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Abstract
The concern about protecting water quantity and quality is one of the most severe challenges of the twenty-first century 
since the demand for water resources grows as the population and its needs grow. Additionally, and as expected, most human 
activities produce wastewater containing undesirable contaminants. On the other hand, the generation of agricultural waste 
and its inappropriate disposal causes further problems. Current wastewater treatment methods involve a combination of 
physical and chemical processes, technologies, and operations to remove pollutants from effluents; adsorption is an excellent 
example of an effective method for wastewater treatment, and biochar is currently one of the most valuable adsorbents. This 
review focuses on new research about applying biochar produced from agricultural waste as a low-cost and environmentally 
friendly method for removing ammonium and phosphates from aqueous solutions.
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Introduction

Biochar is a carbonaceous material recognized as an impor-
tant environmental management tool [1]. Today, caring for 
the environment and natural resources is an imperative mis-
sion because humanity is facing increasingly complex envi-
ronmental challenges. On one hand, one of the challenges is 
maintaining water of sufficient quantity and quality to supply 
the population’s necessities; on the other hand, agricultural 
activity has been intensively developed due to the need to 
produce food for the population. However, agricultural activ-
ity generates vast amounts of waste, which must be appropri-
ately disposed of, and it is also necessary to search for new 
ways to add value [2]. Accordingly, in recent years research 
has focused on developing novel water treatment methods in 
which agricultural waste intervenes as an adsorbent material 
for water-pollutant compounds [3].

Water quality is crucial for public health, as used for 
drinking, domestic use, food production, or recreational 

purposes. With population growth, increased amounts of 
nitrogen (N; ammonium and nitrate) and phosphorus (P; 
phosphate) are discharged in domestic sewage, and these are 
components that cause water eutrophication; additionally, 
agricultural activity and applying fertilizers and pesticides 
intensify the release of N and P [4]. Achieving economic 
growth and reducing poverty can be facilitated by ensuring 
a consistent and high-quality supply of water and sanitation, 
along with effective management of water resources [5]. The 
primary objective of the current research is to develop mate-
rials, processes, and technologies that enable the decontami-
nation, management, and reuse of water. A prime illustration 
of this is the utilization of nitrogen and/or phosphorus that 
is obtained during the water decontamination process to 
produce fertilizers. This application exemplifies the global 
concept of circular economy, which the European Union 
defines as a ‘system that maximizes the value of products 
by minimizing waste and keeping materials in use for as long 
as possible’ [6].

Biochar is ‘the porous carbonaceous solid produced by 
the thermochemical conversion of organic materials in an 
oxygen depleted atmosphere that has physicochemical prop-
erties suitable for safe and long-term storage of carbon in the 
environment’ [7]. By the definition, biochar is considered to 
be a precursor to activated carbon. Although the feedstock 
material and production processes used to make biochar 
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and activated carbon are similar, biochar is produced at a 
lower temperature, resulting in more functional groups [8]. 
This situation also means that the price of biochar is lower 
than that of commercial activated carbon. Biochar can be 
produced from a wide range of raw materials and is cur-
rently used in environmental management practices such as 
soil improvement, waste management, energy production, 
climate change mitigation, and waste water treatment [1].

Several studies have demonstrated that the primary pro-
cess involved in N and P adsorption on biochar is a practical, 
low-cost, and environmentally friendly option for recovery 
of nutrients from wastewater. The present review focuses 
on recent studies about the application of biochar produced 
from agricultural waste to remove ammonium and phos-
phates from aqueous solutions.

The study of biochar has gained great interest in the sci-
entific community in the last decade; proof of this is the 
growing number of publications referring to biochar as an 
adsorbent in general and biochar as an ammonium and phos-
phate adsorbent specifically.

In the last decade, the number of publications referring to 
the use of biochar as an adsorbent material for compounds 
such as ammonium and phosphorus in SCOPUS has grown 
(Fig. 1).

Materials and methods

Biochar feedstock types, production technologies character-
istics, and nutrient adsorption mechanism.

Feedstock types for making biochar

A wide variety of organic materials or biomass with a high 
carbon content can be used to yield biochar [9], including 
woody [10], herbaceous, and agricultural biomass [11–13]. 
To achieve the goal of circular economy and minimize envi-
ronmental emissions, it is crucial to take into account vari-
ous factors when selecting feedstock, including abundance, 
storage capacity, transportation costs, and the need for chem-
ical treatment in cases where pre-treatment is required [14].

Biochar production technologies

The feedstock type has a significant impact on the textural 
features of biochar in terms of surface area, pore size, and 
pore volume distribution [15]. However, depending on the 
biochar fabrication technique, the new scorched organic mat-
ter can have different chemical and physical characteristics 
[16]. Biochar can be produced by slow/fast pyrolysis, gasi-
fication, flash carbonization, torrefaction, and hydrothermal 
carbonization [17].

Pyrolysis is carried out under oxygen-free conditions dur-
ing the conversion process; nevertheless, pyrolysis ability 
may be distinguished by the pyrolyzed material’s response 
time and the heating method [16]: using slow pyrolysis it is 
possible to achieve a 35% biochar yield [17], while a 26% 
biochar yield is achieved through fast pyrolysis [16].

Gasification is a thermochemical process through which 
organic matter is decomposed to hydrogen, carbon monox-
ide, and carbon dioxide principally; with this technology, a 
syngas yield of 85% is reached [17]. The gasification process 

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Number of Publications about

"Biochar+Adsorption" 22 66 127 172 366 581 938 1553 2654 3763 4954

Number of Publications about
"Biochar+Ammonium" 15 26 50 74 136 201 274 433 775 1194 1459

Number of Publications about "Biochar+Phosphate" 14 46 60 103 185 307 443 765 1364 2189 2716
Number of publications about adsorption+water 5827 6739 7403 7878 8786 9330 10757 12358 13899 15138 17076
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is intended to produce gaseous energy products. The product 
of biomass gasification is known as syngas; in this process, 
small amounts of char, ash, and tar are also produced [18].

During flash carbonization, biomass is placed in a vessel 
with an initial pressure in the range of 1–2 MPa and a flash 
fire is periodically lit at the bottom of the biomass. The car-
bonization time decreases with increasing pressure; in con-
sequence, the volatile matter in the feedstock is converted 
into gaseous fuel, and the remaining fixed carbon is derived 
into biochar [19]. Using flash carbonization, it is possible to 
reach a biochar yield of 50% [20].

Hydrothermal carbonization is a wet pyrolysis that 
is carried out in a reactor with automatic electric heating 
[21]. With this technology, a hydrochar yield of 72% can be 
achieved [20]. Last but not least, pyrolysis-like torrefaction 
is a thermochemical process carried out at low tempera-
tures and heating rates [22]; a biochar yield of 77% can be 
achieved through this process [20].

Types of biochar production technologies are summarized 
in Table 1. Besides the different types of technology used to 
produce biochar, it points out the characteristics, advantages, 
and challenges that must be taken into account when apply-
ing the technologies.

Modified biochar for water treatment

The modification of biochar is being sought to improve its 
characteristics for removal of impurities. Metal oxide and 
metal salt modification, acid–base modification, composite 
production, and ball milling modification are all typical ways 
of improving biochar’s adsorption capability [33].

Metal oxide and metal salt modification The modified 
biochar has strong anion exchange capacity, precipitation, 
and electrostatic attraction, which increases its adsorption 
capacity: Inorganic phosphorus adsorption capacity is 1.46 
times higher than that of unmodified biochar [34]. The met-
als used for this modification include magnesium, iron, alu-
minium, and manganese [35].

Acid–base modification The aims of acid modification 
are to eliminate impurities on one hand, and on the other 
hand to introduce acid functional groups on the surface of 
the biochar. Hydrochloric acid, sulphuric acid, nitric acid, 
phosphoric acid, oxalic acid, and citric acid are the acids 
used in this type of modification. With respect to alkaline 
modification, this has the objective of increasing the func-
tional groups that contain oxygen. The most commonly used 
alkaline agents include potassium hydroxide and sodium 
hydroxide [35]. Moreover, the specific surface area of acid- 
and alkali-modified biochar can be raised by 10 and 14 
times, respectively [33].

Composite production Biochar is impregnated with clay 
minerals such as kaolinite, montmorillonite, or bentonite, 
which alter the composition and physical characteristics of 

the biochar, resulting in increased oxyanion sorption capac-
ity [36]. Modifying biochar with clay minerals enhances 
its interfacial compatibility with pollutants, thereby boost-
ing its adsorption capacity. For instance, the incorporation 
of montmorillonite in biochar increases the adsorption of 
ammonia approximately five fold [33]. Clay mineral–biochar 
composite has been demonstrated to have an efficient abil-
ity to co-adsorb ammonium and phosphate by electrostatic 
interaction and ionic bonding [37].

Ball milling modification Ball milling mechanically 
reduces the particle size to ultrafine or nanoscale sizes [38]. 
Compared to their non-ground counterparts, carbon-based 
materials treated by ball milling have a higher adsorption 
capacity, more oxygenated functional groups, and enhanced 
efficiency in environmental applications. The powder charge 
is subjected to the kinetic energy produced by the motion of 
moving balls, which causes the chemical bonds between the 
molecules involved to break and the particle size to decrease. 
The breaking of the materials’ lattice structure results from 
a number of progressions including the transfer of mass and 
energy and the development of mechanical stress as a result 
of milling [38, 39]. With ball milling modification, the spe-
cific surface area increases in a range from 3 to 25–194  m2/g, 
depending upon the milling method used [40], considering 
the comparison between the pristine biochar and ball mill-
ing biochar [41].

Characteristics of biochar

The main characteristics of biochar are: the surface area, car-
bon content, stable structure, porosity, and cation exchange 
capacity. Thanks to the high surface charge density, biochar 
retains cations through the ion exchange process; moreover, 
a large surface area, internal porosity, and polar and non-
polar surface sites allow biochar to adsorb nutrients [42]. 
It is worth noting that physical adsorption is determined by 
the structure and surface area of biochar, whereas chemical 
adsorption is determined by the biochar composition and 
type and quantity of functional groups [4].

Biochar generally has an alkaline pH; under different 
pyrolysis temperatures, the pH normally increases as the 
temperature rises due to the decomposition of acidic func-
tional groups and the volatilization of organic acids [43]. 
Ammonium retention by biochar is due to electrostatic 
adsorption to surface functional groups containing nega-
tively charged oxygen [42, 44]. However, the magnesium 
and calcium content of biochar gives it a high capacity to 
adsorb phosphate [8].

Biochar surface area and porosity (principally micro-
mesopores and part of macropores) are regularly meas-
ured using gas adsorption in water treatment and soil 
remediation. The European Biochar Certificate (EBC) 
and International Biochar Initiative (IBI) recommend the 



 Journal of Material Cycles and Waste Management

1 3

Ta
bl

e 
1 

 T
yp

es
 o

f b
io

ch
ar

 p
ro

du
ct

io
n 

te
ch

no
lo

gi
es

Te
ch

no
lo

gy
 ty

pe
Te

m
pe

ra
-

tu
re

 ra
ng

e 
(°

C
)

Re
si

de
nc

e 
tim

e
A

dv
an

ta
ge

s
D

es
ire

d 
pr

od
uc

t
Te

ch
no

lo
gi

ca
l c

ha
lle

ng
es

Re
fe

re
nc

es

Py
ro

ly
si

s
30

0–
85

0
1–

3 
h

Ea
sy

 o
pe

ra
tio

n,
 ro

bu
st,

 a
nd

 c
os

t-e
ffe

ct
iv

e;
 su

it-
ab

le
 fo

r b
io

ch
ar

 p
ro

du
ct

io
n 

on
 a

 sm
al

l s
ca

le
B

io
ch

ar
• 

Re
ac

hi
ng

 a
nd

 p
re

se
rv

in
g 

hi
gh

 h
ea

t r
at

es
 a

nd
 

re
ac

tio
n 

te
m

pe
ra

tu
re

s
[1

6,
 2

3–
26

]

• 
In

 a
cc

el
er

at
ed

 p
yr

ol
ys

is
 sy

ste
m

s, 
ch

ar
 

re
m

ov
al

 a
nd

 li
qu

id
s r

ec
ov

er
y 

m
ig

ht
 b

e 
di

f-
fic

ul
t

• 
D

ur
in

g 
py

ro
ly

si
s g

as
 c

on
ve

rs
io

n,
 th

e 
em

is
-

si
on

 o
f c

hl
or

in
e 

fro
m

 fe
ed

sto
ck

 w
ith

 a
 h

ig
h 

C
l c

on
ce

nt
ra

tio
n 

m
ay

 c
au

se
 c

or
ro

si
on

 o
f t

he
 

re
ac

to
r c

on
ta

in
m

en
t a

nd
 th

e 
de

ve
lo

pm
en

t o
f 

de
po

si
ts

G
as

ifi
ca

tio
n

 >
 85

0
10

–2
0 

s
G

as
ifi

ca
tio

n 
ha

s l
ow

er
 b

io
ch

ar
 y

ie
ld

 th
an

 
py

ro
ly

si
s, 

al
th

ou
gh

 b
io

ch
ar

 in
cl

ud
es

 a
 lo

t o
f 

al
ka

li 
sa

lts
, e

lim
in

at
io

n 
of

 th
e 

dr
yi

ng
 st

ep

Sy
ng

as
• 

Re
po

ly
m

er
iz

at
io

n 
ca

us
es

 th
e 

pr
od

uc
tio

n 
of

 
so

ot
[1

6,
 2

3,
 2

6,
 2

7]

• 
O

n 
fin

e 
pa

rti
cl

es
, t

ar
s d

eh
yd

ra
te

 in
 th

e 
ga

s 
ph

as
e 

an
d 

in
te

ra
ct

 w
ith

 o
th

er
 p

ol
lu

ta
nt

s
•A

er
os

ol
 fo

rm
at

io
n

• 
O

n 
co

ld
er

 su
rfa

ce
s, 

he
av

ie
r t

ar
 c

om
po

ne
nt

s 
co

nd
en

se
• 

C
lo

gg
in

g 
of

 fu
el

 li
ne

s/
in

je
ct

or
s a

nd
 c

lo
gg

in
g 

of
 p

ar
tic

ul
at

e 
fil

te
rs

 in
 in

te
rn

al
 c

om
bu

sti
on

 
en

gi
ne

s
• 

Ta
rs

 in
du

ce
 ru

sti
ng

H
yd

ro
th

er
m

al
 c

ar
bo

ni
za

tio
n

18
0–

30
0

1–
16

 h
M

or
e 

ap
pr

op
ria

te
 fo

r f
ee

ds
to

ck
s w

ith
 a

 h
ig

h 
hu

m
id

ity
 c

on
te

nt
, e

lim
in

at
io

n 
of

 th
e 

dr
yi

ng
 

ste
p,

 h
yd

ro
ch

ar
 h

as
 h

ig
he

r a
to

m
ic

 ra
tio

s o
f 

ox
yg

en
 to

 c
ar

bo
n 

an
d 

hy
dr

og
en

 to
 c

ar
bo

n,
 

ra
pi

d 
br

ea
kd

ow
n 

of
 h

em
ic

el
lu

lo
se

, i
ne

xp
en

-
si

ve
 a

nd
 e

nv
iro

nm
en

ta
lly

 fr
ie

nd
ly

 m
et

ho
d

H
yd

ro
ch

ar
• 

Th
e 

el
as

tic
ity

 li
m

it 
of

 th
e 

m
at

er
ia

ls
 in

tro
-

du
ce

d 
in

to
 th

e 
pr

es
su

re
 ta

nk
 m

us
t n

ot
 b

e 
ex

ce
ed

ed
 d

ur
in

g 
op

er
at

io
n

[1
6,

 2
3–

26
]

• 
G

en
er

at
io

n 
of

 sa
fe

ty
 p

ro
bl

em
s i

n 
th

e 
ca

se
 

of
 fe

ed
in

g 
th

e 
co

nt
in

uo
us

 sy
ste

m
 a

ga
in

st 
pr

es
su

re
• 

It'
s p

os
si

bl
e 

th
at

 a
 h

ea
t r

ec
ov

er
y 

sy
ste

m
 fr

om
 

th
e 

ho
t p

ro
ce

ss
 w

at
er

, a
s w

el
l a

s p
os

t-t
re

at
-

m
en

t f
ac

ili
tie

s f
or

 th
e 

ch
ar

, w
ill

 b
e 

re
qu

ire
d

Fl
as

h 
ca

rb
on

iz
at

io
n

30
0–

60
0

 ≤
 30

 m
in

Q
ui

ck
/fa

st 
pr

oc
es

s w
ith

 h
ig

h 
effi

ci
en

cy
B

io
ch

ar
• 

U
nd

er
 p

ar
tic

ul
ar

 p
ro

ce
ss

 se
tti

ng
s w

ith
 sp

e-
ci

fic
 fe

ed
sto

ck
s, 

ra
pi

d 
pr

es
su

re
 in

cr
ea

se
s i

n 
th

e 
ca

rb
on

iz
at

io
n 

co
nt

ai
ne

r c
an

 b
e 

ob
ta

in
ed

/
ex

pe
rie

nc
ed

 a
t i

gn
iti

on

[1
6,

 2
8,

 2
9]

• 
Th

e 
el

as
tic

ity
 li

m
it 

of
 th

e 
m

at
er

ia
ls

 in
tro

-
du

ce
d 

in
to

 th
e 

pr
es

su
re

 ta
nk

 m
us

t n
ot

 b
e 

ex
ce

ed
ed

 d
ur

in
g 

op
er

at
io

n



Journal of Material Cycles and Waste Management 

1 3

Brunauer–Emmett–Teller (BET) process to analyse the 
nitrogen adsorption isotherm to determine the surface area 
[45].

Biochar’s porous structure is advantageous for sorption 
because it can accommodate different pore sizes required for 
variable accessibility induced by distinct kinetic diameters 
of the adsorbate. This allows for effective pore filling in the 
sorption process. In conclusion, the surface area and poros-
ity of biochar are critical in controlling the rate and kinetics 
of chemical reactions, as well as the pH [45].

Dehydroxylation, dehydrogenation, and aromatization 
of feedstock during pyrolysis produce surface functional 
groups that can be basic or acidic and play an important role 
in P or N adsorption. Acidic functional groups with a nega-
tive charge attract cationic ammonium species and exchange 
 H+ on the surface of biochar, while basic surface functional 
groups with a positive charge contain OH ions and exchange 
phosphate ions in an aqueous solution [46]. An important 
research affirmation suggested that biochar produced in low 
temperature pyrolysis contains more functional groups [47].

Table 2 presents the principal characteristics of biochar 
obtained from waste, showing some examples of the princi-
pal characteristics of biochar from different feedstocks, con-
ditions of temperature, residence time, and the technology 
chosen for elaboration of the biochar, as well as characteris-
tics of the biochar such as the BET surface area, micropore 
volume, and the type of functional groups.

Generally, a higher carbonization temperature results in 
a higher specific surface area, e.g., hydrothermal carboniza-
tion of rice husk at 180 °C produced a variety of functional 
groups and BET area of 5.02  m2/g [48], but carbonization 
of sugarcane bagasse at 700 °C created biochar with more 
functional groups and a greater BET surface area (131 
 m2/g) [49]. The pyrolysis process has a critical temperature, 
beyond which subjecting the biomass to higher tempera-
tures accelerates the release of volatile compounds, resulting 
in the development of a porous structure and an increased 
specific surface area [53]. Generally, feedstocks producing 
aromatic functional groups during pyrolysis, e.g., sugar cane 
bagasse, soybean stover, and oak sawdust, are advantageous 
for ammonium removal [49, 51, 52], while feedstocks pro-
ducing mainly oxygen-containing functional groups e.g., 
rice husk and wheat straw, have demonstrated good results 
in terms of phosphate elimination. Overall, it is evident that 
the preparatory conditions and type of feedstock used to pro-
duce biochar determine its characteristics and applicability.

Methods for characterizing biochar

The characterization of biochar is conducted with three 
main objectives in mind: (1) to get a better understanding 
of biochar’s physical and chemical characteristics, as well 
as changes in biochar features as a result of manufacture, Ta
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circumstances, and feedstocks; (2) to assess the potential 
applications of biochar in various fields; and (3) to study 
biochar contaminants and ecotoxicological parameters [54].

Figure 2 shows a summary of methods for analysing the 
chemical and physical characteristics of biochar. Biochar can 
be characterized by its chemical properties, physical prop-
erties, surface morphology, and thermal stability. Chemi-
cal characterization involves pH measurements, electrical 
conductivity, and cation exchange capacity. Physical proper-
ties, such as surface area and pore size, can be determined 
by means of adsorption methods (BET isotherm measure-
ments), while particle size distribution can be determined 
by particle size analysers. Porosity, bulk density, and solid 
density can be measured by means of mercury porosimetry. 
Surface morphology can be followed by scanning electron 
microscopy (SEM), while distribution of surface elements 
can be determined by scanning electron microscopy with 
energy-dispersive X-ray spectroscopy (SEM–EDX). Surface 
functional groups are measured by Fourier-transform infra-
red spectroscopy (FT-IR); surface chemical compounds can 
be determined by X-ray photoelectron spectroscopy (XPS). 
Thermal stability can be followed by thermal gravimetric 
analysis, while determination of chemical composition can 
be fulfilled by X-ray fluorescence spectroscopy. Raman spec-
troscopy can be used for determination of aromaticity [54].

Adsorption kinetics and isotherm models

Regarding kinetic models, Table 3 summarizes the equa-
tions and parameters of kinetic models and their respective 
units and parameter description.

Equations and parameters of isotherm models are sum-
marized in Table 4; these models were used for decades 
to describe the interactions between adsorbates and adsor-
bents at equilibrium. Several research studies estimated 
the value of the maximum adsorption capacity using the 
Langmuir model [48].

The Langmuir isotherm assumes that the adsorbate 
forms a monolayer on a homogeneous adsorbent surface, 
whereas the Langmuir kinetic model is used to describe 
adsorption equilibrium data [56].

Results and discussion

Results for removal of ammonium and phosphates 
from aqueous solution using modified biochar 
originated from agricultural waste in recent 
research

The primary objective of utilizing biochar in the adsorp-
tion process is to eliminate nitrogen and phosphate from 

Fig. 2  Biochar characterization

Table 3  Equations and parameters of kinetic models

Kinetic model Proposed by Non-linear form equation Units and parameters description

Pseudo-first-order (PFO) Lagergren 1898 dqt

dt
= k1(qe − qt) qt (mg·g−1): Amount of adsorbed solute

qe (mg·g−1): Amount of adsorbed solute at 
equilibrium.  k1  (min−1): PFO rate constant

Pseudo-second-order (PSO) Ho and McKay 1999 dqt

dt
= k2(qe − qt)2 t (min): Time

k2 (g·mg−1·min−1): PSO kinetic rate constant
Intraparticle diffusion (IPD) Weber and Morris 1962 qt = k3

√

t k3 (mg·g−1·min−0.5): IPD rate constant
α (mg·g−1·min−1): Initial adsorption rate

Elovich equation Elovich 1939 dqt

dt
= � exp(−�qt) β (g·mg−1): Elovich constant
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water to improve the water quality. On the other hand, 
once the biochar has removed the ammonium and phos-
phate nutrients from the water by adsorption, the nutrient-
rich biochar can be utilized in fertilizer production [56].

In general, to gain a better understanding of the per-
formance and mass transfer mechanisms of adsorbing 
substances from an aqueous solution, it is necessary to 
consider both thermodynamic and kinetic factors. The 
solute consumption rate, which defines the residence time 
necessary for the adsorption process to occur, may be 
determined by analysing the kinetic model [57].

According to the literature reviewed, most research 
papers dealing with the adsorption of ammonium and 
phosphates from aqueous solutions use pseudo-first order, 
pseudo-second order, and intraparticle diffusion kinetic 
models. The application of these models is problematic 
since they are empirical and lack specific physical signifi-
cance, thus using these empirical kinetic models makes it 
impossible to investigate mass transfer mechanisms. On 
the other hand, there are differential kinetic models with 
precise physical meanings, but their solution methods 
are rather complex [58]. Regarding isotherm models, the 
constants have particular physical implications that char-
acterize the adsorbent’s maximum capacity and surface 
characteristics [59].

The results for ammonium and phosphate removal, a sum-
mary of the feedstock material from which the biochar was 
made, the conditions of pyrolysis (temperature and residence 
time), the recovery capacity, the modification of biochar, and 
authors of mentioned research are summarized in Table 5.

Comparing Tables 2 and 5 reveals that the modification 
of the biochar improves its adsorption capacity due to the 
increase in the specific surface area. Moreover, biochars 
prepared in different conditions and further modified with 
various techniques like metal oxide and metal salt modifica-
tions are also compared. It can be seen that all kinds of bio-
char modification (metal oxide, acid–base, ball milling, and 

HCl modification) result in higher pollutant removal than 
achieved by biochar in the pristine form. It can be concluded 
that biochar modification technologies help to increase the 
recovery capacity by up to 24 times [62].

Based on previous research regarding the mechanisms 
involved in the different methods of modifying biochar to 
improve its adsorption capacity, it can be summarized that: 
In the case of metal oxide and metal salt modification, the 
modified biochar has a larger specific surface area than pris-
tine or unmodified biochar. According to the results shown 
in the work of Yin et al., modification not only increases 
the average pore diameter but also enhances the number of 
functional groups [60]. Acid–base modification resulted in 
increased average pore volume, while the specific surface 
area decreased. This can be explained through the study of 
pore size: micropores were observed in the pristine biochar, 
which were not present in modified biochar. This implies 
that the modification merges the micropores into larger 
ones. Additionally, the number of O=H functional groups 
increased in modified biochar compared to the unmodified 
one [61]. The specific surface area can also be increased 
by reduction of particle size, as shown in the work of Qin 
et al.; they also proved that changes in the functional groups 
improve adsorption [63].

Biochar‑based fertilizers

In general, the biochar produced from agricultural waste 
contains small amounts of nutrients, so these concentrations 
can be increased if the biochar is used for the ammonium 
and phosphate adsorption process. In general, several inves-
tigations have been carried out in the field of biochar-based 
slow-release fertilizers, which have presented excellent 
environmental performance because they increase both crop 
yield and nutrient (P and N) use efficiency; some examples 
of the results are shown below (Table 6).

Table 4  Equations and parameters of isotherm models

Isotherm model Equation Units and parameters description

Langmuir qe =
qmK�Ce

1+K�Ce
qe (mg  g−1): Amount of adsorbate concentration in the solid phase at equilibrium
qm (mg  g−1): Maximum adsorption capacity
Kα (L  mg−1): Affinity constant
Ce (mg  L−1): Amount of adsorbate concentration in the liquid phase at equilibrium

Freundlich qe = KFC
n KF (dimensionless): Fitting-constant

n (dimensionless): Fitting-constant
Ks (dimensionless): Fitting-constant
αS (L  mg−1): Sips isotherm model constant. βS (dimensionless): Sips isotherm model expo-

nent
Sips qe =

KsC
�S
e

1+�SC
�S
e
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Conclusion

It has been demonstrated that biochar is a promising mate-
rial for water treatment. Previous studies have proved the 
high efficiency of ammonium and phosphate removal from 
water by biochar adsorption. This review emphasizes the 
necessity of utilizing engineered biochar for ammonium and 
phosphate removal. The modification of biochar’s surface 
properties using various techniques and methods is expected 
to alter its surface area, surface charge, functional groups, 
and pore volume.

Biochar production from biomass waste materials would 
not compete for land with any other land use choice, includ-
ing food production or maintaining the land’s natural state, 
thereby addressing at least two of the most pressing envi-
ronmental concerns.

The literature highlights the relevance of research focus-
ing on biochar’s sorption mechanism, desorption, and sorp-
tion kinetics for removing organic compounds and heavy 
metals from aqueous solutions, making biochar a promising 
technology for wastewater treatment. A further promising 
opportunity for use is the degradation of organic pollutants 
by catalytic reactions.

Further research is required to establish a highly effi-
cient and cost-effective technology for modifying biochar, 
increasing its practical application in wastewater treatment 
and enhancing its adsorption capacity for nitrogen and phos-
phorus, heavy metals, and organic pollutants.
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