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ABSTRACT

Oligonucleotide-mediated multiplex genome
engineering is an important tool for bacterial
genome editing. The efficient application of this
technique requires the inactivation of the endogen-
ous methyl-directed mismatch repair system that in
turn leads to a drastically elevated genomic
mutation rate and the consequent accumulation of
undesired off-target mutations. Here, we present a
novel strategy for mismatch repair evasion using
temperature-sensitive DNA repair mutants and
temporal inactivation of the mismatch repair
protein complex in Escherichia coli. Our method
relies on the transient suppression of DNA repair
during mismatch carrying oligonucleotide integra-
tion. Using temperature-sensitive control of
methyl-directed mismatch repair protein activity
during multiplex genome engineering, we reduced
the number of off-target mutations by 85%, concur-
rently maintaining highly efficient and unbiased
allelic replacement.

INTRODUCTION

Recent breakthroughs in genome engineering have greatly
expanded our ability to design organisms in a directed and
combinatorial manner. The myriad of novel genome-scale
modification technologies offer new opportunities for the
construction of biological systems with desired properties
(1). From these techniques, oligonucleotide (oligo)-
mediated allelic replacement has been optimized toward
multiplexing and automation (2). Specifically, multiplex-
automated genome engineering (MAGE) is capable of
editing and evolving the genome of a desired organism.

Several factors make MAGE exceptionally attractive
for cell manipulation. It enables simultaneous and cost-
efficient modification of a large set of genomic targets and
accordingly, exploration of the effects of mutations in a
combinatorial manner by generating a diverse heterogenic
population across the targeted loci. The power of MAGE
has been demonstrated in a wide range of biotechnological
applications. It allows (i) optimization of metabolic
pathways to produce industrially relevant compounds
(2,3), (ii) improvement of bacterial growth properties
under selected conditions (4) and (iii) genome-wide re-
placement of a specific codon in Escherichia coli (5,6).
Therefore, MAGE has the potential to transform basic
research by accelerating and expanding the range of
protocols for genome editing and analysis (1).
MAGE relies on the incorporation of synthetic

single-stranded DNA (ssDNA) oligonucleotides carrying
the desired modifications into the lagging strand of the
replicating target genome (7,8). The efficiency of this
process is highly dependent on the avoidance of the
methyl-directed mismatch repair (MMR) machinery of
the target cell. The removal of the endogenous MMR
system increases the rate of oligo incorporation by
orders of magnitude and eliminates biases in the rate of
incorporation of different types of mismatches (9).
However, the need for a disabled MMR machinery also
presents the greatest drawback: global MMR inactivation
results in an �100-fold increase in host mutation rate (10)
leading to the accumulation of unwanted background
mutations across the bacterial genome. For example, in
an effort to replace all TAG stop codons in E. coli,
three different strains were sequenced after 25–30 cycles
of MAGE and subsequent genome transfer. All of them
were found to carry >100 off-target mutations (5).
The severity of this problem is evident: these off-target
mutations can potentially mask the phenotypic effects of
the engineered modifications. Several previous approaches
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have been proposed to solve this problem (9,11–13)
(Table 1), but all suffer from serious limitations, are
technically challenging or introduce novel methodological
problems.
The elimination of MMR activity is only necessary

during a relatively brief period of each MAGE cycle
(i.e. during allelic replacement). Therefore, we suggest a
simple strategy relying on temperature-based control of
MMR protein activity. In contrast to the relatively slow
process of transcriptional control of MMR protein level,
our protocol applies MMR protein variants with
temperature-sensitive defects, allowing rapid switching
between mutator and nonmutator states; thus, minimizing
the time the bacterial population spends susceptible to the
accumulation of off-target mutations. This temporal on–
off switch of mismatch repair is easily incorporated into
the standard MAGE protocol, as it already uses a
temperature shift to activate the expression of the � Red
recombinase enzymes.

MATERIALS AND METHODS

Media, chemicals and reagents

Unless otherwise noted, cultures were grown in Luria-
Bertani-Lennox (LBL) media (10 g of tryptone, 5 g of
yeast extract, 5 g of sodium chloride per 1L of water)
for cell manipulations. For the isolation of single
colonies for further analysis, cells were sampled on LBL

media supplemented with 1.5% agar and tetracycline at a
working concentration of 20 mg/ml. For the measurement
of rpsL allelic replacement frequency, LBL agar was
supplemented with 50 mg/ml streptomycin. LacZ, MalK
and AraB activities were assayed on MacConkey agar
base (peptone 20 g, bile salts 1.5 g, sodium chloride 5 g,
agar 13.5 g, neutral red 0.03 g and crystal violet 1.0mg
per 1 L of water) supplemented with 20 mg/ml tetracycline
and 1% of lactose for LacZ, maltose for MalK or
L-arabinose for AraB activity measurements
Glycerol-free terrific broth (TB) was applied for recovery

media (yeast extract 24 g, tryptone 12 g, K2HPO4 9.4 g,
KH2PO4 2 g per 1L of water).

Oligonucleotides

All oligonucleotides for allelic replacement as well as
polymerase chain reaction (PCR) primers used in this
study are presented in Supplementary File S1. Oligos
were ordered with standard purification and desalting
from Integrated DNA Technologies. Oligos applied for
allelic replacement have complementary sequence to the
replicating lagging strand and have minimized secondary
structure (>�12 kcalmol�1). Additionally, each oligo
contained two subsequent phosphorothioate linkages at
both 50 and 30 termini for endogenous nuclease evasion.

Strain construction

All applied strains were derived from E. coli K-12
MG1655. For the construction of temperature-sensitive
mismatch repair deficient strain E. coli tMMR, previously
described temperature-dependent mutS(A134V) and
mutL(G62S) alleles (14) were introduced into wild-type
background.

Single-nucleotide variation in mutS, which confers an
Ala134!Val amino acid change, was constructed by
using a suicide plasmid-based method. Standard steps
and plasmids (pST76A, pSTKST) of the procedure have
been described (15). Briefly, using PCR primers carrying
the desired point mutation (Supplementary File S1), the
mutant mutS gene was constructed, then cloned into the
thermosensitive pST76A plasmid. The plasmid construct
was then transformed into the cell, where it was able to
integrate into the chromosome by way of a single
crossover between the mutant allele and the corresponding
chromosomal region. The desired cointegrates were
selected using the antibiotic resistance carried on the
plasmid at a nonpermissive temperature for plasmid
replication. Next, the pSTKST helper plasmid was
transformed, then induced within the cells, resulting in
the expression of the ISce-I meganuclease enzyme, which

Table 1. Various approaches to achieve high allele replacement (AR) efficiency while minimizing mutator phenotype

General strategy Specific attempts Possible limitations

Modifications in the ssDNA oligo

C:C mismatch in vicinity of target
modification (11)

Introduce novel scars, place sequence limitations on
which genome modifications can be made,
problems involving codon bias (11)

Change of wobble position of two
neighboring codons of target
modification (11)

Use of chemically modified analogs
of the four base pairs (12)

Added cost and lesser availability of the
modified bases, possible toxic effects on
the host organism (12)

Diversion of MMR proteins

Use of adenine analog 2-aminopurine
to titrate MutL protein (9)

10-fold less efficient than with MMR deficient
strains, extra incubation time, mutagenic
effect of 2-aminopurine (9)

Co-electroportation of dsDNA oligo
containing mismatches (9)

No effect on AR efficiencies even when present in
100-fold excess (9)

Control of MMR protein transcription
Reversible inactivation of MMR protein

coding gene using oligonucleotide (13)

Requires extra MAGE cycles for the enrichment of the
introduced modification, mutator phenotype persists
during entire cycles when the gene is turned off (13)
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cleaves the chromosome at the 18-bp recognition site
present in the integrated plasmid. The resulting chromo-
somal break is repaired by way of RecA-mediated
intramolecular recombination between the homologous
segments in the vicinity of the broken ends. The
recombinational repair results in either a reversion to the
wild-type chromosome or in a scarless allele replacement.
Strains carrying the desired point mutation were
distinguished by sequencing the given chromosomal
region, resulting in the MG1655 tMutS strain.
Whole-genome sequencing of the constructed strain
revealed a synonymous undetected point mutation in the
mutS gene (1323C!T), which does not result in amino
acid change and has no effect on the desired phenotype.

Oligonucleotide-mediated singleplex � Red recombin-
ation was used to generate the temperature-dependent
mutL(G62S) variant Gly62!Ser in MG1655 tMutS. To
generate the mutL point mutation, a plasmid-based
iterative � Red recombination protocol was used. As the
integrated mismatch (G:T chromosomal-to-synthetic) has
high correction efficiency without MMR inactivation, the
allelic replacement was done at elevated temperature to
partially inactivate MutS proteins during oligo incorpor-
ation (experiment based on unpublished results). The tem-
perature-sensitive mutS mutant strain, MG1655 tMutS,
carrying the pBADabg � Red expression plasmid (16)
was applied. In brief, to perform allelic replacement,
cells were grown in 10-ml LBL from overnight starter
culture at 38�C, 250 rpm to OD550 0.5–0.7. � Red
proteins were induced by the addition of L-arabinose at
0.2% concentration for 30min. For recombination, cells
were pelleted 3800 rpm for 7min and washed twice in
ice-cold purified water (dH2O), resuspended in dH2O
and electroporated with oligo MutL35_SNP at 2.5mM
final concentration. Electroporated cells were allowed to
recover in 10ml of LB at 38�C until the culture reached
mid-logarithmic growth. After two iterations, cells were
plated on LBL agar plates. Clones with desired mutation
were identified by allele-specific PCR.

Briefly, selected colonies were assayed in 25-ml colony
PCR reactions using DreamTaq DNA Polymerase
(Thermo Scientific, catalog number EP0702) in
DreamTaq Buffer (includes 2mM MgCl2) and 200 mM
deoxyribonucleotide triphosphates (Thermo Scientific,
catalog number R0192), 0.2 mM MutL35ASP_fw and _rv
primers and 0.5 ml of saturated bacterial culture. For allele
discrimination, the following PCR protocol was used: heat
inactivation and cell lysis at 96�C for 5min, 30 cycles
(95�C for 30 s, 63.5�C for 30 s and 72�C for 40 s) and
final extension for 5min at 72�C. Colonies containing
the desired point mutation was confirmed by sequencing
the target site in mutL. PCR amplicons, generated by the
MutLseq_fw and MutL35ASP_rv primers in colony PCR,
were sequenced using the MutLseq_fw primer for
sequencing.

Permanent mismatch repair deactivation was achieved
by endogenous mutS gene removal by suicide
plasmid-based scarless deletion and yielded E. coli K-12
MG1655 �mutS.

The heat shock-inducible genomic � Red system was
P1 transduced from E. coli LT521 {MG1655 gal490

nadA::Tn10 pgl�8 [� cI857 �(cro-bioA)]} (courtesy of
Donald L. Court, National Cancer Institute, Frederick,
MD, USA). This � prophage-based construct was
integrated at the bioA/bioB locus of the constructed
strains and allowed the induction of gam, beta and exo
genes by a brief heat shock at 42�C. Integration of the
prophage construct into E. coli tMMR yielded
MG�-tMMR. MG�-�mutS was created by prophage
introduction into E. coli K-12 MG1655 �mutS.

MAGE cycling process

Individual colonies from freshly streaked overnight agar
plates were inoculated into glass flasks containing 10-ml
LBL aliquots supplemented with 20 mg/ml tetracycline and
incubated in a shaking incubator at 250 rpm at 32�C. On
reaching OD550 0.55–0.65, flasks were moved to a
prewarmed 42�C shaking water bath for 15min 300 rpm
to induce expression of � gam, beta and exo recombinase
genes. Induced cells were then immediately chilled on ice
with vigorous shaking for at least 5min. Cells were made
electrocompetent by washing and pelleting twice in 10ml
of ice-cold dH2O at 3800 rpm for 7min in an Eppendorf
5702 R centrifuge with swing-out rotor at 4�C. Finally,
cells were suspended in 160 ml of dH2O. All cell
manipulations were performed on ice.
For electroporation, 40 ml of competent cells were mixed

with 1 ml of 100 mM oligos suspended in TE buffer for
singleplex allelic replacement to reach 2.5-mM ssDNA
concentration. For six-plex allelic replacements, 6 ml of
oligo mixture was added, containing 1 ml of each oligo at
�2.5mM final concentration. Cells were subjected to
electroporation in a prechilled 1-mm gap VWR
Signature Electroporation cuvette (VWR, catalog
number 89047–206) using a BioRad MicroPulser
electroporator using the following parameters: 1800V,
25 mF, 200 �. Five milliliters of prewarmed (36�C) TB
medium was immediately added to the electroporated
cells and was transferred to culture flasks. Cells were
allowed to recover for 60min either at 32 or 36�C,
depending on the experiment and the applied strain.
Five milliliters room temperature LBL medium supple-
mented with 20 mg/ml tetracycline was then added, and
cells were allowed to grow at 32�C until mid-logarithmic
state at 250 rpm. At this point, cells were either subjected
to additional MAGE cycles or assayed for phenotype and
genotype analysis. Overall, three separate incubators were
used during each cycle, each preset to the given
temperature, allowing for immediate shifts in the
temperature. The above MAGE cycling protocol was
applied generally, except when noted in the experiment
description.

Optimization of recovery time

To determine the optimal time interval that cells spend at
restrictive temperature during each MAGE cycle, a single
allelic replacement was performed using LacZ_m10_v2lo
oligo. This oligo introduces a nonsense mutation by two
consecutive mismatches into the lacZ gene and has high
correction efficiency in the presence of the native MMR
system. For the measurement of the correlation between
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the time interval that cells spend at restrictive temperature
and allelic replacement efficiency after electroporation,
LacZ_m10_v2lo oligo were introduced into
MG�-tMMR in 2.5-mM final concentration. After electro-
poration, cells were resuspended in 15-ml prewarmed TB
broth and incubated at 36�C. One milliliter of aliquots was
removed and placed into 32�C shaking incubator every
15min for overnight incubation at 250 rpm in glass
tubes. Allelic replacement efficiencies were determined by
plating cells at appropriate dilution from overnight culture
to MacConkey media supplemented with 1% of lactose.

Analyzing recombination

For the analysis of allelic replacement frequencies during
MAGE cycles, two types of selection marker genes were
selected for targeting, either to introduce nonsense or
missense mutations. The first set of genes, including
lacZ, malK, araB and rpsL, were selected for easy visible
discrimination of recombinant colonies on supplemented
MacConkey agar plates, based on sugar fermentation
and/or antibiotic resistance (rpsL, which confers resistance
to streptomycin). The second set of genes, consisting of
cycA and hisB, were targeted by knock-out oligonucleo-
tides to introduce nonsense mutations. Recombinant
colonies from recombineering with the second gene set
were screened by using allele-specific PCR for allele
discrimination.
Targeted inactivation of LacZ activity, by the incorpor-

ation of a nonsense mutation, was assayed by plating cells
onto MacConkey agar supplemented with 1% lactose as a
carbon source and 20 mg/ml tetracycline. Cells were plated
at appropriate dilutions in three replicates, typically to
yield 400–800 colonies per plate. Plates were incubated
at 30�C overnight. Allelic replacement efficiencies were
calculated by dividing the number of white (LacZ-)
recombinant colonies by the number of total colonies.
For assaying MalK and AraB activities, the same
protocol was applied with the exception of the use of
MacConkey media supplemented with either 1% of
maltose or L-arabinose, respectively.
RpsL allelic replacement frequency was measured by

plating cells in parallel onto LBL agar and LBL agar
supplemented with 50 mg/ml streptomycin. RpsL allelic
replacement efficiencies were calculated by dividing the
number of StrR colonies by the number of total colonies
on LBL agar plates.
As it has been reported previously, E. coli cells can

contain up to eight partial chromosomal copies during
exponential growth in rich media (17). Fast growing
cells that have not undergone enough cell divisions to
segregate mutant and wild-type alleles, therefore,
generate sectored colonies. To overcome this scenario,
cells were allowed to grow overnight to early stationary
phase before plating.

Allele-specific colony PCR

Allele-specific colony PCR was used to genotype clones to
measure allelic replacement frequencies for cycA and hisB
and to select for clones with desired numbers of allelic
replacements. For rapid allele discrimination, two sets of

primers were synthesized either targeting cycA or hisB.
For each set, one primer carried the corresponding
mismatch at the 30 terminus, whereas the other had
complete homology to the target region. Only a clone
containing the mutant allele generated a PCR product.
To avoid nonspecific product formation during PCR,
the optimal annealing temperature and cycling protocol
was determined by gradient PCR with annealing tempera-
tures varied between 58 and 70�C.

The query strains were assayed in 25 ml of PCR reactions
using DreamTaq DNA Polymerase (Thermo Scientific) in
DreamTaq Buffer (includes 2mM MgCl2) and 200 mM
deoxyribonucleotide triphosphates (Thermo Scientific),
0.2 mM forward and reverse primer and 0.5 ml of saturated
bacterial culture (produced either by diluting one bacterial
colony in 100ml of dH2O or growing cells to stationary
phase in LBL). For cycA allele discrimination, the following
PCR cycles were used: heat inactivation and cell lysis at
96�C for 5min, 28 cycles (95�C for 20 s, 61�C for 30 s and
72�C for 40 s) and final extension for 5min at 72�C.

For hisB alleles, the optimal PCR protocol was the same
with the exception of annealing temperature, which was
set to 68�C.

The PCR products were separated on 1% agarose gel
and were imaged by a BioDoc-ItTM BioImaging System
(UVP).

Genotype analysis

Genotype analysis at selected loci of cells that underwent
recombineering was performed by three main methods,
which included allele-specific colony PCR, Sanger DNA
sequencing and whole-genome resequencing.

Sanger sequencing

Genotype analysis at selected loci of cells undergoing
multiplex recombineering was performed by Sanger
capillary sequencing, in addition to allele-specific PCR
as previously described. Genotype of regions correspond-
ing to the annealing sites for the allelic replacement
oligonucleotides and its proximity were determined in
this manner. In all, 600–700-bp PCR amplicons covering
the target sites of all targeted mutations were sequenced
from individual colonies. Amplicons were generated by
colony PCR, purified using Viogene Gel/PCR DNA
Isolation System (Viogene BioTek Corp., catalog
number GP1002) and sequenced on a 3500 Series
Genetic Analyzer (Life Technologies; LT). Mutations
were identified by aligning sequence reads to the reference
E. coli K-12 MG1655 genome (GenBank accession
number NC000913; version NC_000913.2 GI:49175990).

For the analysis of variation in the target sites of
MAGE oligos, 96 mutants of both MG�-�mutS and
MG�-tMMR strains were sequenced across the target
site of the cycA-AAAC oligo within the cycA gene after
undergoing 20 MAGE iterations each. Individual colonies
from populations that had undergone MAGE cycling
were plated and isolated on LBL plates. Colony PCR,
using the cycA1 and cycAASP_r primers, was used to
amplify the oligo target site and its surroundings. The
PCR amplicons were purified using ZR-96 DNA
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Clean-up KitTM (Zymo Research, catalog number
D4018). Capillary sequencing was performed by
Macrogen Inc., Amsterdam, Netherlands, via EZ-Seq
DNA sequencing service, using the cycA1 primer for
sequencing. The obtained sequences were aligned to the
E. coli K-12 substr. MG1655 chromosome using
Genomics Workbench 6.0.1 (CLC Bio). Variations
mapped within the target site of the cycA_AAAC oligo
were judged as within-site mutations.

Whole-genome sequencing

Genomic off-target mutation rates were determined by
analyzing five 6-fold mutants from each MAGE-cycled
population and comparing their genome with the
sequenced ancestral strains. LacZ, malK and araB triple
knock-out mutants harboring an rpsL StrR mutation were
selected by plating cells to MacConkey media base
supplemented with 0.5% lactose, 0.5% maltose, 0.5%
L-arabinose and 50 mg/ml streptomycin at 30�C. Selected
colonies were then screened for harboring cycA and hisB
mutations using allele-specific PCR. Cell lines were then
confirmed for containing the desired targeted mutations
by Sanger sequencing using primers listed in
Supplementary File S1. Selected cell lines were subjected
to whole-genome resequencing, and SNV and INDEL
analysis was performed.

Briefly, genomic DNA was extracted from selected
E. coli isolates (GenEluteTM Bacterial Genomic DNA
kit, Sigma-Aldrich, catalog number NA2110), and the
subsequent library preparation was performed using the
5500 SOLiD Fragment Library Core Kit (LT). Three
micrograms of purified bacterial genomic DNA was
fragmented by Covaris S2 System to 100–250 bp. The
fragmented DNA was end-repaired and ligated to P1
(50-CCACTACGCCTCCGCTTTCCTCTCTATGGGCA
GTCGGTGAT-30) and P2 (50-CTGCCCCGGGTTCCTC
ATTCTCTGTGTAAGAGGCTGCTGACGGCCAAG
GCG-30) adapters that provide the primary sequences for
both amplification and sequencing of the sample library
fragments. The P2 adapter contains a 10-bp barcode
sequence, which provided the basis for multiplex
sequencing (5500 SOLiD Fragment Library Barcode
Adaptors; LT). The templates were size-selected using
the Agencourt AMPure XP system (Beckman Coulter),
nick-translated using Platinum PCR Amplification Mix
and the template library was quantitated by quantitative
PCR using SOLiD Library TaqMan Quantitation Kit
(LT). The templates were clonally amplified by emulsion
PCR with P1 primer covalently attached to the bead
surface. Emulsions were broken with butanol, and emul-
sion PCR beads enriched for template-positive beads
by hybridization with P2-coated capture beads.
Template-enriched beads were extended at the 30 end in
the presence of terminal transferase and 30 bead
linker. Beads with clonally amplified DNA were then
deposited onto a SOLiD Flowchip, the slide was loaded
into a SOLiD 5500xl System (LT) and the 50-base
sequences were obtained according to the manufacturer’s
protocol.

Bioinformatics analysis of genome sequences

The obtained sequences from each strain were first
trimmed to filter out low-quality reads that were <50 bp.
The remaining high-quality sequences from each strain
were then aligned to the E. coli K-12 substr. MG1655
chromosome (GenBank accession number NC000913;
version NC_000913.2 GI:49175990) in color space using
Genomics Workbench 6.0.1 (CLC Bio). An average
coverage of >130-fold was accomplished for each strain.
The maximum gap and mismatch count within a single
read was set to 2 with a minimum of four reads to call a
potential variation before further analysis. Variations
represented only in the MAGE evolved lines and not in
the constructed ancestrals (with the exception of muta-
tions within the oligonucleotide target sites) were judged
as off-target mutations arising during MAGE cycles.

Mutation rate measurements

Mutation rates to rifampicin resistance were estimated
using fluctuation analysis as previously described (18).
Briefly, 12 tubes of 1-ml LBL were inoculated with �104

cells from each strain. Cells were grown at the examined
temperature until early stationary phase. Appropriate
dilutions were spread onto nonselective LBL agar plates
as well as LBL agar plates containing rifampicin (100mg/
ml) and incubated at 30�C. Colony counts were performed
after 24 or 48 h, respectively. The mutation rate was
calculated using the Ma-Sandri-Sarkar maximum
likelihood method (19). The calculations were performed
using the FALCOR web tool (20).

Estimating effects of temperature increase on growth
parameters of MGj-tMMR

Growth rate measurements were obtained by growing
replicates of the ancestral strains, E. coli K-12 MG1655
wild-type, MG�-tMMR and MG�-�mutS. Briefly,
cultures (0.6–1 ml) of the studied strains, incubated at
30�C until early stationary phase, were inoculated into
96-well shallow plates (30 replicates per strains). Each
well contained 100-ml LBL medium. Growth curves were
recorded by measuring OD600 every 7min for 24 h at the
examined temperature using a Biotek-automated plate
reader. Growth rate, relative to wild-type E. coli K-12
MG1655, was calculated from the obtained growth
curves following a reported procedure (21,22).

RESULTS

Characterization of the temperature-sensitive MMR
mutant

Using standard genome engineering techniques
(see ‘Materials and Methods’ section), we introduced
temperature-sensitive MMR protein alleles
[MutS(A134V) and MutL(G62S)] (14) into E. coli K-12
MG1655 expressing the � Red recombinases, resulting in
the strain MG�-tMMR.
Using rifampicin resistance assay and subsequent

fluctuation analysis (18), we estimated the mutation rate
in this strain across a range of temperature settings.
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In agreement with published results (14), we observed an
�100-fold increase in mutation rate as the temperature
shifted from 32 to 38�C (Figure 1A).
To test the effect of this temperature shift (and conse-

quent disruption of the MMR machinery) on the
replacement efficiency of ssDNA oligos, we worked with
a set of previously designed oligos (12). These oligos
introduce all possible single base pair mismatches (A:A,
C:C, G:G, T:T, G:A, G:T, C:A, C:T) at specific genomic
locations, and by generating premature stop codons, they
either inactivate lacZ or malK. The frequency of the
corresponding allelic replacement events was thus easily
detectable by colorimetric assays (see ‘Materials and
Methods’ section). We found that in six of the eight
cases, the MG�-tMMR strain allowed efficient and
mostly unbiased oligo incorporation comparable with
that achieved by the isogenic mismatch repair knockout
strain MG�-�mutS (Figure 1B). Although the incorpor-
ation rates of C:A and G:G mismatches were significantly

lower in the MG�-tMMR strain than that in
MG�-�mutS, the observed rates were still one order of
magnitude higher compared with the values seen in the
MG� strain. Additionally, we tested the allelic replace-
ment efficiency of another set of oligos (12), which
introduce mismatches of increasing lengths into lacZ.
Again, the replacement efficiencies for 1 and 2 consecutive
mismatches in both MG�-�mutS and MG�-tMMR
strains were over an order of magnitude higher than
what was observed in the MG� strain (Figure 1C). We
conclude that MG�-tMMR and MG�-�mutS provide
similarly high allelic replacement efficiencies, both in the
cases of single nucleotide changes and small insertions.

Design and optimization of the modified protocol

Based on these results, we designed a slightly modified
MAGE cycle (Figure 2). Steps of the procedure are as
follows: (i) a brief heat-shock (42�C, 15min) that serves

Figure 1. (A) Mutation rate measurement of employed strains at various temperatures. A rifampicin resistance assay was used to calculate mutation
rates as described in ‘Materials and Methods’ section. Error bars represent 95% confidence intervals of pooled samples of two independent
measurements of 12 parallel samples each. (B) Allelic replacement efficiencies of oligos generating various types of single base pair modifications
in the chromosome, designated by chromosomal base:oligo base in MG�, MG�-�mutS and MG�-tMMR. The efficiency of allelic replacement was
estimated by the number of mutant cells per total colony-forming units. The values are the means of two independent measurements each, error bars
represent standard errors. An A:G (G:A) mismatch was created two separate times using two different oligos. (C)Allelic replacement efficiencies of
oligos generating modifications of increasing size in the genome of MG�, MG�-�mutS and MG�-tMMR. The values are the means of two
independent measurements each, error bars represent standard errors. For details, see ‘Materials and Methods’ section.
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for transcriptional activation of the � Red enzymes in the
original procedure (2) and can simultaneously inactivate
MMR proteins in MG�-tMMR, (ii) electrocompetent cell
preparation and (iii) transformation of the ssDNA oligos
into the cells (0�C, 30min). The � Red Beta-mediated
incorporation of the synthetic oligonucleotides into the
target genome occurs during (iv) the cell recovery period
(36�C, 60min), during which the elevated temperature
ensures MMR protein inactivity. This step is followed
by (v) outgrowth phase at a lowered incubation tempera-
ture (32�C, 120–180min). During the last phase, MMR
protein functionality is quickly restored, and cells can
replicate with low background genomic mutation rates.

The main novelty of this procedure is that the mutator
state coupled to growth is restricted to a brief period
(phase 4). The settings for the two crucial variables,
temperature and length in phase 4 (36�C and 60min),
were determined by an optimization process. Importantly,
elevated temperature induces the expression of the toxic �
pL operon (23), necessary for Red Beta-mediated incorpor-
ation of synthetic oligonucleotides. Although the optimal
induction temperature of this operon is at 42�C, growth
retardation due to leaky expression was observed at lower
temperatures as well, all the way down to 37�C (Figure 3).
At 36�C, both MMR protein activity and � pL operon
transcription remained sufficiently repressed, ensuring
both undetectable cellular toxicity and high allelic replace-
ment efficiency (Figure 1A). Regarding the optimal time of

recovery at 36�C, the answer appears to be more complex.
We tested the allele replacement efficiency of a test oligo-
nucleotide at different recovery time lengths, and found a
near linear correlation between the two variables (Figure 4).
However, a longer recovery period has at least two draw-
backs: it extends the length of each MAGE cycle and the
amount of time the population spends in a mutator state.
Sixty minutes recovery time was found to be a good com-
promise, as allele-replacement efficiency was sufficiently
high (Figure 4), and it simultaneously minimized the
chance of accumulating off-target mutations. We anticipate
that depending on the exact goals of future experiments, the
protocol can be optimized further, e.g. by the shortening of
the recovery period (phase 4). The results indicate
that the omission of phase 4 caused only a 40% decrease
in the incorporation efficiency of an otherwise efficiently
MMR-corrected 2-bp mismatch (Figure 4).

Estimating the reliability of the improved MAGE protocol

To compare the performances of the original and the
improved protocols, we carried out 20 cycles of MAGE
using MG�-�mutS and MG�-tMMR populations
evolving in parallel. In the case of MG�-tMMR, the
MAGE protocol was modified as described above. We
used synthetic oligos that introduce various types of
mismatches and target six different genes distributed
widely across the genome (Supplementary Figure S1).

Figure 2. General scheme of the modified MAGE protocol. ssDNA oligos are incorporated into the bacterial genomes in a cyclical manner. The
orange arrow represents the main novelty of the modified procedure, a recovery period at 36�C to which the mutator state is restricted to. See main
text for details. Adapted from Wang et al. (2).
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Allelic-replacement efficiencies for each of the six oligos
were evaluated after 10 and 20 cycles of MAGE (Table 2).
The high rate of allelic replacements observed in
MG�-�mutS was mostly reproduced in MG�-tMMR,
the only exceptions being the araB A:A and lacZ T:T
transitions. Even though allelic replacement efficiencies
after 20 cycles of these two oligos were significantly
lower in the MG�-tMMR strain, the method is still
adequate in introducing these two types of mutations
into the target strain at high efficiencies (see Figure 1B).
Errors are known to occur during allelic replacement due
in part to defects arising from oligo synthesis (5). To inves-
tigate whether this had a different effect in the two proto-
cols, we sequenced one of the targeted genes (cycA) in 96
isolated parallel evolved clones after 20 cycles from both
strains. From MG�-tMMR, 6 of 96 sequenced clones had
within-site mutations in regions corresponding to the an-
nealing site of the 90-mer MAGE oligo, cycA_AAAC,
whereas 9 of 96 clones from MG�-�mutS carried such
mutations. The difference in the number of erroneous
replacements is not significant [X2 (2, N=192)=0.65,
P=0.42]. The principal errors in the MG�-�mutS
clones were single base deletions. The majority of
mutations observed in MG�-tMMR were nucleotide
changes, but 4 of 5 originated from a specific change of
C!T. This is most likely linked to synthesis error during
oligonucleotide production (data not shown). We
conclude that the two constructs exhibit similarly low
error rates and high efficiency of allelic replacements.
Next, we investigated the accumulation of off-target

mutations. After 20 cycles of MAGE, we selected five
independently evolved clones derived from both
MG�-tMMR and MG�-�mutS. All of them were
verified to carry all six specific targeted allele
replacements. To infer the number of off-target mutations,
the genomes of these clones were sequenced using the
SOLiD 5500xl System. The sequenced clones derived
from MG�-�mutS carried 97 off-target mutations
(single-nucleotide polymorphisms and indels) affecting

76 protein-coding genes (on average 19.4 point mutations
per clone). In contrast, the clones derived from
MG�-tMMR accumulated only 15 mutations (3 muta-
tions per clone). Based on these figures, we estimate that
the improved MAGE protocol reduces the number of
off-target mutations by �85%. As expected (24), most
of the extra mutations in MG�-�mutS-derived clones
were A:T!G:C and G:C!A:T transitions, and they
were nearly completely absent in MG�-tMMR-evolved
clones (Table 3). For a full list of all off-target mutations,
see Supplementary Table S1.

DISCUSSION

Techniques based on oligonucleotide-mediated allelic
replacement have several properties that make them
especially promising for genome-scale engineering
projects (25). Allelic replacement is a general mechanism
that allows for the targeted modification of genes without
the need for restriction endonuclease sites, antibiotic
selection of integrated constructs, or the generation of
unwanted ‘scars’ in the vicinity of the target modification.
Additionally, the high transformation efficiency and low
cost of single-stranded DNA oligos allow for the
simultaneous modification of multiple targets within a
single cell. The MAGE method has been used to achieve
a number of key innovations, including the generation of a
so-called genomically recoded organism, constructed by
the genome-wide replacement of a specific codon (6).
However, this recent breakthrough also pointed out the
major drawback of the technique. Besides the targeted 321
modifications, 355 unwanted off-target mutations were
detected, owing to the applied DNA repair-deficient
cellular background (6). These undesired mutations
caused a reduction in fitness in the engineered strains.
Correction of particularly disadvantageous off-target
mutations is a painstaking approach that presents the

Figure 4. Optimization of recovery time at 36�C. Allelic replacement
efficiency of a representative oligo that introduces a nonsense mutation
by two consecutive mismatches in lacZ. Values shown are the mean of
four independent experiments, error bars represent 95% confidence
intervals.

Figure 3. Effects of temperature increase on growth parameters of
MG�-tMMR. Relative growth rate of MG�-tMMR, compared with
wild-type E. coli MG1655 (wild-type=1), at gradually elevating
temperatures. Values shown are the mean of 30 replicates each, error
bars represent 95% confidence intervals.
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added possibility of generating additional off-target
mutations. Therefore, it is apparent that future genome
engineering endeavors will need a more precise in vivo
genome-editing approach with reduced off-target effects
to achieve increased genome stability.

In this work, we described a novel strategy with an aim
to concurrently maintain low genomic mutation rate and
high allelic replacement efficiency during multiplex
genome engineering. We used temperature-sensitive
MMR protein variants to decrease background mutations
by temporal inactivation of DNA repair activity during
genome editing. Compared with the traditional workflow,
our protocol decreased the number of off-target mutations
by 85%. Importantly, this result was achieved without
significantly decreasing the efficacy and accuracy of
oligo-mediated allelic replacement, or the speed of the
MAGE cycles. Moreover, the protocol is simple and can

be easily automated in the laboratory: it only requires a
shift in incubation temperature during cell recovery and
the use of a modified strain. Furthermore, our general
guideline of temporal inactivation of MMR may be
applicable to genome engineering of other organisms
(26–31). Notably, transient downregulation of MMR
proteins using RNA interference to allow for oligonucleo-
tide-mediated gene targeting has been demonstrated in
murine embryonic stem cells (32,33). Importantly,
oligonucleotide-mediated recombination engineering has
recently been adapted for yeast (Saccharomyces cerevisiae)
(34), and mismatch repair protein variants with tempera-
ture-sensitive defects have been found in the same species
(35). In summary, our work improves the precision of
oligonucleotide-mediated genome engineering, thereby
allowing for more predictable and highly efficient cell
programming for synthetic biological and industrial
applications.
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