in an Fg-subspace of dimension at most one. Since Fgn
q

is a subfield of F n/2 (recall 7 even) the same holds for the subspace (V).
and hence U also defines a scattered [ -linear set in PG(W,Fyn) = PG(r —
Lq"). O

Note that the converse of the above result does not hold.

3 Maximum scattered subspaces and MRD-codes

The set of m x n matrices Fy**™ over Fy is a rank metric F-space with rank
metric distance defined by d(A, B) = rk (A— B) for A, B € F;**". A subset
C C "™ is called a rank distance code (RD-code for short). The minimum
distance of C is

d(C) {d(4, B)}.

= min
A,BEC, A#B
When C is an F,-linear subspace of Fy**", we say that C is an F,-linear
code and the dimension dimy(C) is defined to be the dimension of C as a
subspace over F,. If d is the minimum distance of C we say that C has
parameters (m,n,q;d).
The Singleton bound for an m X n rank metric code C with minimum

rank distance d is
#C < qmax{m,n}(min{m,n}—d—l—l).

If this bound is achieved, then C is an MRD-code. MRD-codes have various
applications in communications and cryptography; for instance, see [17) 21].
More properties of MRD-codes can be found in [14] [16] 18] [39].

Delsarte [14] and Gabidulin [16] constructed, independently, linear MRD-
codes over F, for any values of m and n and for arbitrary value of the min-
imum distance d. In the literature these are called Gabidulin codes, even
if the first construction is due to Delsarte. These codes were later general-
ized by Kshevetskiy and Gabidulin in [20], they are the so called generalized
Gabidulin codes.

A generalized Gabidulin code is defined as follows: under a given basis
of Fgn over [F, each element a of Fyn can be written as a (column) vector



v(a) in Fy. Let aq, ...,y be a set of linearly independent elements of Fn
over [F,, where m < n. Then

{(v(Fta)), o v (Flam)T £ € G} (1)

is the original generalized Gabidulin code, where

s(k—1)

Grs=1{f(x)= apr +arz? + ... ap_12° tag,ai, ..., ap—1 € Fgn}, (12)

with n, k,s € ZT satisfying k < n and ged(n,s) = 1. _

All members of G, s are of the form f(z) = Z?:_()l a;z9, where a; €
Fyn. A polynomial of this form is called a linearized polynomial (also a g-
polynomial because its exponents are all powers of ¢). They are equivalent to
IF4-linear transformations from Fyn to itself, i.e., elements of E = Endp, (Fn).
We refer to [30, Section 4] for their basic properties.

In the literature, there are different definitions of equivalence for rank
metric codes; see [3,[39]. If C and C’ are two sets of GL(U, F,), where U is an
[F,-space of dimension n, then up to an isomorphism we may consider U as
the finite field Fy» and it is natural to define equivalence in the language of
g-polynomials, see [42]. For [F,-linear maps between vector spaces of distinct
dimensions we will use the following definition of equivalence.

Definition 3.1. Let U(n,q) and V(m,q) be two Fy-spaces, n # m, and let
C and C' be two sets of Fy-linear maps from U to V. They are equivalent
if there exist two invertible F,-linear maps Ly € GL(V,F,), Ly € GL(U,F,)
and p € Aut(F,) such that C' = {Ly o fPo Ly : f € C}, where fP(x) =

e

Very recently, Sheekey made a breakthrough in the construction of new
linear MRD-codes using linearized polynomials [42] (see also [36]).

In [42] Section 4], the author showed that maximum scattered linear sets
of PG(1,¢") correspond to [Fg-linear MRD-codes of dimension 2n and min-
imum distance n — 1. The number of non-equivalent MRD-codes obtained
from a maximum scattered linear set of PG(1, ¢") was studied in [I1}, Section
5.4].

Here we extend this result showing that MRD-codes of dimension rn and
minimum distance n — 1 can be constructed from every maximum scattered
[F,-linear set of PG(r —1,¢"), rn even, and we exhibit some relations with
Sheekey’s construction when r is even.

To this aim, recall that an F,-subspace U of F; is scattered with respect
to Fyn if it defines a scattered Fy-linear set in PG(Fgrn,Fgn) = PG(r—1,¢"),
ie. dimp,(UN(z)p.) <1 for each x € Fyrn.

8



Theorem 3.2. Let U be an rn/2-dimensional IFy-subspace of the r-dimensional
Fyn-space V=V (r,q"), rn even, and let i = max{dimg, (U N (V)p.): Vv €
V'}. For any Fy-linear function G: V. — W, with W =V (rn/2,q) such that
kerG = U, if i < n, then the pair (U,G) determines an RD-code Cy ¢ (cf.
([@3)) of dimension rn and with parameters (rn/2,n,q;n —1i). Also, Cua
is an MRD-code if and only if U is a maximum scattered F,-subspace with
respect to Fyn.

Proof. For v € V the set
Ry :={\NeFp: AveU}

is an F,-subspace with dimension the weight of the point <V>]Fqn in the F,-
linear set Ly of PG(V,Fgn). Since 4 is the maximum weight of the points in
Ly, it follows that dimp, Ry < i for each v. Also, let 7, denote the map

AEFpm > AveV.

Direct computation shows that the kernel of G o 7y, is R, for each v € V
and hence it has rank at least n — 4. It remains to show that Gory, # GoTy
for v # w. Suppose, contrary to our claim, that there exist v,w € V with
v # w and with G(Av) = G(Aw) for each A € Fyn. Note that v — G o7y is
an [Fg-linear map and hence G(A(v —w)) = 0 for each A € Fyn. This means
dimp, (ker G o 7y _w) = n = i, a contradiction. Hence

Cug={Gor:veV} (13)

is an F-linear RD-code with dimension rn and with parameters (rn/2,n, ¢;n—
i). The second part is obvious since Ly is scattered if and only if i = 1. O

Now we will show that different choices of the function G give rise to
equivalent RD-codes. Let’s start by proving the following result.

Lemma 3.3. Let U be an rn/2-dimensional F,-subspace of the r-dimensional
Fyn-space Fyrn. Then there exists w € Fgrn \ F rn/2 such that

U={z+twf(@): z €Fnpr}
where f(x) is a g-polynomial over Forns2.

Proof. Observe that Fym = (,cps aFZT.n s and for any a,b € Fm either
an

aIE‘;T.n 2N bFZm p=0or aFZm 12 = bIE‘;.n /> and the latter case happens if and

only if § € Fzr.n /2- Since U *ﬂaFZm /2 is either empty or contains at least ¢—1

9



elements and since |U*| = g% — 1, there exist a,b € Fyrn, with ¢ ¢ Fyrn/2
such that U* N GFZM e =U0"N bIE‘ZT.n ;2 = 0. We may assume a ¢ FZ"” /> and
put w := a. Then UNWEF jrn/2 = {0} and taking into account that U has rank
7 and {1,w} is an F rn/2—basis of Fgrn, we have U = {z+wf(2): © € Frn/2}
for some ¢-polynomial f over Fyrns2. O

Hence, we are able to prove the following

Proposition 3.4. Let U be an rn/2-dimensional F,-subspace of the r-
dimensional Fon-space V. = V(r,q"), rn even, and let G and G be two
Fy-linear functions determining two RD-codes Cy,c and Cp; & as in Theorem
(3.4 Then Cyg and CUE are equivalent. 7

Proof. Up to an isomorphism, we can always assume V = qu/z X qu/z and
W =F rn/2. Then by LemmaB.3lwe have U = {(x, f(x)) : 2 € Fq%}, where
f(x) is a g-polynomial over qu/z. Then G, G : qu/z X qu/z — qu/z are
two [Fy-linear maps such that U = ker G = ker G. We want to show that

there exist two permutation g-polynomials i and L over F ../ and Fgn,
respectively, and o € Aut(FF,) such that

Cog={Ho(Gory) oL : vEFgn}
Let Go, G, Gy, G : F,rn/2 = Frnj2 be Fy—linear maps such that
G(z,y) = Go(z) = Gi(y) and  G(z,y) = Go(z) — G1(y),

for all z,y € F rn/2. Since ker G = ker G = U it can be easily seen that
Go=Grof ,_@0 = G4 o f and that G; and G are invertible maps. Hence,
putting H = Gy o Gl_l, o =idp, and L = idp ,, we have

HoGor, =Gory,
for each v = (x,y) € V, and hence the assertion follows. O

First we show some results in the case r even. Starting with the following
example for r = 2, we examine further the codes defined in Theorem
Later, in Theorem B.7] we will also give a different construction of MRD-
codes.

Example 3.5. Let Uy = {(=, f(x)): € Fgn} be a mazimum scattered IF-
subspace of the two-dimensional Fyn-space V. = Fyn X Fyn, where f is a
q-polynomial over Fyn. Let

G: (a,b) € V= f(a) —b e Fyn.

10



Then ker G = Uy and Theorem [3.2 with r = 2 yields the MRD-code consist-
ing of the maps G o T(qyp), i.€.

Cusc ={r € Fgn = f(ax) —br € Fyn: (a,0) € Fyn x Fyn}.  (14)

Note that the MRD-codes (Ij) are the adjoints of the codes constructed by
Sheekey in [42, Sec. 5], see also after Remark [3.0.

Remark 3.6. Let U be a mazimum scattered IFq-subspace of V =V (2, qm/z),
r even. According to Proposition 2.3, U is also a mazimum scattered F-
subspace of V', considered as an r-dimensional Fyn-space. Let G be an F,-
linear V.— W =V (rn/2,q) map with ker G = U. When V is viewed as an
Fyn-space, then the construction method of Theorem [3.2 yields the MRD-
code

Cug={r€Fpn —»Gor(z)e W:veV}] (15)

When V' is viewed as an F rn/2-space, then we obtain the MRD-code
Dyg={z €Fpnp— Gory(z) e W:v eV} (16)

Since Fgn is a subfield of ¥ w2, the latter code is the restriction of the
former one on Fyn.

Conwversely, it may happen, even if v is even, that an F,-subspace U of
V =V(r,q") of rank rn/2 is scattered with respect to Fyn whereas it is not
scattered when V' is considered as a 2-dimensional F ,n/2-space. Arguing as
above, the MRD-code Cy ¢ described in (17) is the restriction of the RD-code
Dy, described in (10).

Let w, be the map F n/2 — F rn/2 defined by the rule z — az. By
(Wa +wp o f) |r,n we denote the restriction of the corresponding function
over Fyn. From Example and from Remark it follows that if r is
even and Uy = {(z, f(z)): © € F rn/2} is a maximum scattered F,-subspace
of Fgm /» considered as an r-dimensional [ n-space, then the MRD-code (cf.

(), ([@3) and (IG))
Cr=A{wa+ fowp) [pm: B €Fym}
is the restriction on Fyn of the MRD-code
Dy ={(wa + fowg): a,B €F sz}

The next result shows that {(wa +wg o f) |pn: @, € Fnp} is also an
MRD-code with the same parameters as Cy. For r = 2 this is exactly the
code defined by Sheekey.

11



Theorem 3.7. Let r be even and Uy := {(, f(z)): ® € Frn/2} be a maz-
imum scattered F,-subspace of Fzm/z considered as V(r,q"), where f is a
q-polynomial over F rns2. Then Sy := {(wa +wg o f) [Fm: @, 8 € Fprnya} is
an MRD-code with parameters (rn/2,n,q;n — 1).

Proof. Since Uy is scattered, the following holds. If (z, f(x)) = Ay, f(v))
with A € Fyn, then A € Fy, so for each y € FZM /2

f(Ay) = Af(y) with A € Fgn implies X € F,. (17)

It also follows that for each y € IF:; , we have

rn/

f(\y)/ Ay = f(y)/y for some X € Fy. if and only if A € T, (18)

First we show that (az + Bf(z)) |r,»= 0 implies o = 8 = 0. Suppose
the contrary. If g # 0, then f(x) = «t, with t = —a/f for each z € Fyn,
contradicting ([I7). If 8 = 0, then clearly also a = 0. It follows that
‘Sf‘ =g

The F,-linear map (az + Bf(x)) [r,» has rank less than n — 1 if and only
if B # 0 and there exist x,y € Fy. such that (z)r, # (y)r, and f(z)/z =
f(y)/y = —a/B. But then for X := z/y € Fpn \ F; we have f(A\y)/\y =
f(y)/y contradicting (IS]). O

Sheekey in [42, Theorem 8] showed that when r = 2 the two F,—vector
subspaces Uy and U, defined as in Theorem [B.7] are equivalent under the
action of the group I'L(2,¢") if and only if Sy and S, are equivalent as
MRD-codes. Here we will show that the same result is not true when we
consider the restriction codes. To show this we will need the following two
examples, where non-equivalent [F -subspaces yield the same MRD-code.

Example 3.8. Consider Uy = {(z, f(x)): x € Fyn}, witht > 1, n > 3
and with f: Fgn — Fgm an invertible Fn-semilinear map with associated
automorphism o € Aut(Fyn) such that Fix(o) = Fy. Then Ly, is a scattered
[F,—linear set of pseudorequlus type in PG(2t—1,q") (cf. [34, Sec. 3]). With
this choice of f, we get

Sf = {(wa +w5 o ’ida) |IFqn : Oé,ﬁ € qu},

Indeed, for every A\ € Fgn we have (wo +wg o f)(A) = aX+ Bf(A) = aX +
BA7f(1).
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Example 3.9. Let W = {(az,y,xq,th): z,y € Fen}, withn > 5, 1 <
h < n—1 and with gcd(h,n) = 1. Then W is a scattered Fy-subspace of
V(4,¢") and it defines an Fy-linear set Ly of PG(3,q¢"), which is not of
pseudorequlus type, see [25, Proposition 2.5]. We may consider V(4,q™) as
Foon X Foon. Take w € Fpon \ Fyn, so {1,w} is an Fyn-basis of Fyen and

h
W ={(z +wy,z?+wy? ): x,y € Fgn}.

Direct computations show that W = {(z,9(2)): z € Fn} = Uy, where g is
the q-polynojmial over K 2n of the form

h n+1 n+h
g(z) =a1z9 4+ apz? + (1 —a1)z?  —apz?®
. qu+1 1 q
with a; = m and ap = m Hence g(Z) ‘Fqn: zZ*, SO

Sy = {(wq +wp 0 id?) ’Fqn ta, e qun},

Theorem 3.10. In V(4,q"), n > 5, there exist two non-equivalent mazi-
mum scattered Fy-subspaces Uy and Uy such that the codes Sy and Sy coin-
cide.

Proof. In Example take t = 2 and o: x +— x%. Then we obtain the
same code as in Example B.9], while the corresponding subspaces are non-
equivalent because of [25] Proposition 2.5]. O

Let now r be odd and n = 2t. Some of the known families of maximum
scattered [ -subspaces are given in the r-dimensional Fo:-space V' = F ort
and they are of the form

Up :={zw+ f(x): © € Fyre}, (19)

with w € Fyr \ Fye and with w? = wAg + Ay, Ag, A € [Fge. In this case
we show an explicit construction of Fy-linear MRD-codes with parameters
(rt,2t,q;2t — 1) obtained from Theorem Indeed, in this case {w, 1} is
an F,i-basis of F2: and also an Fyre-basis of Fy2re. Then we can write any
element A € F2r as A = Aow + Ay, with Ao, Ay € Fge. We fix G2 Fare — Fyre
as the map zw +y — f(z) —y. For each v = vow + v1 € Fpare the map
Ty Fg2t — Fgar is as follows

A= AvoAr + Avg + w()\ovl + Mo + )\QUQA()),

and 7, can be viewed as a function defined on F+ x IF,+. Then the associated
MRD-code consists of the following maps:

GoTy: (J}, y) S th X th — f()\()vl + AMvg + )\()U()Ao) — AvoA1 — A\1v1.
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Example 3.11. Put f(z) := aazqi, a€ FZ"“ 1<i<rt—1,r odd. For any
q > 2 and any integer t > 2 with ged(t,r) = 1, such that

(i) ged(i,2t) =1 and ged(i,rt) =,

(ZZ) qut/qr(a) ¢ Fq;
from [2, Theorem 2.2/, we get the Fy-linear MRD-code with dimension 2rt
and parameters (2t,rt,q; 2t — 1):
{Fy: v =wvg+v1, vo,v1 € Fyri },

where Fy: Fge X Fye — Fore is defined by the rule
Fy(x,y) = xqia(Agivgi + vgi) — xAjvy + yqiavgi — yvy. (20)

Note that, since ged(i,rt) = r, the above MRD-code is Fyr-linear as well,
since for each pi € For and v € F2r we have pFy = Fy,.

Example 3.12. Put f(z) := aazqi, a€ FZ”’ 1<i<rt—1,r odd. For any
prime power ¢ =1 (mod r) and any integer t > 2, such that
(i) ged(i,2t) = ged(i,rt) =1,
g—1
(ii) (Ngrijg(a)) ™ #1,
from [2, Theorem 2.3], we get the Fy-linear MRD-code with dimension 2rt
and parameters (2t,rt,q;2t — 1):

{FU: v = wyg + V1, Vg, V1 € qut},

where Fy: Foyt X Fyo — Fore is defined by the same rule as (20).

2t+41

Example 3.13. Put f(z) := azx? +bx? ', a,b€ Frae, 1<1<3t—1 (here
r =3). For any q > 2 and any integer t > 2 with ged(i,2t) = 1 choosing
a,b as in the proof of Theorem [2.3, we get the Fy-linear MRD-code with
dimension 6t and parameters (2t,3t,q; 2t — 1):

{Fy: v =v9+wuvi, vo,v1 € Fpa },

where Fy @ Fge X Foo — F s is defined by the rule

2t+41 2t+41

Fy(x,y) = xqi(aAgivgi + av‘fi + bAgivg +bvl )+

i 1 2t+1
Y (avd +bvd ) — zAjvg — yor.

Applying [2, Theorem 3.1] one can construct other MRD-codes after
decomposing V(r,¢") into a direct sum of Fyn-subspaces of dimensions 2
and 3 and choosing for each of them a maximum scattered subspace.

14
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