
Astronomy & Astrophysics manuscript no. maibro16˙final˙version˙2c c© ESO 2022
March 3, 2022

Dissipative instability in a partially ionised prominence plasma slab
I. Ballai1,2, B. Pintér3, R Oliver4 and M. Alexandrou1,

1 Solar Physics and Space Plasma Research Centre (SP2RC), Department of Applied Mathematics, The University of
Sheffield, Sheffield, UK, S3 7RH, email: i.ballai@sheffield.ac.uk

2 Konkoly Observatory, MTA Research Centre for Astronomy and Earth Sciences, Konkoly-Thege Miklós út 15-17,
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ABSTRACT

Aims. We aim to investigate the nature of dissipative instability appearing in a prominence planar thread filled with
partially ionised plasma in the incompressible limit. The importance of partial ionisation is investigated in terms of the
ionisation factor and the wavelength of sausage and kink waves propagating in the slab.
Methods. In order to highlight the role of partial ionisation, we have constructed models describing various situations
we can meet in solar prominence fine structure. Matching the solutions for the transversal component of the velocity
and total pressure at the interfaces between the prominence slab and surrounding plasmas, we derived a dispersion
relation whose imaginary part describes the evolution of the instability. Results were obtained in the limit of weak
dissipation. We have investigated the appearance of instabilities in prominence dark plumes using single and two-fluid
approximations .
Results. Using simple analytical methods, we show that dissipative instabilities appear for flow speeds that are less than
the Kelvin-Helmholtz instability threshold. The onset of instability is determined by the equilibrium flow strength, the
ionisation factor of the plasma, the wavelength of waves and the ion-neutral collisional rate. For a given wavelength
and for ionisation degrees closer to a neutral gas, the propagating waves become unstable for a narrow band of flow
speeds, meaning that neutrals have a stabilising effect. Our results show that the partially ionised plasma describing
prominence dark plumes becomes unstable only in a two-fluid (charged particles-neutrals) model, that is for periods
that are smaller than the ion-neutral collision time.
Conclusions. The present study improves our understanding of the complexity of dynamical processes and stability of
solar prominences and the role partial ionisation in destabilising the plasma. We showed the necessity of two-fluid
approximation when discussing the nature of instabilities: waves in a single fluid approximation show a great deal of
stability. Our results clearly show that the problem of partial ionisation introduces new aspects of plasma stability with
consequences on the evolution of partially ionised plasmas and solar prominences, in particular.
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1. Introduction

The lower part of the solar atmosphere is a perfect example
of an environment where temperatures are not high enough
for a complete ionisation of the fluid and charged parti-
cles and neutrals can coexist due to the collision between
them. In particular, solar prominences are regions of cool
and dense plasmas where the plasma is not fully ionised and
the hydrogen ionisation degree could probably vary in dif-
ferent prominences or even in different regions within the
same prominence (Hirayama 1986, Patsourakos and Vial
2002). In this state, the role of neutrals becomes impor-
tant as the source of momentum transfer between species.
Since the neutrals are not controlled by the magnetic field,
they flow inside the prominence, preventing the formation
of any equilibrium that was not dynamic. Gilbert et al.
(2007) found evidence for cross-field diffusion of neutrals
that could explain the mass loss in quiescent prominences.

The mathematical description of partially ionised gases
is different from the standard magnetohydrodynamic
(MHD) approach, as the equations needed to fully describe

the state and dynamics of the plasma have to contain corre-
sponding equations for each species. Considerable advance-
ment can be achieved if we suppose that the prominence
plasma is made up from hydrogen only. In addition, we as-
sume that the plasma is in ionisation equilibrium, that is
the number of ionsation and recombination processes are
balanced and the time required for an ion to recombine
with an electron (or a neutral atom to ionise through colli-
sion) is much shorter than any dynamical time scale under
discussion (e.g. periods, damping times, etc.).

Although the partial ionisation of the prominence
plasma would mean that each constituent species is treated
separately, in the case of ionisation equilibrium and strong
correlation of temperature between species, the plasma can
still be treated as a single fluid and various quantities in
the equations (e.g. density, pressure, etc.) are just the sum
of partial components for each species. For periods that
are shorter than the ion-neutral collisional frequency, the
plasma dynamics has to be described within the framework
of two-fluid MHD.
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A necessary ingredient in our discussion is the equilib-
rium flow that has a very strong observational evidence in
prominences and nowadays they are observed in various
spectral lines, such as Hα, UV/EUV (Labrosse et al. 2010).
Flow speeds range between 5-20 km s−1 in quiescent fila-
ments (Lin et al. 2003) to 15-46 km s−1 in active region
prominences, seen by Hinode/SOT (Okamoto et al. 2007).
At the same time, complex dynamics containing vertical up-
flows and downflows were observed by Berger et al. (2008)
in limb prominences. Vorticities inside the prominence of
sizes approximately of the order of 105 × 105 km2 were ob-
served by Liggett and Zirin (1984) with rotation rates of 30
km s−1.

In our study we assume that the plasmas we are deal-
ing with are non-ideal. According to the standard picture,
dynamical processes taking place in these media will be af-
fected by non-ideal mechanisms by lowering or amplifying
their amplitude; as a result the energy stored in waves and
oscillations are dissipated or accumulated. The plasmas un-
der consideration are dissipative with anisotropic viscosity
in the solar corona, while the dynamics in the prominence
plasma is affected by dissipative processes that are charac-
teristic for its ionisation state.

It is well known that the collisions between ions and
neutrals introduce an effective anisotropic resistivity into
the single fluid equations (Cowling 1957; Braginskii 1965),
called Cowling resistivity, which acts only on perpendicu-
lar currents. Khodachenko et al. (2004) estimated that in
the photosphere and chromosphere the magnitude of this
resistivity is a few orders of magnitude larger than the clas-
sical parallel Spitzer resistivity, for chromospheric parame-
ters this difference is of the order of 104 − 105. The effect
of the Cowling resistivity was investigated in connection to
wave damping (Goodman 2001, Leake et al. 2005, Forteza
et al. 2008, Carbonell et al. 2010, Singh and Krishan 2010),
flux emergence (Leake and Arber 2006, Arber et al. 2007),
the formation of nonlinear force-free fields in the chromo-
sphere from photospheric fields (Arber et al. 2009), or even
reconnection (Ni et al. 2007).

The problem of the stability of plasmas, and promi-
nences in particular, is a very important aspect of solar at-
mospheric physics as instabilities can disrupt the magnetic
configuration on large scales or can generate turbulent con-
vection cells, which significantly enhance the transport of
energy across magnetic surfaces. In general, these instabili-
ties can be categorised in many ways. In the present study,
however, we can classify them as ideal instabilities and non-
ideal instabilities. In the first class, the source of instability
(the reservoir for energy and momentum gain and growth)
comes from currents or pressure gradients that are present
in ideal plasmas. Particular examples of ideal instabilities
are the Kelvin-Helmholtz (KH) and Rayleigh-Taylor (RT)
instabilities, that have been studied in detail in hydrody-
namics and MHD (e.g. Soler et al. 2012, Murawski et al.
2016, Oliver et al. 2016, etc. studied the triggering and evo-
lution of the KH instabilities in prominence plasmas, while
Diaz et al. 2012, Shadmehri et al. 2013, Diaz et al. 2014,
Khomenko et al. 2014b, Ruderman 2015, etc. discussed the
problem of RT instability in solar prominences).

On the other hand, non-ideal instabilities assume that
the plasma contains some sort of transport mechanism that
helps in the triggering of instability (e.g. dissipative insta-
bility, thermal instability, tearing mode instability, etc.).
In these instabilities the presence of a non-ideal effect is a

necessity. For instance, Hillier et al. (2010) studied the ef-
fect of Cowling resistivity on the Kippenhahn and Schluter
prominence model. They found that due to the inclusion of
the Cowling resistivity, the tearing mode instability time
scale is reduced by more than one order of magnitude,
meaning that the structure of the whole prominence can
be significantly altered by the Cowling resistivity. Recently
Mart́ınez-Gómez et al. (2015) studied the onset of the KHI
in a two fluid plasma where non-ideal effects due to colli-
sion between species was considered. They found that due
to the collision between ions and neutrals the KHI can ap-
pear even for sub- Alfvénic flow speeds and these collisions
are able to reduce the growth rate of unstable perturba-
tions but they cannot stop the instability completely. In an
earlier paper, Ballai et al. (2015) studied the appearance
of dissipative instability at the interface of prominence and
corona plasmas assuming that the prominence is partially
ionised (they assumed the Cowling resistivity to be impor-
tant) and the coronal plasma is viscous.

The present study is a normal extension of their previ-
ous work. Here we assume that the magnetic field permeat-
ing the plasma is structured, an assumption that brings the
description of the instability phenomenon closer to a real
situation. The onset of dissipative instability is discussed
for two configurations. In order to emphasise the impor-
tance of a two-fluid MHD, we discuss the same problem
in two different descriptions corresponding to two differ-
ent regimes compared to the ion-neutral collisional time.
The paper is structured as follows. In Section 2, we intro-
duce the equilibrium configuration and the mathematical
formalism that will be used to determine the dispersion
relation of waves and ultimately the threshold at which in-
stabilities occur. Section 3 is dedicated to the derivation of
the dispersion relations of waves propagating in the mag-
netic structure. This is obtained by matching the solutions
at the interfaces. In section 4, we discuss the generation
of the dissipative instability for all the models used in the
study, differentiating between the results obtained in a sin-
gle and two-fluid approximation. Finally, we conclude and
summarise our results in Section 5.

2. The equilibrium configuration

The magnetic field in the solar atmosphere tends to ac-
cumulate into entities (flux tubes, coronal loops) of fi-
nite size (radius) and very often this size is determined
by the balance of various forces acting upon these struc-
tures. Once waves will propagate in finite size waveguides,
their phase speed becomes dependent on the wavelength
at which they propagate, that is they become dispersive
(in optics this phenomenon is also called waveguide disper-
sion). Depending on the particular dependence of the phase
velocity on the wavelength, we can differentiate between
positive and negative dispersion. In the first case, waves
will propagate faster with increasing wavelength, while in
the case of waves with negative dispersion, an increasing
wavelength would mean a decreasing phase speed.

In the present study, the structuring of the magnetic
field is modelled by a three-layer model, where a magnetic
slab along the x-axis of thickness z0 is sandwiched between
two semi-infinite planes situated at z = 0 and z = z0. The
magnetic field in the three regions is taken to be parallel to
the x axis, that is B0 = B0x̂, where x̂ is the unit vector in
the x direction. Depending on the possible roles played by
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different regions in the equilibrium configuration, we can
study the appearance of dissipative instability in two dif-
ferent models. In the first model, the equilibrium setup de-
scribes the case of a partially ionised prominence slab fibril
in steady state, which is immersed into the fully ionised and
viscous solar corona. The second model consists of a par-
tially ionised prominence fibril sandwiched by an interfibril
partially ionised prominence plasma. In both models we
assume that inside the slab the plasma flows with a piece-
wise constant flow in the direction of the magnetic field.
In all models studied here, the quantities describing the
state of the plasma in the external medium (i.e. outside the
slab) are labelled by an index ’2’, while, inside the slab, the
plasma is described through quantities with an index ’1’.
For simplicity, we assume that the fluids in the two regions
(and all models) are incompressible, a generalisation of this
restriction would be a rather straightforward task.

A discussion on the nature of transport processes that
can act under these conditions is presented in an earlier
paper by Ballai et al. (2015). Here we are going to employ
the same considerations and assume that the viscosity is the
dominant transport mechanism in the solar corona and it is
described by the first term in Braginskii’s viscosity tensor,
while the transport mechanisms in the prominence appear
in the induction equation (single fluid description), or due
to the friction of different species of particles evidenced in
the momentum equation (two fluid description). The two
frameworks describe the same physics, however, applicable
for different regimes, depending on how the wave periods
compare to the ion-neutral collisional time.

The relative densities of neutrals and ions are defined
as (Forteza et al. 2007)

ξi =
ρi
ρ
≈ ni
ni + nn

, ξn =
ρn
ρ
≈ nn
ni + nn

, (1)

where ρi and ρn are the mass density of ions and neutrals,
ρ is the total density, and ni and nn are the number density
of ions and neutrals, respectively. The degree of ionisation
can be characterised by the ionisation fraction defined as

µ =
1

1 + ξi
. (2)

According to this definition, a fully ionised gas corresponds
to µ = 0.5, while a neutral gas is described by µ = 1. The
last two relations allow us to express the relative densities
in terms of the ionisation degree as

ξi =
1

µ
− 1, ξn = 2− 1

µ
. (3)

The equations of ideal fully ionised plasma can be obtained
by taking ξn = 0 and ξi = 1.

Let us assume that the two-dimensional dynamics in
the partially ionised plasma slab is described first within
the framework of a single-fluid MHD. Here perturbations
in velocity and magnetic field are v = (vx, 0, vz) and
b = (bx, 0, bz). The dynamics in the prominence (inside
the slab) is described by the system of non-ideal linearised
MHD equations

∇ · v1 = 0, ∇ · b1 = 0, (4)

ρ01
∂v1

∂t
+ ρ01v0

∂v1

∂x
= −∇P1 +

B0

µ0

∂b1

∂x
, (5)

∂b1

∂t
+ v0

∂b1

∂x
= B0

∂v1

∂x
+R, (6)

where µ0 is the permeability of free space and R is the
resistive term, given by

R = η∇2b1 − Ξ∇× (∇p1 ×B0)+

+
(ηC − η)

|B0|2
∇× {[(∇× b2)×B0]×B0} . (7)

In the above equation η and ηC denote the standard Spitzer
and Cowling resistivities, respectively and the connection
between them is given by

ηC = η +
ξ2nB

2
0

µ0αn
=

1

µ0

[
me

nee2

(
1

νie
+

1

νen

)
+
ξ2nB

2
0

αn

]
,

where νei and νin are the electron-ion and electron-neutral
collisional frequencies and αn is the friction coefficient given
by

αn = 2ξn(1− ξn)
ρ20
mn

√
kBT0
πmi

Σin,

and Σin ≈ 5× 10−19 m2 is the ion-neutral collisional cross
section. In the generalised induction equation (6) we ne-
glected other effects, such as the Biermann’s battery term
(under solar atmospheric conditions this is too small) and
the Hall effect. In addition, in Eq. (5), P1 = p1+B0bx1/µ0 is
the total (kinetic and magnetic) pressure, and the quantity
Ξ in Eq. (7) is given by

Ξ =
ξ2nξi

(1 + ξi)αn
.

It should be noted that the second term in Eq. (7), called
diamagnetic current term, in the limit of weak dissipation
will play no role in our further analysis.

Let us assume harmonic oscillations, meaning that per-
turbations are chosen to be proportional to exp[i(kx−ωt)].
It was shown earlier by Ballai et al. (2015) that, inside the
slab, the total pressure, P1, and z component of the velocity
vector, vz, are connected by

(Ω + iηC1k
2)P1 =

iρ01
k2

(DA1 + iηC1Ωk2)
dvz
dz

, (8)

where Ω = ω−kv0 is the Doppler-shifted frequency, DA1 =
Ω2 − k2v2A1 and ηC1 is the coefficient of the Cowling resis-
tivity in region 1. In the above calculations we assumed,
for simplicity, that in the dissipative terms we can consider
d2/dz2 � k2. This simplification is fully justified as the
plasma movement takes place in the transversal direction
following the oscillatory motion of the Alfvénic wave (the
plasma is incompressible).

In model 1 (prominence slab surrounded by fully ionised
viscous corona), the governing equation for perturbations
in the viscous and fully ionised solar corona (see Ballai et
al. 2015) is

P2 =
iρ02(DA2 + 2iνk2ω)

k2ω

dvz
dz

, (9)

where ν = η0/ρ02 is the kinematic coefficient of viscosity
and η0 is the coefficient of the first term Braginskii’s vis-
cosity tensor (for details see, e.g. Ballai et al. 2015).
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For the second model (partially ionised plasma slab sur-
rounded by another partially ionised interfibril prominence
plasma in a different state of ionisation), the governing
equation is

(ω + iηC2k
2)P2 =

iρ02
k2

(DA2 + iηC2ωk
2)
dvz
dz

, (10)

where DA2 = ω2−k2v2A2 and ηC2 is the Cowling resistivity
in region 2.

The solutions of these equations must be connected at
the boundaries of the regions. We will be concerned with
those disturbances that are laterally evanescent, that is
vz(z)→ 0 as |z| → ∞, meaning that the energy of the dis-
turbance is essentially confined to the interior of the slab.
As a result, the z-component of the velocity can be given
as (for details see, e.g. Edwin and Roberts 1982, Ballai et
al. 2015)

vz =

 βee
−k(z−z0) for z > z0,

α0 cosh(kz) + β0 sinh(kz) for 0 < z < z0,
αee

kz for z < 0.
(11)

The coefficients α0, β0, αe, βe are real constants that can be
determined after joining the solutions at the boundaries of
the slab. According to the standard classification, the only
modes that can appear in this structure are surface modes
that could be sausage or kink, depending whether vz is an
odd or even function of z.

Given the particular orientation of the equilibrium mag-
netic field the interfaces between the prominence slab and
its environment can be considered as tangential disconti-
nuities. Let us assume that the equation of the perturbed
discontinuity is ζ(x, t) = 0. The requirements that the nor-
mal component of the velocity and normal component of
the stress tensor are continuous imply that the linearised
kinematic boundary condition reduces to

[[vz − v0 · ∇ζ]] = 0,

while the continuity of the stress tensor in the case of ho-
mogeneous background is [[P ]] = 0 and [[g]] denotes the
jump of quantity g across the discontinuity in the sense
that the jump of a function g(z) is defined as [[g(z)]] =
limε→0+ [g(z + ε)− g(z − ε)]. The z-component of the ve-
locity and ζ can be related by

vz =
∂ζ

∂t
+ v0 · ∇ζ.

Using the above property, the kinematic boundary condi-
tion becomes[[

vz
ω − k · v0

]]
= 0. (12)

In the case of model 2 (single fluid approximation), the
continuity of the stress tensor simplifies to the requirement
that the total pressures on the two sides of the discontinuity
are equal, however, in the case of model 1 the viscosity
of the corona is modifying this requirement, so that the
continuity of the normal component of the stress tensor
reduces to

P1 = P2 − 2ρ02ν
∂vz2
∂z

, (13)

that has to be evaluated at the interfaces, situated at z = 0
and z = z0.

3. Dispersion relation of surface waves propagating
in the slab

Let us first deal with one fluid approximation. In our deriva-
tion we assumed that all perturbations oscillate with the
same frequency ω, which is a complex quantity that can be
written as ω = ωr + iωi. Let us introduce the viscous and
resistive Reynolds numbers as

Rr =
vA1

kηC
, Rv =

vA2

kν
. (14)

Under coronal and prominence conditions, both Reynolds
numbers are very large and therefore waves will propagate
with little damping over a period, meaning that, in our
subsequent calculations, we will consider that |ωr| � |ωi|.
The very large Reynolds numbers also allow us to consider
dissipative terms much smaller than other terms belonging
to ideal MHD, meaning that in our calculations all terms
containing ν2 or η2C are neglected. The interaction of flows
and waves in a dissipative medium will generate the new
physics our study deals with. Later we will see that, con-
trary to our expectations, dissipation does not always act
towards decreasing the wave amplitude; for specific values
of flow speed or ionisation degree, the interplay between
flows, dissipation, and waves could lead to an increase of
the waves’ amplitude, or an unstable behaviour.

The dispersion relation of waves propagating in the
magnetic slab can be obtained by imposing the boundary
conditions on the total pressure and normal component of
velocity. For the sinh term (see Eq. 11), the dispersion re-
lation of sausage waves reads

d

(
DA1 +

iηCk
4v2A1

Ω

)
+(DA2+4iνk2ω) tanh(kz0) = 0, (15)

while the cosh term leads to the dispersion relation of kink
waves

d

(
DA1 +

iηCk
4v2A1

Ω

)
+ (DA2 + 4iνk2ω) coth(kz0) = 0.(16)

We can rearrange these relations in the form

DA2

{
tanh(kz0)
coth(kz0)

}
+ dDA1+

+ik2
[
4νω

{
tanh(kz0)
coth(kz0)

}
+
ηCk

2v2A1d

Ω

]
= 0. (17)

Following the same consideration and imposing the right
boundary conditions at the two interfaces, the dispersion
relation for the second model becomes

DA2

{
tanh(kz0)
coth(kz0)

}
+ dDA1 + ik4×

×
[
ηC1v

2
A1d

Ω
+
ηC2v

2
A2

ω

{
tanh(kz0)
coth(kz0)

}]
= 0, (18)

where d = ρ01/ρ02 is the density contrast between the in-
terior and exterior in the slab. These dispersion relations
will be investigated analytically and numerically in the next
section to determine the range of flows and thickness of the
slab (or wavelength of waves compared to the geometrical
transversal size of the slab) for which the incompressible
surface waves propagating in the slab are unstable.
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4. Dissipative instability

Since the Reynolds numbers, defined by Eqs. (14), are very
large, it is realistic to assume that the damping of waves
propagating in the magnetic slab is weak. According to the
chosen dependence of variables with time, a perturbation
with ωi > 0 corresponds to an instability, that is when
the amplitude of waves grows exponentially with time ac-
cording to exp(ωit). Here we restrict ourselves to the lin-
ear phase of instabilities. Linear growth rates provide us
with characteristic time scales for the instability to oper-
ate. Nonlinear studies are needed to assess the real impact
of the instability on the evolution of the plasma parame-
ters. This topic, however, would require numerical analysis,
which would be outside the scope of the present study.

Following the method developed by Cairns (1979), the
imaginary part of the frequency can be calculated as

ωi ≈ −
DI

∂DR/∂ω
, (19)

where DR and DI are the real and imaginary parts of the
dispersion relations (see Eqs. 17–18) and this expression
should be evaluated at the value of the frequency that cor-
responds to the solution of the real part of the dispersion
relation, that is a root of the equation DR = 0.

Let us first concentrate on the sausage modes, the solu-
tion for kink modes being easily generated. The difference
in the two models resides only in the choice of the trans-
port mechanism, therefore it is obvious that the real part
(corresponding to the ideal case) will be identical. In this
case it is straightforward to show that the root of the real
part of the dispersion relation becomes

ω± =
k

d+ tanh kz0

[
dv0 ±

√
d tanh kz0(v2KH − v20)

]
=

dkv0
d+ tanh kz0

± kΓ

d+ tanh kz0
, (20)

where we used Γ =
√
d tanh kz0(v2KH − v20), and vKH is the

Kelvin-Helmholtz speed for propagation in the slab, defined
here as

v2KH =
(d+ tanh kz0)(v2A1d+ v2A2 tanh kz0)

d tanh kz0
. (21)

This speed plays a special role in the determination of the
nature of instabilities that can appear in the magnetic slab.
First of all, Eq. (20) shows that Kelvin-Helmholtz instabil-
ities (KHI) appear only for those flows that are greater
than vKH . When waves are restricted to propagate in the
slab, even vKH is dispersive and it varies not only with the
density ratio (as in the case of wave propagation along a
density interface) but also with the relative magnitude of
the wavelength compared to the transversal size of the slab.

Given the importance of vKH , it is instructive to esti-
mate the magnitude and variation of this quantity for the
two models. Observations show that the wavenumber of
waves in prominences varies between 10−8 and 10−6 m−1

(Forteza et al. 2007). As a characteristic Alfvén speed in
the prominence, we choose vA1 = 28 km s−1 (see Joarder
and Roberts 1992). For model 1, we assume three values
of the external Alfvén speed (198 km s−1, 280 km s−1,
343 km s−1) that - under the assumption of identical field
strength - would result in a density contrast of 50, 100 and

Fig. 1. Variation of the Kelvin-Helmholtz speed, vKH , with
the dimensionless quantity kz0 for model 1 on logarithmic
scale for three different values of the density contrast be-
tween the solar prominence and surrounding solar corona.

150, respectively. For model 2, we assume that our setup
describes the situation of a dark plume, where the internal
Alfvén speed is vA1 = 200 km s−1, that is surrounded by
the prominence with a density contrast of d = 0.05, 0.1 and
0.5, respectively, resulting in Alfvén speeds of 44, 63 and
141 km s−1, respectively.

A key parameter in our discussion is the product kz0,
where k is the wavenumber of the waves under study and
z0 is the width of the slab. Since our analysis refers to two
possible scenarios (prominence slab surrounded by coro-
nal plasma and prominence slab surrounded by prominence
plasma), the value of this parameter (kz0) takes different
values. In the first case we are going to assume (hypotheti-
cally) that the entire prominence can be considered as one
single plasma slab, in which case we are going to consider
that z0 is the width of the prominence. The typical width
of prominences varies between 4 and 30 Mm (Lin 2010),
meaning that the product kz0 falls in the interval 0.01 and
30. For the second scenario, we are going to consider that
z0 refers to the size of a thread only, that has a width of
100-600 km, meaning that the dimensionless parameter kz0
will be in the interval 0.001 and 0.6.

One key aspect to note is that regardless of the model
employed, the KH speed is always super-Alfvénic. Under
prominence conditions, these speeds amounts to values that
are of the order of a few hundred km s−1. This would also
mean that, in prominences, the plasma is always Kelvin-
Helmholtz stable. The variation of the threshold speed at
which waves propagating in the slab become KH unstable is
shown, on logarithmic scale, in Fig. 1 for model 1 with the
threshold increasing with the wavelengths for both sausage
and kink modes. For both types of waves the range of speed
obtained clearly show that the existence of flows larger than
vKH are not possible to observe, meaning that the promi-
nence in this model is indeed KH stable. For large values of
kz0 (wide slab or long wavelength approximation) the value
of the Kelvin-Helmholtz speeds reaches the value obtained
for a single interface (see, e.g. Ballai et al. 2015). It is also
clear that the threshold were waves become KH unstable
increases with the density contrast between the prominence
and the solar corona.

In the case of model 2, the range of kz0 is differ-
ent and observations restrict us to the situation when the
wavelength of waves is larger than the width of the slab
(see Fig. 2). In the case of sausage waves, vKH shows a
minimum in the kz0 � 1 domain (thin slab) that is at-
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Fig. 2. Same as Fig. 1, but for model 2

tained for kz0 = tanh−1 vA1d/vA2 and here the value of the
vKH = vA1+vA2. For kink waves the KH threshold shows a
1/kz0-type monotonic decrease. For small values of the di-
mensionless quantity kz0, the KH threshold for kink waves
is much larger than the corresponding value for sausage
modes, while they tend to become equal for kz0 ≈ 1. This
result shows that, for long wavelengths, sausage waves can
become much easily KH unstable than kink waves, how-
ever, the range of speeds obtained here is inconsistent with
the values observed for background flows.

Now using the definition of ωi together with the disper-
sion relations (17)–(18) we obtain that the imaginary part
of the frequency in the first model is given by

ωi1 = ∓ k
2

2Γ

[
4ν tanh kz0(dv0 ± Γ)

d+ tanh kz0
−

−ηCv
2
A1d(d+ tanh kz0)

v0 tanh kz0 ∓ Γ

]
, (22)

where the Cowling resistivity in the solar prominence is
given by

ηC = 109T−3/2p +
(2µ− 1)v2A1mp

2(1− µ)ρ1Σin

(
πmp

kBTp

)1/2

, (23)

where Tp is the temperature in the prominence. Here we as-
sumed that the plasma is made up of hydrogen and, there-
fore, the mass of ions is equal to the mass of protons. We
need to note here that a positive imaginary part of the fre-
quency would mean that the amplitude of waves will grow
despite the presence of dissipation, that is these waves are
undergoing a dissipative instability.

For model 2, following the same technique, the imagi-
nary part of the frequency becomes

ωi2 ≈ ∓
k2(d+ tanh kz0)

2Γ

(
− ηC1v

2
A1d

v0 tanh kz0 ∓ Γ
+

+
ηC2v

2
A2 tanh kz0
dv0 ± Γ

)
. (24)

Now let us investigate graphically the regions where the
plasma becomes unstable, that is we search for the combi-
nation of physical parameters that make the imaginary part
of the frequency positive. As we specified earlier, the flows
that are currently observed in solar prominences are of the
order of a few tens of km s−1. In the case of model 1 we first
plot the frequency contour plot of backward propagating
waves (see Fig. 3) showing the regions where the imaginary

Fig. 3. Contour plot of the variation of ωi1 in the case of
sausage (left-hand side curves) and kink (right-hand side
curves) modes in terms of background equilibrium flow and
the value of the dimensionless parameter kz0 for model 1.
The ionisation rate is µ = 0.95.

part of the frequency is changing sign for a given value of the
ionisation factor, µ = 0.95 (here and thereafter we are go-
ing to concentrate mainly on backward propagating waves
as forward propagating waves will have a standard physical
damping). The region above each curve corresponds to a
combination of parameters that makes the imaginary part
of the frequency positive, meaning that backward propa-
gating waves are unstable. For values of equilibrium flows
that are closer to observed values (the lower end of the flow
interval considered here), it is possible to obtain two values
of kz0 where ωi1 is changing sign, that is the domain of kz0
where waves are unstable is bounded by the two values.
For example, for d = 50 and v0 = 35km s−1, ωi1 > 0 for
0.009338 < kz0 < 0.6246. The plots in Fig. 3 were obtained
for three different values of densities contrast and it is ob-
vious that the threshold value for sausage modes depends
on the value of density contrast only for larger values of
flows. In the case of kink modes the three curves are in-
distinguishable, so the instability threshold does not show
any dependence on the density contrast. This behaviour
could be explained in terms of the internal motion of the
plasma in the two wave modes. In the case of kink waves,
the slab oscillates without disturbing the internal structure
of the slab, while, in the case of sausage modes, the inter-
nal plasma structure is compressed and relaxed according
to the oscillating pattern of the wave. While the instability
of sausage modes sets in for smaller values of kz0 (in the
long wavelength limit), kink waves become unstable only
when their wavelength is comparable with or shorter than
the width of the slab.

Let us investigate how the instability threshold varies
with the ionisation degree of the prominence slab. We
choose a particular value of the equilibrium flow of 30 km
s−1 and let µ vary between 0.5 and 1, corresponding to the
ionisation state of the plasma (see Fig. 4). We also fix three
values of density contrast (d=50, 100, 150) between the
prominence and solar corona. In the case of sausage modes,
the threshold of instability depends on the ionisation degree
for very limited interval of kz0. For this particular value of
flow and density contrast, the backward propagating wave
is unstable only for wavelengths that are larger than the
width of the slab, in particular kz0 < 0.15. In addition sig-
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Fig. 4. Contour plot of the variation of ωi1 in the case of
sausage modes in terms of ionisation degree and the value of
the dimensionless parameter kz0 for model 1. Here v0 = 30
km s−1. The region where instability occurs is shown by
the plus symbol.

nificant dependence on the ionisation degree occurs only
near the end of the interval. Density differences between
the two media also influence the instability threshold. Fig.
4 shows that, as the density contrast increases, the thresh-
old moves towards the direction of increased ionisation. The
corresponding plot for kink waves is not shown here, as the
appearance of unstable modes involves very high values of
the equilibrium flow, therefore the appearance of instability
is unrealistic.

Let us now discuss the second model that we use to
study the instability of waves propagating in prominence
dark plumes. Observations by Berger et al. (2008, 2011) and
Ryutova et al. (2010) revealed that dark plumes are turbu-
lent upflows in prominences which usually develop Kelvin-
Helmholtz vortex rolls. Ca II absorption lines in promi-
nence plumes show these as dark features, in contrast to
the prominence material, which suggests a hotter plasma
in the plumes compared to their environment. Plumes are
also less dense than their surrounding material. The width
of plumes ranges between 0.5 Mm to 6 Mm and their max-
imum heights are between 11 Mm and 17 Mm. The mean
flow speed is about 15 km s−1, although velocities up to 30
km s−1 are also measured, while the typical plume lifetime
is between 400 s and 890 s (Berger et al. 2010).

In this model the plasma inside and outside the slab are
partially ionised and the plasma inside the slab exhibits
an equilibrium flow along the background magnetic field.
These structures are hotter and less dense than their envi-
ronment, therefore d < 1. We assume that the plasma in
the plume is nearly completely ionised, therefore we choose
µ1 = 0.55. The ionisation degree of the prominence (region
2) is unknown. We let µ2 vary in the interval 0.55-0.95. Let
us first discuss the sausage modes appearing in these struc-
tures. The parameter domains where the imaginary part
of the frequency of backward propagating sausage modes
changes sign are shown in Fig. 5. First to note is that the
values of the equilibrium flow at which the backward mode
is unstable for all three values of the density contrast are far
too high. For flow spends that are observed modes are stable
and they encounter a normal physical damping. Backward
propagating waves become unstable for flow speeds that are
comparable with the KH speeds. In Fig. 5, backward propa-

Fig. 5. Contour plot of the variation of ωi2 in the case of
sausage modes in terms of the equilibrium flow speed and
the value of the dimensionless parameter kz0 for model 2.
The values of the density is shown in the legend of the
figure. The region where instability occurs is shown by the
plus symbol.

Fig. 6. Contour plot of the variation of ωi2 in the case of
sausage modes in terms of the equilibrium flow speed and
the ionisation degree of the external region for model 2. The
values of the dimensionless quantity kz0 and the ionisation
degree of the plasma slab has been fixed and shown on the
figure. The region where instability occurs is shown by the
plus symbol.

gating waves are unstable only in a narrow band shown by a
plus sign. Above the upper boundary of the instability zone,
the plasma becomes KH unstable. Similar findings can be
obtained for other density contrasts. In Fig. 6, the appear-
ance of the unstable regime of the same sausage mode is
displayed for a fixed value of kz0 and we allow the variation
of the ionisation of the external medium to change between
the extreme cases of a near complete ionisation and near
neutral gas. Similar to the findings of Fig. 5, the values
of flows at which the instability sets in is at around 250
km s−1, clearly for values higher than any measured flow
speeds. Similar to the results found in Fig. 5, the instabil-
ity appears only in a limited region, that is a well-specified
combination of parameters. For d = 0.05, the plasma is
unstable in a very small region for values of the external
ionisation, that is, close to full ionisation. Everywhere else,
waves propagating in the slab will damp.
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Fig. 7. Similar to Fig. 5, but here we plot the regions of
instability for kink waves.

In the case of kink waves (see Fig. 7), the instability sets
in, again, for very large values of the equilibrium flows and
for very long wavelengths. The unstable region, again, is
bounded, similarly to the domain shown in Fig. 4. Finally,
for the same kind of waves, the instability threshold is prac-
tically independent on the ionisation degree (for a fixed
value of kz0).
The very large values of equilibrium flows at which dissi-
pative instabilities occur in filamentary structures lead us
to the necessity of an alternative treatment of the partially
ionised prominence plasma stability.

Two-fluid approximation

The above one fluid models are restricted to periods that
are larger than the ion-neutral collisional time. For peri-
ods that are less or comparable to the ion-neutral colli-
sional time, the plasma dynamics is described in a two-
fluid approximation, where the equations are written for
the charged particles (ions and elections) and neutrals. The
plasma behaviour of the mixture is ensured by collisional
terms between ions and neutrals in the induction equa-
tion and these collisional are dominant processes in mo-
mentum transfer between species and the electron inertia
is neglected. In reality, the two models are not identical,
instead they are complementary.

Similarly to the equilibrium described earlier in this
study (model 2), we are going to consider that the equilib-
rium configuration is composed of a partially ionised slab
filled with plasma in steady state (v0 is the equilibrium
flow and is parallel to the discontinuity), surrounded by
two partially ionised half-space plasma regions. The plasma
is permeated by a homogeneous magnetic field oriented in
the x direction, and the interfaces are situated at z = 0
and z = z0. The equilibrium plasma parameters are homo-
geneous and constants in all regions. We denote the regions
inside and outside the slab by the indices 1 and 2, respec-
tively.

The set of coupled differential equations governing the
dynamics of linear waves in incompressible two-fluid plas-
mas is given by (see, e.g. Zaqarashvili et al. 2011, Khomenko
et al. 2014a, Mart́ınez-Gómez et al. 2015 )

ρ0i

(
∂vi
∂t

+ v0 · ∇vi
)

= −∇pie +
1

µ0
(∇× b)×B0−

−αin(vi − vn), (25)

ρ0n

(
∂vn
∂t

+ v0 · ∇vn
)

= −∇pn − αin(vn − vi), (26)

∂b

∂t
= ∇× (v0 × b) +∇× (vi ×B0) +R1, (27)

∇ · vi = ∇ · vn = ∇ · b = 0, (28)

where vi = (vix, 0, viz) and vn = (vnx, 0, vnz) are the com-
ponents of the two-dimensional velocity perturbation of
ions and neutrals, pie and pn are the pressure perturbations
of the ion-electron and neutral fluids, b = (bx, 0, bz) is the
magnetic field perturbation, ρ0i and ρ0n are the equilibrium
densities of ions and neutrals, while αin is the ion-neutral
friction coefficient. Frictions between charged and neutral
(close-range interaction) particles is ensured via collision
processes. In the absence of this process, neutrals will not
be able to stay in the system and the momentum equa-
tions would decouple. Equations (25) and (26) are the lin-
earized momentum equations of the ion-electron fluid and
neutrals, respectively. The last terms on their RHSs ex-
press the transfer of momentum between ions and neutrals
through diffusion of one species into the other. As a result of
collisions, particles can loose energy. The dynamics in the
external region is described by a similar system of equa-
tions, with the exception that the equilibrium outside the
slab is static. As pointed out by Zaqarashvili et al. (2011),
Cowling resistivity appears only in the one fluid approx-
imation, that is why in Eq. (27) R1 = η∇2b, where the
coefficient of resistivity appears only due to the movement
and interaction of electrons in the partially ionised plasma
and is defined as

η =
c2(νei + νen)

ω2
pe

,

where νei and νen are the electron-ion and electron-neutrals
collisional frequencies and ωpe is the electron plasma fre-
quency. According to Braginskii (1965) and Zaqarashvili et
al. (2011) the two collisional frequencies are defined as

νei =

√
12nee

4 ln Λ

12π3/2ε20m
1/2
e (kBT )3/2

, νen = Σennn

(
8kBT

πmn

)1/2

,

where ne is the number density of electrons, e is the electron
charge, ln Λ is the plasma logarithm, ε0 is the permitivity
of free space and Σen = 10−19 m2 is the electron-neutral
collision cross-section. The electron plasma frequency is a
quantity that depends only on the number density of elec-

trons and is defined as ωpe ≈ 17.8πn
1/2
e (s−1). Introducing

the values of physical constant and assuming ln Λ ≈ 15 we
arrive to the relation

η =

[
4.95(1− µ)T 1/2

2µ− 1
+

15.81× 108

T 3/2

]
(m2s−1),

where the temperature is measured in K. Equation (27)
clearly shows that the magnetic field is able to interact
only with the charged part of the plasma fluid.

Let us express the ion-neutral friction coefficient, αin,
as

αin = ρ0iρ0nγin, (29)
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where γin is the ion-neutral collision rate coefficient per unit
mass. The friction coefficient vanishes in both the fully ion-
ized (ρ0n = 0) and fully neutral (ρ0i = 0) cases. However,
instead of using γin, we are going to use the collision fre-
quency, which has a more practical physical meaning. Thus,
we define the ion-neutral, νin, and neutral-ion, νni, collision
frequencies as

νin = ρ0iγin, νni = ρ0nγin, (30)

and the two collisional frequencies are connected through
ρ0nνin = ρ0iνni. In consequence, in the remaining part of
the present paper, we are going to use νin only and use
ν1 and ν2 to denote the collisional frequencies in the two
media.

We are going to employ the same normal mode analysis
as in the case of single fluid description here, however, the
continuity of the normal component of momentum across
the discontinuity would require an equivalent relation writ-
ten for ions and neutrals. Similarly, the continuity of the
stresses at the interface would translate into the balance
of the total pressure of charged particles and the kinetic
pressure of neutrals.

After straightforward calculations we can obtain that
the dispersion relation for waves propagating along the in-
terface in the incompressible limit can be given as DR +
iDI = 0, where now the real and imaginary parts of the
dispersion relation are given by

DR = (DA1di +DA2 tanh kz0)(Ω2dn + ω2 tanh kz0),

DI = (DA1di +DA2 tanh kz0)(Ων1dn + ων2 tanh kz0)+

(Ω2dn + ω2 tanh kz0) [Ωdiν1χ1 + ων2χ2 tanh kz0+

+k4
(
v2A1η1di

Ω
+
v2A2η2 tanh kz0

ω

)]
. (31)

where DA1 = Ω2 − k2v2A1, DA2 = ω2 − k2v2A2, χ1,2 =
ρ0n1,2/ρ0i1,2 and dn = ρ0n1/ρ0n2, di = ρ0i1/ρ0i2. The dis-
persion relation given by Eq. (31) describes the propaga-
tion of two pairs of waves propagating in the opposite di-
rection, in each direction having a wave that is connected
to ions, while the other one to neutrals. The collisions be-
tween species lead to the modification in the amplitude of
waves. The presence of collisions between particles (and the
associated momentum transfer) together with the resistiv-
ity renders the equations to be dissipative. Due to the loss
of energy and momentum of individual species waves will
propagate with a complex frequency, where the imaginary
part describes damping or amplification.

Despite lacking a firm physical basis from the partially
ionised plasma point view, let us discuss the collisionless
and ideal limit, that is when ν1 = ν2 = η1 = η2 = 0
(in the absence of collisions, neutrals cannot be kept in the
system), as this will help us understand the results obtained
in the collisional limit. In this case, the dispersion relation
is decoupled and we can solve separate equations for ions
and neutrals. Accordingly, the dispersion relation for ions
becomes

DA1di +DA2 tanh kz0 = 0, (32)

which can be easily solved to lead to

ω = k
v0di ±

√
di tanh kz0(v2KH − v20)

di + tanh kz0
, (33)

where the Kelvin-Helmholtz speed is defined as

v2KH =
(di + tanh kz0)(v2A1di + v2A2 tanh kz0)

di tanh kz0
.

As Eq. (33) shows, the ion wave becomes KH unstable for
flow speeds larger than vKH . However, since vKH is al-
ways super-Alfvénic in an incompressible plasma and the
observed flows are always sub-Alfvénic, waves due to ions
will be always KH stable.

In the case of neutrals, the dispersion relation in the
collisionless limit becomes

Ω2dn + ω2 tanh kz0 = 0, (34)

whose solution reads

ω = k
v0dn ± iv0

√
dn tanh kz0

dn + tanh kz0
. (35)

This dispersion relation describes the propagation of two
waves in the same direction, however, one of them is
damped, while the other is amplified in time. These modes
owe their existence to the presence of the equilibrium flow,
and the flow plays the role of reservoir/sink for gained/lost
energy of the wave. The peculiar behaviour of neutrals un-
der prominence conditions was discussed earlier (see, e.g.
Soler et al. 2012) and the unstable behaviour corresponds to
the standard hydrodynamic KH instability. Another impor-
tant result of this limit is that a two-fluid approach allows
the propagation of two pairs of waves, one due to charged
particles, and the other one for neutrals. In contrast, a
single-fluid approach allows the propagation of one single
pair, and this mode is a surface Alfvén wave. Similarly to
the single-fluid approach, we are interested in the backward
propagating waves that can develop dissipative instability.

Let us first concentrate on the ion-related waves, for
which the dispersion relation (in the uncoupled limit) of the
backward propagating wave is given by Eq. (33), where we
choose the lower sign. Using Cairn’s criteria, the imaginary
part of the frequency is approximately given by Eq. (19)
where the equation is evaluated at the roots of the ideal
dispersion relation, that is the solutions obtained in the
collisionless limit.

After straightforward calculations we obtain that the
imaginary part of the frequency of the backward propagat-
ing wave is given by

ωii ≈
θ1 + θ2

2Γ̃1(di + tanh kz0)
, (36)

where

θ1 =
k2(di + tanh kz0)2

(v0di − Γ̃1)(Γ̃1 + v0 tanh kz0)

[
Γ̃1(v2A1η1di + v2A2η2)+

+ v0(v2A2η2 tanh kz0 − v2A1η1d
2
i )
]

θ2 = −Γ̃1(diν1χ1 + ν2χ2 tanh kz0)−

v0 tanh kz0di(ν1χ1 − ν2χ2),

and Γ̃1 =
√
di tanh kz0(v2KH − v20).

Let us apply this relation in connection to the modes
that could appear in prominence dark plumes. A higher
temperature in the slab would mean that more neutrals
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are ionised, therefore, dn < 1. The ion-neutral collisional
frequency depends on the temperature and densities of the
plasma. Let us consider that ν1 = αν2. As a result, the
ratio of the collisional frequencies becomes

α =
ν1
ν2

=
ρ0n1
ρ0n2

√
T1
T2

= dn

√
T1
T2
.

Although we restricted ourselves to the case dn < 1, the
fact that T1/T2 > 1 means that α can take any values.
As a representative collisional frequency between ions and
neutrals in the prominence region we can estimate that the
ion-neutral collisional time (for a hydrogen plasma) can be
defined as

νin = 4nnΣin

√
kBT

πmi
. (37)

For typical prominence values (nn = 1016 m−3, T = 104 K
using the FAL3 model), we obtain a collisional frequency
of the order of 208 s−1 (Fontenla et al. 1990, Oliver et al.
2016).

To bring theoretical results closer to observations, we
express neutral densities in terms of ion densities, as current
observations reveal number densities for ions, rather than
neutrals. From Eqs. (1)-(3) we have

ρ0n1 ≈
ξn1ρ0i1
1− ξn1

,

and a similar relation is valid in region 2. It is easy to
calculate the new expression of dn as

dn = di
(2µ1 − 1)(1− µ2)

(1− µ1)(2µ2 − 1)
,

where µ1 and µ2 are the ionisation fractions inside and
outside the slab, respectively.

Let us now consider that medium 1 is a plume and re-
gion 2 represents the surrounding prominence. Based on ob-
servations by Berger et al. (2010), we assume that plumes,
having a temperature of 105 K, are surrounded by promi-
nence plasma with temperature of 104 K. Since the exact
ionisation degree of the prominence plasma is not known,
we assume for illustration that µ2 = 0.75 and let the ion-
isation degree of the plume vary between 0.5 and 0.75.
Furthermore, we consider that the ion density in the promi-
nence is ρi02 = 5×10−11 kg m−3 and a density of the plume
is 10% of it, that is ρ0i1 = 0.1ρ0i2, di = 0.1. For all types
of waves, we adopted a flow speed of 10 km s−1. Since the
imaginary part of the frequency is negative for both waves
(regardless the ionisation degree), the waves will undergo
a physical damping (Figs. 8–9). Similar to the one fluid
model, the instability will set in for much larger values of
flow, values that are currently not observed, however the
more ionised the plasma is, the easier is to have an unsta-
ble sausage wave. From this perspective, kink modes are
more stable than sausage modes.

Now let us look at the waves associated to neutrals
where both waves are forward propagating. Now, if unsta-
ble behaviour appears, it could be attributed to a Kelvin-
Helmholtz instability (similar to the findings by Mart́ınez-
Gómez et al. 2015). Since the mode corresponding to the
lower sign is always damped, we will concentrate on the
wave that corresponds to the upper sign in Eq. (35). In
the collisionless limit the amplitude of this wave grows in

Fig. 8. Variation of the imaginary part of the frequency
for backward propagating sausage modes due to ions in the
two-fluid approximation with the ionisation degree of the
plasma and the wavelength of waves.

Fig. 9. The same as in Fig. 8, but here the dispersion curves
denote the imaginary part of the frequency of kink modes.

time. We should mention here that the imaginary part of
the frequency given by Eq. (35) does not refer to any physi-
cal effect. This value is the solution of the collisionless limit
and it will be used next to determine the real (physical)
damping or growth rate of these waves. Following the same
procedure as before, the imaginary part of the frequency is
given by Eq. (A.1) and it is clear that it is not affected by
resistivity.

However, the expression given by Eq. (A.1) is not the
full answer to our problem, since this has to be consid-
ered together with the value determined earlier in Eq. (35).
Combining the two relations, we arrive at the imaginary
part of the frequency that appears due to neutrals

ω+
in = ω+

in +
kv0
√
dn tanh kz0

(dn + tanh kz0)
. (38)

The variation of the imaginary part of the frequency (coun-
terplots) is shown in Figs. (10)–(11), for sausage and kink
modes, respectively. This result clearly shows what new
physics is brought into these systems by neutrals. While
kink waves are unstable for the whole range of parameters,
the instability threshold for sausage modes depends on the
ionisation degree of the plasma and the wavelength of waves
(Fig. 10). In the long wavelength limit (kz0 � 1) waves are
unstable until the concentration of neutrals in the plume
regions reaches a certain threshold value, after which these
modes will damp. The value of the critical neutral concen-
tration increases with decreasing the wavelength of waves.
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Fig. 10. Variation of the imaginary part of the frequency
for propagating sausage modes in the two-fluid approxima-
tion.

Fig. 11. The same as in Fig. 10, but here the dispersion
curves denote the imaginary part of the frequency of kink
modes.

In addition, there will be a wavelength cut-off value (here
corresponding to kz0 ≈ 0.03) after which modes will be-
come unstable, regardless the amount of neutrals in the
system. In the case of sausage modes the growth rate of
waves (for fixed wavelength) decreases with increasing the
number of neutrals in the plume region. The same pattern
is recovered for kink modes, however, the growth rate is
weakly affected by the presence of more neutrals. Therefore,
neutrals indeed have a stabilising effect on sausage modes
due to the increased amount of the momentum transferred
by neutrals in the process of collision. For a fixed ionisation
degree, the frequency increases with decreasing wavelength,
so that the longer the wavelength, the shorter is the growth
time of sausage waves.

These results show that the consideration of a two fluid
MHD for model 2 introduces a new physics that has not
been possible to describe in the framework of a single fluid
MHD. The two regimes are difficult to compare, as they
are valid in different frequency regimes. It remains to be
seen what the temporal evolution of these instabilities is
(e.g. they can saturate, evolve into a macro instability, or
develop turbulences), but this issue would require a robust
numerical investigation. The mixture of two species plasma,
therefore, shows a very complex pattern where the Kelvin-
Helmholtz unstable behaviour of neutrals is stabilised by
the damping due to collisions with ions. Since the species
of the plasma are coupled through collisions, the instability

of one single species will drive the whole mixture into an
unstable state.

Finally, we need to mention that our results are some-
how quantitatively different from the results obtained ear-
lier by Mart́ınez-Gómez et al. (2015), but this is due to the
technique used here to find the imaginary part of the fre-
quency. While the above authors used numerical methods
to study the onset of the KHI in a two-fluid model, our
analytical approach is valid only for weakly dissipative and
low collisional frequency plasmas.

5. Conclusions

The present research focussed on the appearance of dissipa-
tive instabilities for waves propagating in a partially ionised
plasma slab surrounded by the corona or another partially
ionised prominence environment. The geometrical restric-
tions imposed on waves make them dispersive, and different
characteristics were investigated for symmetric and asym-
metric waves (sausage and kink waves).

The nature of the instabilities discussed here means that
they appear for flow speeds lower than the KHI, the value
of the KH speed playing a special role in our discussion. A
simple analysis showed that the KHI is unlikely to occur in
the plasmas we dealt with. The threshold values where the
KH instability occurs varies with the density ratio of the
slab plasma and its surrounding and with the wavelength
of the waves. In all cases, the flow speed at which waves are
KH unstable is of the order of a few thousand km s−1, that
is much above currently observed values.

We analysed the appearance of dissipative instability,
that is the unstable growth of a backward propagating wave
in the presence of flow, in two different equilibrium set-ups.
First we assumed that the whole partially ionised promi-
nence can be treated as a slab surrounded by the viscous
and completely ionised corona. After imposing the neces-
sary boundary conditions at the interfaces between the two
media, we derived a dispersion relation describing the prop-
agation of incompressible waves propagating inside the slab.
The imaginary part of the frequency describes the damping
or the growth of waves. The results on the role of viscosity
and magnetic field are identical with the findings by Ballai
et al. (2015). Here we focussed on the role of dispersion and
the ionisation degree on the stability threshold of waves.
Our results show that sausage modes are more sensitive to
the variation of physical parameters, the value of ionisation
degree is more pronounced for very large wavelengths.

The second model we used is a plasma slab in partially
ionised state surrounded by another partially ionised, in-
finitely extended environment, modelling the case of promi-
nence dark plumes surrounded by another prominence ma-
terial. Our results clearly show that the unstable behaviour
of these structures require unrealistically high flows as long
as the periods of waves are larger than the ion-collisional
time and the plasma dynamics is described in a one-fluid
MHD model. The situation is different when we consider
very high frequency waves (or low periods) when the plasma
behaviour requires a two-fluid approach.

This investigation also shows the complexity of the
physical situation under investigation and the importance
of a two-fluid MHD approach in partially ionised plasmas.
In this description, the plasma becomes unstable solely due
to the propagating waves that appear in the presence of
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neutrals. The source of instability for this mode in a single-
fluid MHD approach does not exist. Strictly speaking the
instability described here is not dissipative in the sense of
instabilities described earlier, as the modes that are unsta-
ble are forward propagating.

Large values of flow necessary for an instability to oc-
cur in a single fluid MHD model is not a surprise, given
the simplicity of our model. We are aware that the simple
model employed here misses several key effects for plume
dynamics. For example, the sharp interface considered here
does not allow the appearance of body waves, that could be
important concerning the stability of plumes. Furthermore,
the flow of particles oblique to the magnetic field might de-
crease the instability threshold significantly, as it was shown
by Prialnik et al. (1986) in the case of KH instability. It
also remains to be seen how the effect of compressibility
can change the stability criteria, bearing in mind that the
general effect of compressibility is to stabilise the plasma.
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Mart́ınez-Gómez, D., Soler, R., & Terradas, J. 2015, A&A, 578, 104
Murawski, K., Chmielewski, P., Zaqarashvili, T.V., & Khomenko, E.,

2016, MNRAS, 459, 2566
Ni, L., Yang, Z., & Wag, H. 2007, Astrophys. Space Sci. 312, 139
Okamoto, T.J., Tsuneta, S., Berger, T.E. et al. 2007, Science, 318,

1577
Oliver, R., Soler, R., Terradas, J., & Zaqarashvili, T.V., 2016, ApJ,

818, 128

Patsourakos, S., & Vial, J.-C. 2002, Sol. Phys., 208, 253
Prialnik, D., Eviatar, A., & Ershkovich, A.I., 1986, J. Plasma Phys.,

35, 209
Ruderman, M. S. 2015, A&A, 580, 37
Ryutova, M. P., Berger, T.E., Frank, Z., Tarbell, T., & Title, A. 2010,

Sol. Phys., 267, 75
Shadmehri, M., Yaghoobi, A., & Khajavi, M. 2013, Astrophys. Space

Sci., 347, 151
Singh, K.A.P. & Krishan, V., 2010, New Astron., 15, 119
Soler, R., Oliver, R., & Ballester, J.L., 2009, ApJ, 707, 662
Soler, R., Diaz, A. J., Ballester, J.L. ,& Goossens, M., 2012, ApJ, 749,

163
Zaqarashvili, T.V., Khodachenko, M.L., & Rucker, H.O., 2011, A&A,

529, 82

Appendix A: The imaginary part of the frequency
calculated for neutrals

The imaginary part of the frequency calculated with the help of
Cairn’s formula (see Eq. (19) that corresponds to the positive (ampli-
fied) solution of the collisionless dispersion relation attached to neu-
trals is given by

ω+
in = −

1

2(dn + tanh kz0)

(
ν1dn − ν2 tanh kz0 +

Ψ+
1

Ψ+
2

)
, (A.1)

where

Ψ+
1 = 2dn tanh2 kz0(ν1 − ν2)

v20(di − dn)

(dn + tanh kz0)2
,

Ψ+
2 =

v20(di − dn) tanh kz0

(dn + tanh kz0)2
(tanh kz0 − dn) − v2A1di − v2A2 tanh kz0.
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