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Abstract

We present analytic self-similar solutions for the one, two and three dimensional Madelung

hydrodynamical equation for a free particle. There is a direct connection between the zeros of the

Madelung fluid density and the magnitude of the quantum potential.
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I. INTRODUCTION

Finding classical physical basements of quantum mechanics is a great challenge since

the advent of the theory. Madelung was one among the firsts who gave one explanation,

this was the hydrodynamical foundation of the Schrödinger equation [1, 2]. His exponential

transformation simply indicates that one can model quantum statistics hydrodynamically.

The transformed equation has an attractive feature that the Planck’s constant appears only

once, as the coefficient of the quantum potential or pressure. Thus, the fluid dynamicist

can gather experience of its effects by translating some of the elementary situations of the

quantum theory into their corresponding fluid mechanical statements and vice versa.

The quantum potential also appears in the de Broglie-Bohm pilot wave theory [3, 4] (in

other context) which is a non-mainstream attempt to interpret quantum mechanics as a

deterministic non-local theory. In the case of ~ → 0 the Euler equation transforms to the

Hamilton-Jacobi equation.

Later, many authors tried to generalize this Madelung’s description for more compound

quantum mechanical systems (like particles in external electromagnetic fields or with spin

1/2 ) [5]. Takabayashi [6] tried to interpret the Ansatz of Madelung as an ensemble of

trajectories. Schönberg [7] developed a new type of hydrodynamical model for the quantum

mechanics for any values of spin. The quantum potential appears as a combination of a

pressure term arising from the turbulence.

In spite of the flaws of Madelung hydrodynamics (it cannot give a proper solution of the

problem of atomic eigenstates and to the quantum description of emission or absorption

processes), this approach turns to be fruitful in a number of applications like the stochastic

quantum mechanics [8], quantum cosmology [9], description of quantum-like systems [10],

the coherent properties of high-energy charged particle beams [11, 12].

Terlecki applied the fluid dynamical interpretation of the quantum mechanical probabil-

ity density and current for the trajectory method and evaluated the solution of the time-

dependent Schrödinger equation in atomic physics and calculated ionization and electron

transfer cross sections for proton-hydrogen collision [13].

As an interesting peculiarity Wallstrom showed with mathematical means that the initial-

value problem of the Madelung equation is not well-defined and additional conditions are

needed [14].
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Tsubota summarized the hydrodynamical descriptions of quantum condensed fluids such

as superfluid helium and Bose-Einstein condensates as quantum hydrodynamics based on

the original Ansatz of Madelung [15].

Nowadays, hydrodynamical description of quantum mechanical systems is a popular tech-

nical tool in numerical simulations. Review articles on quantum trajectories can be found

in a booklet edited by Huges in 2011 [16].

From general concepts as the second law of thermodynamics a weakly non-local extension

of ideal fluid dynamics can be derived which leads to the Schrödinger-Madelung equation as

well [17].

In the following study we investigate the Madelung equation with the self-similar Ansatz

and present analytic solutions with discussion.

This way of investigation is a powerful method to study the global properties of the

solutions of various non-linear partial differential equations(PDEs) [18]. Self-similar Ansatz

describes the intermediate asymptotic of a problem: it is hold when the precise initial

conditions are no longer important, but before the system has reached its final steady state.

This is much more simpler than the full solutions and so easier to understand and study the

different regions of the parameter space. A final reason for studying them is that they are

solutions of a system of ordinary differential equations(ODEs) and hence do not suffer the

extra inherent numerical problems of the full PDEs. In some cases self-similar solutions help

to understand diffusion-like properties or the existence of compact supports of the solution.

In the last years we successfully applied the multi-dimensional generalization of the self-

similar Ansatz to numerous viscous fluid equations [19, 20] ending up with a book chapter

of [21].

To our knowledge there are no direct analytic solutions available for the Madelung equa-

tion. Baumann and Nonnenmacher [22] exhaustively investigated the Madelung equation

with Lie transformations and presented numerous ODEs, however non exact and explicit

solutions are presented in a transparent way. Additional numerous studies exist where the

non-linear Schrödinger equation is investigated with the Madelung Ansatz ending up with

solitary wave solutions, [23] however that is not the field of our present interest.
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II. THEORY AND RESULTS

Following the original paper of Madelung [2] the time-dependent Schrödinger equation

reads

4Ψ− 8π2m

h2
UΨ− i4πm

h

∂Ψ

∂t
= 0, (1)

where Ψ, U,m, h are the wave function, potential, mass and Planck’s constant, respectively.

Taking the following Ansatz Ψ =
√
ρeiS where ρ(x, t) and S(x, t) are time and space depen-

dent functions. Substituting this trial function into Eq. (1) going through the derivations

the real and the imaginary part give us the following continuity and Euler equations with

the form of

ρt +∇ · (ρv) = 0,

vt + v · ∇v =
h2

8π2m2
∇
(
4√ρ
√
ρ

)
− 1

m
∇U, (2)

with v = ~
m
∇S. The ρ is the density of the investigated fluid and v is the velocity field.

Madelung also showed that this is a rotation-free flow. The transformed equations has

an attractive feature that the Planck’s constant appears only once, at the coefficient of

the quantum potential or pressure, which is the first term of the right hand side of the

second equation. Note, that these are most general vectorial equation for the velocity field

v which means that one, two or three dimensional motions can be investigated as well.

In the following we will consider the two dimensional flow motion v = (u, v) in Cartesian

coordinates without any external field U = 0. The functional form of the three and one

dimensional solutions will be mentioned briefly as well.

We are looking for the solution of Eqs. (2) with self-similar Ansatz which is well-known

from [18]

ρ(x, y, t) = t−αf

(
x+ y

tβ

)
:= t−αf(η), u(x, y, t) = t−δg(η), v(x, y, t) = t−εh(η), (3)

where f, g and h are the shape functions of the density and the velocity field, respectively.

The similarity exponents α, β, δ, ε are of primary physical importance since α, δ, ε represents

the rate of decay of the magnitude of the shape function while β represents the spreading.

More about the general properties of the Ansatz can be found in our former papers [19, 20].

Except some pathological cases all positive similarity exponents mean physically relevant

dispersive solutions with decaying features at x, y, t → ∞. Substituting the Ansatz (3)
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into (2) and going through some algebraic manipulation the following ODE system can be

obtained for the shape functions

−1

2
f − 1

2
f ′η + f ′g + fg′ + f ′h+ fh′ = 0,

−1

2
g − 1

2
g′η + gg′ + hg′ =

~2

2m2

(
f ′3

2f 3
− f ′f ′′

f 2
+
f ′′′

2f

)
,

−1

2
h− 1

2
h′η + gh′ + hh′ =

~2

2m2

(
f ′3

2f 3
− f ′f ′′

f 2
+
f ′′′

2f

)
. (4)

Note that the particle mass appears in the denominator of the quantum potential term which

is consistent with the experience of regular quantum mechanics that quantum features are

relevant at small particle masses.

The first continuity equation can be integrated giving us the mass as a conserved quantity

and the parallel solution for the velocity fields η = 2(g + h) + c0 where c0 is the usual

integration constant, which we set to zero. (A non-zero c0 remains an additive constant in

the final ODE (5) as well.) It is interesting, and unusual (in our practice) that even the

Euler equation can be integrated once giving us an other constant of motion. For classical

fluids this is not the case. After some additional algebraic steps a decoupled ODE can be

derived for the shape function of the density

2f ′′f − (f ′)2 +
m2η2f 2

2~2
= 0. (5)

All the similarity exponents have the fixed value of +1
2

which is usual for regular heat

conduction, diffusion or for Navier-Stokes equations [21]. Note, that the two remaining free

parameters are the mass of the particle m and ~ which is the Planck’s constant divided by

2π. For a better transparency we fix ~ = 1.

At this point it is worth to mention, that the obtained ODE for the density shape function

is very similar to Eq. (5) for different space dimensions, the only difference is a constant in

the last term. For one, two or three dimensions the denominator has a factor of 1,2 or 3,

respectively.

Some additional space dependent potentials U (like a dipole, or harmonic oscillator in-

teraction) in the original Schrödinger equation would generate an extra fourth term in Eq.

(5) like η, f(η), or η2. Unfortunately, no other analytic closed form solutions can be found

for such ODEs.
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The solution of (5) can be expressed with the help of the Bessel functions of the first and

second kind [24] and has the following form of

f(η) =
2
(
−J 1

4

[√
2mη2

8

]
· c1 + Y 1

4

[√
2mη2

8

]
· c2
)2

η3m2
(
J− 3

4

[√
2mη2

8

]
· Y 1

4

[√
2mη2

8

]
− J 1

4

[√
2mη2

8

]
· Y− 3

4

[√
2mη2

8

])2 (6)

where c1 and c2 are the usual integration constants. The correctness of this solutions can

be easily verified via back substitution into the original ODE.

To imagine the complexity of these solutions Figure 1 presents f(η) for various m values.

It has a strong decay with a stronger and stronger oscillation at large arguments. The

function is positive for all values of the argument, (which is physical for a fluid density),

but such oscillatory profiles are completely unknown in regular fluid mechanics [21]. The

most interesting feature is the infinite number of zero values which cannot be interpreted

physically for a classical real fluid.

5 10 15 20
η

1

2

3

4
f(η)

Fig. 1. The solution of Eq. (6) (c1 = c2 = 1) the yellow curve is for m =1 and blue curve

is for m= 0.5.
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Fig. 2. The projection of real part of the wave function Ψ(x, t) from Eq. (8) for

m = 1 = c1 = c2.

The presented form of the shape function cannot be simplified further, only Yνs can be

expresses with the help of Jνs [24]. Applying the recurrence formulas the orders of the

Bessel functions can be shifted as well. With the parabolic cylinder functions the Bessel

functions with 3/4 and 1/4 orders can be expressed, too. Unfortunately, all these formulas

and manipulations are completely useless now.

Both Jν and Yν Bessel functions with linear argument form an orthonormal set, therefore

integrable over the L2 space. In our case, the integral
∫∞
0
f(η)dη is finite as well, unfortu-

nately can be evaluated only by numerical means. This is good news because f(η) is the

density function of the original Schrdinger equation. In this sense
√
f is the fluid mechanical

analogue of the real part of the wave function of the free quantum mechanical particle which

can be described with a Gaussian wave packet. To obtain the complete original wave func-

tion, the imaginary part has to be evaluated as well. It is trivial from η = x+y
t1/2

= 2(g + h)

that

S =
m

~

∫ r1

r0

vdr =
m

~
(x+ y)2

4t
. (7)

7



Now

Ψ(x, y, t) =

√
2t

1
4

(
−J 1

4

[√
2m{x+y}2

8t

]
· c1 + Y 1

4

[√
2m{x+y}2

8t

]
· c2
)

(x+ y)3/2m
(
J− 3

4

[√
2m{x+y}2

8t

]
· Y 1

4

[√
2m{x+y}2

8t

]
− J 1

4

[√
2m{x+y}2

8t

]
· Y− 3

4

[√
2m{x+y}2

8t

]) ·
e

mi
~

(x+y)2

4t

(8)

Figure 2 shows the projection of the real part wave function to the x, t sub-space. At small

times the oscillations are clear to see, however at larger times the strong damping is evident.

For arbitrary quantum systems, the wave function can be evaluated according to the

Schrödinger equation, however we never know directly how large is the quantum contribution

to the classical one. Now, it is possible for a free particle to get this contribution. (The

Schrödinger equation gives the Gaussian wave function for a freely propagating particle.)

With the Madelung Ansatz we got the classical fluid dynamical analogue of the motion

with the physical parameters ρ(x, y, t),v(x, y, t) which can be calculated analytically via

the self-similar Ansatz thereafter original wave function Ψ(x, y, t) of the quantum problem

can be evaluated as well. The magnitude of the quantum potential Q directly informs us

where quantum effects are relevant. This can be evaluated from the classical density of the

Madelung equation (2) via

Q =
h2

8π2m2
∇
(
4√ρ
√
ρ

)
=

h2

8π2m2

∂

∂η

(
−η2m2

c18J 1
4
[mη

2

4
√
2
]− c28Y 1

4
[mη

2

4
√
2
]

)
. (9)

Figure 3 shows the shape function of quantum potential Q(η) comparing to the shape func-

tion of the density f(η). Note, that where the density has zeros the quantum potential is

singular. Such singular potentials might appear in quantum mechanics, however the cor-

responding wave function should compensate this effect. This is the main message of our

study. Unfortunately, we cannot squarely state, that this kind of property is true in gen-

eral for all the Madelung quantum potentials (e.g. for other Ansätze). Therefore additional

investigations should be made to clarify this conjecture.
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η
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2
f(η)

Q(η)

Fig. 3. The shape function of the density f(η) is the blue curve and the shape function

of the quantum potential Q(η) is the yellow solid line. All the corresponding parameters

are c1 = c2 = m = 1.

III. SUMMARY AND OUTLOOK

After reviewing the historical development and interpretation of the Madelung equation

we introduced the self-similar Ansatz which is a not-so-well-known but powerful tool to

investigate non-linear PDEs. The free particle Madelung equation was investigated in two

dimensions with this method, (the one and three dimensional solutions were mentioned as

well.) We found analytic solution for the fluid density, velocity field and the original wave

function. All can be expressed in terms of the Bessel functions. The classical fluid density

has interesting properties, oscillates and has infinite number of zeros which is quite unusual

and not yet been seen in such analysis.
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