computer
and /o
automation .
institute
hungarian
academy
oI sciences

Computer and Automation Institute,
Hungarian Academy of Sciences

COMPUTATIONAL LINGUISTICS
AND
COMPUTER LANGUAGES

XI.

Budapest, 1976.

Editorial board: Prof.Dr.T.FREY (chairman)

B .DOMOLKI
E.FARKAS
F.KIEFER
T.LEGENDI
A.MAKAI
F.PAPP
GY.REVESZ
GY.SZEPE
D.VARGA

Distributor for: Albania, Bulgaria, China, Cuba, Czechoslovakia, German
Democratic Republic, Korean People’s Republic, Mongolia,
Poland, Roumania, U.S.S.R., People’s Republic of Viet-Nam,
Yugoslavia

KULTURA

Hungarian Trading Co. for Books and Newspapers
1389 Budapest,
P.0.B. 149, Hungary

For all other countries:

JOHN BENJAMINS B.V.
Periodical Trade
Amsteldijk 44
Amsterdam, Holland

Responsible Publisher:

Prof.Dr.T.VAMOS
Director of the Computer and Automation
Institute, Hungarian Academy of Sciences

ISBN 963 311 039 4

Orszégos Miszaki Konyvtar és Dokumentécids Kdzpont
hdzi sokszorositdja
F.v.:Janoch Gyula

|

Contents

I.Németi: ON A PROPERTY OF THE CATEGORY OF PARTIAL

ALGEBRAS . usswssswnsvwnmensnss s tseessencccocans eesen 5
Gy.Révész: A NOTE ON THE RELATION OF TURING MACHINES

TO PHRASE STRUCTURE GRAMMARS wieiie % e cecssccseas 11
P.B.Schneck: A NEW PROGRAM OPTIMIZATIONcocov.. 17
B.D6m61lki, E.Santa-T6th: FORMAL DESCRIPTION OF

SOFTWARE COMPONENTS BY STRUCTURED ABSTRACT MODELS .. 31
G.Fay: CELLULAR DESIGN PRINCIPLES A CASE STUDY OF
MAXIMUM SELECTION IN CODD-ICRA CELLULAR SPACE /I/... 73
H.Heiskanen: SEMANTIC THEORY FROM A SYSTEMATICAL
VIEWPOINTccececoccecocaccsns s e mwB asee e was s wes L2D

T.Legendi: CALLPROCESSORS IN COMPUTER ARCHITECTURE.. 147
Gy.Hell: MECHANICAL ANALYSIS OF HUNGARIAN SENTENCES. 169

= 3] w=

FORMAL DESCRIPTION OF SOFTWARE COMPONEWTS BY
STRUCTURED ABSTRACT MODELS

B.Démolki, E.Sénta-Toth /Mrs/

SZAMKI Research Institute for
Applied Computer Sciences
/formerly INFELOR Systems Engineering Institute/
Budapest, Hungary

ABSTRACT

Structured Abstract Model /SAM/ is a description of some
object in the form of a sequence of levels structured
according to the hierarchy of design decisions. Description
[or design/ of the object is given as an ordered set of "SAM-
forms", each describing in a well-defined structure one - or
several strongly connected - decisions, together with all their
consequences. Decisions appear in the form of the definition
of some of the concepts necessary to describe the object. This
definition is given in terms of primitive concepts, not to be
defined further on that level. Such a model can be verified
by giving on each SAM-form our assumptions about the primitive
- concepts and proving the necessary properties of the conCept/s/
to be defined on that level [provided that each assumption
will be proved on the level, where the concept will be
defined/.

Software components offer a class of objects very much
suitable for such type of formal descriptions. In the paper
the results of our three year research are reported, covering

- the investigation of methodological problems connected
with SAM-like descriptions, including the application of these
principles to develop a system to support program design and
implementation;

- descriptions of abstract models for real software

= B8 -

objects [like assemblers, editors etc./, aimed as a first step
towards creating a library of such models /["Software Encyclo-

pedia”/.

INTRODUCTION

In recent years there has been a'great increase in the
number of application areas, methods and facilities in the
computer field and at the same time in the number of non-
professional programmers. This requires the development of a
new [user-/ software environment in which communication with
the computer is done not by programming in the traditional
sense only, but partly or wholly by giving the specifications
of the problem to be solved. The complexity of the specifi-
cations can be decreased by structuring them of our design
decisions, allowing the stepwise refinement of concepts. A
software system should be developed which allows its user to

- employ terms and concepts native to his own speciality,

- give non-procedural problem definitions by specifying
relations among these terms,

- use hierarchical problem specifications,

- verify his decisions on all levels.

Théoretical computer science has produced several important
results towards this goal in the fields of Mathematical Theory
of Computation, Artificial Intelligence, Programming Methodo-
logy etc. On the other hand, modern practical methods of
prégram design and implementation are beginning to be used
successfully at some software development enterprises. The gap
between theoretical research and practical results is a fact,
widely recognized in the literature.

The research outlined in this paper is aimed to take an
intermediate position between theory and practice, by studying
/describing, verifying, classifying, etc./ concrete software
objects with theoretically based abstract methods.

As a first step towards this goal we are interested in

- 53 -

finding methods for the formal description and verification of
abstract models of programs.These methods can be used to
develop a means of design and implementation which may help
achieve a more exact and efficient form of traditional program-
ming and which may also be a step in the transition toward the
kind of new problem specification and programming mentioned
above. With these methods it would be possible to describe and
discuss in a uniform manner the software elements occuring in
programming practice /assemblers, loaders, operating systems/.
The lack of such descriptions has been realized by the
designer and customer of the software product as well as by
the educator of programmers.

The purpose of this paper is to give an overview of the
research activity in this direction, initiated in our
institute” in 1973 and materialized in the internal research
reports and diploma thesises [written mostly in Hungarian/
listed in the Appendix.

In subsequent sections we shall give the definition of the
subject [section 1/, examine the questions of methodology
|section 2/ and give the results we have achieved so far in
the description of software elements /|section 3/. Then we
shall summarize the application possibilities of the research
of abstract models /section 4/.

References to published papers will be given by author
and year of publication /e.g. [Dijkstra, 723/, while internal
»papers listed in the Appendix will be referred by number /e.g.
£33}«

¥ Research Institute for Applied Computer Sciences /formerly
INFELOR Systems Engineering ITnstitute/, Budapest, Hungary

1. DEFINITION OF THE SUBJECT

The basic problem of the "Software Crisis" /CBoehm, 731/
is the difference between the order of magnitude of the
complexity level of the problems to be solved and that of
objects directly comprehensible to machines used in their
solution /see Fig.la./. The "complexity problems" stemming
from this difference can only be solved concurrently with the
development of programming methodology. This gap can be
bridged by introducing intermediate levels /[see Fig.lb./. Here
- using Dijkstra’s analogy of a "necklace, strung from
individual pearls" [C[Dijkstra, 721/ - each level ["pearl"/ in
effect defines an abstract machine in virtue of the primitive
concepts [i.e. operations and data structures/ used on that
level. Concepts occuring as primitives on higher levels can be
defined in terms of "programs" for this machine.” The
"distance" between these levels - given that the definition of
the levels is good - ought to be as small as to preclude the
appearance of the complexity problems, Furthermore, exactly
specifying the primitives at all levels the correctness of the
link between the various levels can be ensured.

This actually means the following [see e.g. [Dijkstra,
723/. If at any level you "cut" the necklace you can state: if
there is an gbstract machine whose machine objects are the
primitive concepts unresolved above the cut, then the necklace
portion above the cut can be viewed as a program for this
machine [Fig.2, left side/.

Or looking at it in a little different, subsequently more
uéeful manner: let P denote the set of those primitives that
are referred to at levels above the cut, but are not defined
there. We can then say that the portion above the cut consists
of descriptions making use of the elements of P as primitive
concepts, while the part below the cut contains the elements

of p [see Fig.2 right side/.

* D.vVarga has pointed out the similarity of these ideas to the
natural language description methods proposed by P.Sgall.

O - e — PI‘Obl em —

|
|
:
q
n
I
a
‘
l
i
|
o

Dijkstra’s
"necklace,

gap strung from
individual
pearls"
objects directly—m
comprehensible to
machines used in
above problem
solving
Fig.la The "complexity Fig.1b Dijkstra’s dis-
problem solution of
complexity
problem
Problem
program for descriptions
an abstract | using a set of
machine primitives, P
cut cut

definition of
this abstract
machine

defining the

set of
primitives, P

i

i

{

j)

f% descriptions

Fig.2 Possible interpretations
of Dijkstra’s pearls

o B e

In the tbp—down, structured view the problem solver starts
from the definition of the problem and continues by stepwise
refinement until the remaining primitive concepts are either

- known to some machine, in other words, these primitives
are implemented on the given machine, or

- the machine can synthesize them from the specifications
of the primitive concepts [i.e. from the requirements they are
expected to fulfil/. '

In traditional programming systems the "intelligence" of
the machine materializes in the implementation of the concepts
of some programming language; in future machines a formal
description [which is "good" in the same [computer env1ronments/
intelligence will manifest itself in the capability to
synthetize concepts from their specifications [thus programming
languages - as we understand them today - will become super-
fluous/.

Our research aims at the development of the formal methods
of such a top-down, structured, verifying program design
description. Our first application of this method [DOm&lki, 731
gives the description of an abstract assembler model. This
paper saws a possible solution of the problem, in linking three
known methods:

- starting from the descriptional method of VDL developed
by the Vienna Laboratories of IBM /|CLucas, 681, [Neuhold, 713
[Lee, 72bl, [Wegner, 721/;

- following the principles of ijkstra's Structured Prog-
ramming [CDijkstra, 70, 721, [Mills, 721/;

- applying the axiomatic program correctness vertfication
method proposed by Hoare [[Hoare, 69, 7la, 72a-b-cl1/ to the
programming language defined by the two previous points; we
get a descriptional method which can be used to formally
describe the Structured Abstract Models [SAM-s/ of hierarchi-
cally ordered problem families in as much implementation and
machine independent manner as possible.

|
2. MeTHODOLOGY

In the previous section the main ideas of SAM-research were
summarized. This research enables the development of an - in
some sense "good" - design and implementation method, and at

~ the same time allows us to give a formal description /which is
"good" in the same sense/ of software products. This section
deals with the methods that can be used to make such
~descriptions.

The methodological goal of SAM-research is to establish a

- means of problem elaboration that is top-down, abstract,
directed by a well-structured hierarchical order of decisions
and is verifiable.

We started with VDL which turned out to be a good abstract
description [design/ mechanism for compilers /[see 3.3/.
Algorithm descriptions given in VDL were expanded with textual
and verification parts. The applicability of the method to the
description of problem families was tested on practical
problems /see [161/.

We shall now examine the questions of methodology of
description and verification of these models as well as the

 basic features of a Software Support System for SAM-like
program design and some problems of the implementation of
programs designed in VDL.

- 2.1 Description of models

The design and implementation of complex objects [e.g.
computer programs/ is realized through a sequence of decisions.
Determining the correct order of these decisions and describing
their /immediate/ effects independent of one another can
greatly enhance the efficiency and lucidity of the design.

By a Structured Abstract Model [SAM| we mean a description
of some object. This description has distinct levels according
to the decisions made during design; at each level one

|exceptionally more than one/ decision and all its immediate

- BB

consequences are described. Each decision means the definition
of a concept used in describing the object [e.g. in the case
of programs a procedure- or data-structure/. The definition is
made in terms of primitive concepts not defined further at the
given level. Thus at every SAM-level we must give

- a problem definition, which defines the task of this
level,

- a decision, which is usually the definition/s/ of a
concepts/s/ occuring as primitive at one of the previous
levels,

- a list of new concepts used as primitives in this
decision [definition/, '

- the specification of the primitives [i.e. our hypotheses
about them/, and s

if we are also interested in verification,

- an assertion giving the properties of the concept defined
on this level,

- some sort of proof [formal or not/ of the assertion as a
theorem. This may require the statement of further hypotheses
describing inter-statement relations: lemmas.

Thus the question, whether an object has a certain required
property /in case of programs their verification/ can be
reduced to

- the proving of the assertions about the properties of
the concepts, to be performed independently for each level
/using the hypotheses about the primitives of that level/, and

- the examination of whether the wvarious levels have been
properly combined that is to ensure that every specification
and lemma is proved as a corresponding assertion at a
subsequent level.

The concepts that are not defined at any level are called
primitives with respect to the whole model and hypotheses
applied to them are treated as axiZoms. [In case of programs
these primitives, which form the bottom-level, can be the
statements and standard procedures of the programming language

used./ There is no limitation, however, to how deep we go in a

= 30 =

given model in refining the concepts we view as primitives.

Thus models that are left "unfinished" at higher levels, in
virtue of leaving open a number of design or implementation
questions, determine a larger set, a family of concrete objects.
In this way it is possible to describe sets of concrete objects
ordered by design decisions.

While the above considerations define a rather strict
structure of the description, we do not want to impose any
limitation on the formalization of our language: any language
can be used which allows unambiguous determination of the
primitive concepts from the definitions. »

Thus currently we give the description of our models in two
parallel languages. On each level we give

l. a textual, natural language description, and

2. a formal description [at present in VDL*/,see Table 1.

Ad 1. The textual description discusses the question/s/
raised by the problem, using the textual definition of the
problem as a basis. Each question is followed by a list of
possible solutions, alternatives. This is followed by a
decision which constitutes the factor determining the role of
the SAM-level in the model. There may be several decisions
applicable to a question; in this case models with different
properties may be originated from the different decisions.
[Such model-families can be represented by a tree -~ an example
of this can be found in [161. The nodes of this "tree-model"
are the questions /or problems/, its branches the selected
solutions based on the decisions. The latter generates the
model corresponding to the subgraph defined by them./

A decision is followed by its justification, perhaps an
explanation, and a list of consequences.

The correspondence between levels and decisions can be
either.

" The possibility to use some other abstract program
specification language instead of VDL is also considered,
including the new Vienna technique for the description of
semantics /see [Bekic, TLI and [181/.

level

textual /informal/ part

formal part /VDL/

problem definition
(which concept/s/ will be
defined in this level)

list of primitives
(which will be defined
in this level)

informal considerations
about the validity of
the assertions (as
consequences of the
hypotheses)

&

B, possibilities or (family of definitions)

2, alternatives

t decisions and data- and procedure-

] consequences definitions

m L L3 o o ® ° 3 o

3 list of new (primitive) list of new primitives

: concepts

specification: specification:
hypotheses about the pre- and post-conditions
primitive concepts for the primitive

g procedures

) ;

RN assertions about concepts theorems: pre- and

|+ defined on this level post-conditions for the

-8 procedures defined on

2? this level

&

QO

D

formal proof of the
theorems

Table 1.

SAM-"form"

- 4] =

a/ such that each level contains one decision /[or several
decisions if they are strongly connected/, together with
all their consequences; or

b/ such that each level contains the definements of all
primitive concepts occuriﬁg'on the immediately
preceeding level [e.g. as in THE operating system, see
[Dijkstra, 681/.

There are no significant differences between these two
approaches, since each b-type level can be substituted by a
set of related a-type levels. For reasons of simplicity in the
following we will use levels in the sense of a/.

There may be several questions raised on a given level and
correspondingly several decisions, if these are connected in
some way.

In the specification section of the textual description
the primitive concepts occuring in the definitions /[determined
by the decisions/ must be lZsted, together\with hypotheses
about them /enumerating all the assumptions made about the
concept in the definitions/, and if we are verifying we must
prove the hypothesized properties of the concepts defined.

It is obvious that even if we examine only the above
mentioned textual, informal sections of the SAM-forms we shall
see a clear well-structured text; its reader can review the
.steps of the problem solution - essentially - without mis-
understanding. That means, that if we organize the description
according to the structure and principles described above, the
"readability" and "structuredness" of our design can be
improved even without introducing any formal language. The
importance of this kind of description when several people are
working on a program design is equally obvious.

Ad 2. On every level we also give a formal description in
VDL /using the extensions proposed by [Lee, 72bl/. This formal
description contains a VDL definitioﬁ of the direct con-

sequences of the decisions made in the textual part in the

- 42 -

form of definitions [or refinements/ of some of the data
structures and procedures that occured as primitives at higher
levels. The formal description consists of data and procedure
definitions followed by a list of primitives used in these. An
important factor is that if we refine a data-structure on this
level then all of its accessing procedures should be refined
accordingly on the same level.

An important requirement of the two [formal and textual/
language variants of the description - both covering all
sections of the SAM-form - is that they should be related to
each other in the following sense: there should be a one-to-one
correspondance between the decisions of the textual section
and the data and procedure definitions; the list of primitives
should be comparable to the ones used in the textual description.

In the formal variant of the specification section we may
list the hypotheses about the primitives, i.e. the requirements
that the procedure primitives on this level are expected to
fulfil /pre- and post-conditions/. Again, there are no limi-
tations on the language of these requirements except those
already made for the text of this level i.e. the primitives
used in them should be comparable [or identical/ with the list

of primitives for this level.

2.2 Verification methods

If in the formal description of the SAM-form we gave the
specifications, then in the verification section these are
treated as hypotheses and the proofs of the assertions
/[theorems/ about the properties of the procedures defined on
this level, are reduced to the proof of the hypotheses on
subseqﬁent levels. ‘

It is easy to see that in the general case in order to
prove theorem from the hypotheses some additional assumptions
might be needed about the interrelations of the primitive
concepts. These will be called verification conditions and
they will be treated as lemmas for the given level. In this

- 43 -

way in order to carry out the verification of all levels it is
necessary to generate [and prove/ the - preferably minimal -
verification conditions for each level and to handle the
"inter-level" references of the primitives with the help of a
cross—references Llist of primitives defined and used on the
various levels. Verification by hand is hard; the program
VERGEN [see [151, [221 and [231/ is the first step toward
automatising this.

In VERGEN procedure definitions are given in VDL, but the
language of the specifications, /i.e. pre- and post-conditions
for the procedures/ is not restricted. These can be arbitrary
texts [/in accordance with the requirements of interactive
program design/; the important thing is that they describe the
requirements of the primitives [black-boxes/ with a precision
that corresponds to the given SAM-level. In order to generate
the verification conditions we must give together with the VDL
algorithms an appropriate system of axioms and rules of
inferences [see [7]1 and [22]/. The VERGEN program accepts a
two-component [algorithm description and requirement description
of specification/ language. During the processing of the
algorithmic definitions and the corresponding specifications
the system generates verification conditions for the procedures
[using a simple parameter correspondence scheme, see [Good,
701/. Assuming the trivial conditions proven, it prints the
others in a nice format "courteously” leaving room on the paper
for the proof [/to be done - at present - by hand/.

In later versions of VERGEN, taking into account the user
requirements the following problems must be solved:

- definition of an algorithm description language more

suitable for design purposes,

- more aspects [e.g. typechecking of parameters in the
case of procedure-calls/ should be considered during
verification condition generation,

- development of a theorem-prover mechanism, which the
system can use to prove the non-trivial verification

conditions genrated by the system itself.

2.3 Program design

We described the process of SAM-preparation, showing that
the SAM-1like problem elaboration can be a method of the con-
construction /in a structured manner/ of provably cbrreat,
well-structured program designs. Thus we have a method of
program design; a description prepared by using this method
can be easily and unambiguously read and understood.

A Software Support System can be developed to assist
program design by this method. The core of such a system can be
the above mentioned VERGEN program. Some other important
features of the system might be the following:

1. the above mentioned vertification facility of the system
should be modifiable; the user should be able to give
a "knowledge" base [in the form of axioms and deduction
rules/ which can be used by the system to prove more
complex verification conditions;

2. implementation of a query subsystem [described in £rle1/
using as a data-base a SAM-description that is tree-
structured according to the members of some program
family /Software Encyclopedia, see section 3.1/. Using
this and the answers given by the designer for its
guestions the system can traverse an appropriate path
in the tree while generating in a well-documented manner
the program family member requested by the user;

3. provision of an environment which can be used to examine
the behaviour, usefulness, optimality [in a given sense/,
etc. of a SAM-description of any level using an
appropriate [abstract| test-bed generated from the
specifications.

In the definition of the features of a possible SAM Support
System we must keep in mind the basic requirement that a system
like this /i.e. one that is to be used as an aid in top-down,
structured, vefifying program elaboration/ should communicate
with the user - at "design time" - at several levels.

A system like this - in view of the above - is envisaged
as being built around some /[abstract/ language or machine at
the bottom level; assuming that Zts "abstract operations" have
already been proven correct.

Thus the task of the designer/implementor may now be

defined as one having to refine the problem definition /[the

= A5 =

primary or original version/ using the above described means
until the bottom level of the refinement process is the bottom
level defined above, or a higher level which is algorithmically
known to the system and is proven correct. [Note that this
base-language can be viewed as the "Machine Oriented Language"
/MOL/ of an abstract machine;/ This Support System will be
based on some sort of deduction mechanism to be used during
generating conditions. This system can be built in such a way
that it asks the user [who is in Znteractive communication
with it/ to prove the verification conditions generated by it
at the various levels of the description under examination. On
the other hand from the automated aspect of such a system we
would expect that it uses a theorem-proving subsystem to prove
the verification conditions, and it should only turn to the

user when it is in trouble.

2.4 Model implementation questions

So far we have shown the advantages of SAM-aided program
design. The previously mentioned Support System will help in
the implementation problems as well, and may perform such
additional tasks as the generation of test-beds for given run-
time environments.

The implementation of the abstract algorithms described
[currently/ in VDL would belong to the tasks of this Support
System. Using VDL as the language providing the abstract
description formalism there are the usual two ways to imple-
mentation: interpretation, and translation to an implemented
object language. In the former case we have immediate storage
bounds problems. Translation of VDL is not an easy task
either, since it is difficult, to find a usable /[abstract/
object language that is implemented. Bridging the gap between
the abstract description and concrete data representation is
‘also problematic. We experimented with using CDL* for imple-

mentation purposes; CDL has a control structure that is

3 Compiler Description Language [Koster, T11]

= Af =

similar to that of VDL. CDL versions of VDL algorithms can be
given relatively easily. Separate pre- and post-processors had
to be used to resolve the differences between the abstract and
concrete syntax. The following method has been successfully
used in writing compilers [VERGEN was also designed using this
method/;

- the abstract compiler written in VDL was translated
- almost mechanicélly - to CDL by hand, the required interface
was provided; in parallel with this

- the difference in the abstract and concrete levels was
resolved by doing the parsing and code-generation of the
compiler in CDL /omitting VDL completely/. The papers rlo1,
[1171 and [121 give the VDL design of PASCAL and BCPL compilers;
the latter summarizes the experiences of <mplementing the VDL

design im CDL; CDL output listings are provided.

Up to now we seperated design and implementation. The final
goal of both activities is the definition in some programming
language of the /proven correct/ algorithm of the solution of
the problem. The final solution of this problem would be the
expansion of the research into the area of automated problem
solving.

To summarize, the long-range goal of SAM-research is the
creation of such an automatic problem solving system in which
programming is done by problem specification. In the current
phase of the research we concentrate our efforts to develop
methods for giving "good" descriptions of SAM-s - and imple-
menting them - keeping in mind the requirements of further

development towards the direction of automated problem solving.

- 47 -

35, DESCRIPTION OF SOFTWARE ELEMENTS

In the previous séction we discussed the methodological
aspects of SAM-research; we shall now give an account of our
results in the application area, in the formal description of
software components.

First we shall outline our ideas about a "Sofware Encyclo-
pedia"; we shall then examine the SAM-description of an
abstract program production environment /[this can be considered
as a chapter of the Encyclopedia/. Results concerning
description, design and implementation of compilers and other

applications will also be given.

3.1 Software Encyclopedia

The purpose of SAM-research is to develop a design and
implementation methodology which allows us to prepare hier-
archically ordered, general, abstract, verified models of
problem families. The Software Encyclopedia can be viewed as a
tree-structured graph of descriptions that correspond to forms
filled in as described in section 2; the nodes are these
descriptions and the branches are the possible solutions of
the problems described in the node they originate from. Thus
the Encyclopedia describing a problem family can be viewed as
an actual "family-tree", which is

- a description in which by choosing /by appropriate
decisions/ among the alternatives at the various levels a path
can be traversed in the tree; in other words the Encyclopedia
contains its own directions for use,

- starting from the first level, if during the above steps
we stop on some level, then the level-descriptions on the
traversed path give the description of an element of the
program family. This is a description /or program/ that uses
primitives which have remained undefined down to this level.
Now if there is an abstract machine which "understands" these

- 48 -

primitives, then we have an implemented version of the chosen
family member.

It should be emphasized that these are only ideas. It is
obvious that the use of a contemplated Encyclopedia - as a
handbook - has many advantages; in the construction of well-
documented, well-structured and proven cofrect program designs
as well as in evaluating the finished software product and in
teaching about software elements. This may make the Encyclo-
pedia useful for the designer and customer of the software
product, as well as for the educator teaching computer science.
For a detailed discussion of these application possibilities
see [51. |

The development of the descriptional tools of SAM-s will
happen in parallel with that of our long-range goal, the
Problem Solving System. Using the current set of tools /[e.g.
VDL/ the experimental realization of chapters of the Software
Encyclopedia is currently in process at our institute. Results
to date are described in C[D&mSlki, 733, C73, €81, C91, C1l61,
171, [201 and [211. These give SAM-descriptions of elements
of the program production environment /e.g. assemblers/ and
other software elements; they will be summarized later in this

section.

3.2 Description of the elements of the

program—production environment

An [imaginary/ Software Encyclopedia describing a small-
computer environment used for traditional functions might be,

for the purposes of this paper, divided into three "volumes":

a/ the components interpreting or compiling higher-level
languages,

b/ the elements of a so-called program production
environment responsible for the conversion of some
programs written on a /macro/ assembly level language
to other programs that can be run by the operating
system,

- 49 -

c/ other software elements /the operating system, its
components such as a file management system, etc./.

Thevrelation to machine-dependence of the above volumes is
not the same. The high-level languages - in volume a/ - are
usually designed with machine-independence in mind. The
application of the SAM-method is more interesting in the case
of the other two volumes since presentihg the common, general,
implementation and machine-independent features of the eiements
of these volumes may help to solve many problems /e.g. por-
Bability/.

With respect to volume b/ a survey of assemblers macro
assemblers and editors has been made in L23, together with a
VDL description of the corresponding software components of
some concrete machines (including IBM 360/370) . The following
general - structured - models have been prepared so far: the
macro assembler [macro processing and assembly treated
separately/, the linkage editor, the loader and a tracing
system.

The first paper to be mentioned in this connection and
quoted already, [DSm&Slki, 731 gives an Abstract Assembly Model.
This is a SAM-description of a general assembler /i.e. the
compiler semantics of a general assembler language/. Of
Special interest is that this model shows the machine- and
implementation-independent aspects of [otherwise very machine-
dependent/ assemblers,‘thus elucidating the essence of these
programs [see also [Varga, 76al/. ;

The paper [91 gives a parallel description of a one- and
a two-pass assembler. This paper gives a more implementation-
dependent version of the Abstract Assembler Model introduced
in the previous paper /that is it can be used in an'actual
program design/. It also shows that it is possible to give SAM
that describes the various phases of assembler-level program
production at once /[i.e. assembly, editing, loading/; that is
description of a program family can be given introducing the

phases as alternatives defined by appropriate possibilities.

= 50 =

Table 2. gives the description of several levels of the
assembler-SAM discussed in"EDémélki, 731 and [91, together
with an exposition of the problem to be solved and the cor-
responding decision made at each level.

The Macro Assembler Model described in [83] givés the macro
additions required for the two previous assembler models. This
paper, besides emphasizing the general and common character-
istics of small-computer macro assemblers, contains a good
description of all the features of the IBM 360/370 macro
assemblers in a suitably genefalized fofm.

While the previous SAM is the description of a single,
general macro processor, [16] contains a description of a whole
family of /small~computer/ macro-assemblers, a tree—structured
SAM. The members of the family are not introduced with the
method of parallel levels seen in [9]. As the alternatives
appear due to the design decisions, they live their independent
existence as branches of the decision tree. A common feature
they have - apart from the common ancestry - is that the prob-
lems /determining the characteristics of the levels which
appear/ obviously some will appear only with some alternatives.
There are four libraries, in the tree-structured macro
assembler SAM-description /[/the problems and possible solutions,
the VDL-instructions, the syntactic rules and the primitives/.
.The designer references these libraries like a macro-call in
the various sections of the SAM-form; this saves a lot of re-
petition. The specifications of the procedure-primitives are
written in a form acceptable to the VERGEN program [see 2.2/.
This "chapter" of the Software Encyclopedia [dealing with macro
assemblers/ shows five levels of the family-tree describing
about 64 alternatives. Thus an interesting experiment is
described in this paper containing important lessons for the
future editors of the Software Encyclopedia in connection with
the enjoyable, readable [that is with computer supported/ SAM-
descriptions to be contained therein. Table 3. illustrates the

first pages of the "problems and possible solutions" library
of [161].

Table 2. First few levels of a SAM for
assemblers (problem, decision)
LEVEL PROBLEM DECISION

Basic structure of the
assembly module and
the assembler

Assembly module consists of declarations and
program part. Program is processed first,
declarations - containing information about
external and entry names only - afterwards.

Processing of the
program part

Program-part is a list of statementsy to be
processed in a serial order.

Types of statement and
their processing

Three types of statements are used, in all

three an expression is computed and the

obtained value is either (1) assigned to a
name (assignment), or (2) given to the
location-counter (lec modification), or (3)
used to fill machine-words of the output
(content-definition). In the last case the
value is adjusted to the previously given
length, the result is inserted to the
output component BODY.

Initialization of
expression evaluation

Before the actual computation of an expres-—
sion takes place, it should be checked
whether all information needed for the com-
putation is available or not. This check
means a pre-processing of the expression
and its result is used both by the actual
calculation of the expression or by the
composition of an undefined-indication,
containing all information for the post-—
poned computation of the expression, when
it becomes defined.

Handling of - possibly
postdefined - names

Values assigned to names are stored in an
dictionary. A name may occur is in expres-—
sion before a value is assigned to that
name and this can be the reason of the ex-
pression being undefined. In such cases the
undefined-indications, obtained as the
result of the computation of the expression,
are stored instead of the corresponding
values and references are set up in the
dictionary to point from the undefined
names to the corresponding undefined-indi-
cations. When a value is assigned to a name,
these references are resolved.

LEVEL

PROBLEM

DECISION

Calculation of the
value of expressions

Expressions are constructed from names,
constants and location-counter values by
infix operators. Calculation of the expres-
sion is defined recursively.

ceose e d

@00 0006006006006 000900006000

Structure of the
dictionary

Dictionary is a set of dictionary-items
selected by names. Each item has value and
reference components.

Structure of the
output component
(BODY)

BODY is a lZst of body-values; i.e. values
(addresses, consisting of a base and
displacement, or numerical values), lc-di-
rectives or undefined-contents.

Table 3. First pages of the "problem and
possible solutions" 1ibrary of
SAM-tree for macro assembler
NUMB. PROBLEM POSSIBILITIES

i

In which phases of
program production
is it useful to
apply the textual
substitution pro-
vided by macro
facilites?

Ul LN =

Before lexical analysis

During syntax analysis

During object code generation-
During linking

At load time

What is the (assembly
level) syntactic unit
which will be
produced after the
text substitution?

~ case these form a syntactic unit

One or more assembly lines which represent
a higher level syntactic unit (e.g. decla-
ration part)

A block which can be empty or can contain

one or more assembly lines; in the latter

A component of a single assembly line (e.g.
label)

Determination of the
relationship of
macrogenerator and
assembler

The macrogenerator knows the history of thd
assembly to this point; during substitution
it can use knowledge about the low level
syntactic units of the assembler language
(e.g. attributes of identifiers), it has
access to the assembler’s tables

The macrogenerator has only limited
knowledge about the syntax of the assembler
language i.e. that it consists of lines and]
so the expander itself has to generate
lines. The macro operations and the
assembly are separable both logically and
in time

Definition of the
basic syntactic cha-
racter of the source
text

pe—
®

The source text is a list of records
The source text is a list of characters

Besides explicit
macro—calls are
implicit macro-calls
to be allowed?

Yes; macro-calls are generated during the
processing of the source text based on the
built in knowledge of the macroassembler
Only explicit and positionally fixed macro-
calls are allowed '

Explicit but positionally independent (i.e.
condition dependent) macro-calls are
allowed

NUMB.

PROBLEM

POSSIBILITIES

4‘

A combination of 1. and 3.: some (e.g.
standard) macros are expanded according to
general rules, others are positional

The syntax of macro-
calls is fixed or it
can change

Fixed
It can change (see extensible languages)

The character of the
syntax of macro-
calls

Explicit
Implicit
Combination of 1. and 2.

Does the assembler

or the macrogenerator
have priority in the
analysis of the
higher level syntac-
tic units of the
source text?

Assembler has priority
Macrogenerator has priority

"Strategies 1. and 2. can be switched ac-

cording to text context or special
directives

- 55 -

The paper [17] contains the SAM-description that is so far
the most "readable"; it is the detailed elaboration of a
single alternative of a general program-tracing system, such
that the textual and the VDL-based algorithm descriptions are
readable and understandable on a standalone basis; as well as
being nicely complementary and explanatory of each other when
read together.

Table 4. is a brief summary of the problem and decision
sections of the informal part of the first levels of [171. In
the model levels D-J introduce the [user/ commands used to
initiate the required trace; we only give the refinement of
the "trap handling" commands introduced on level E.

There are several other papers in preparation in this area.
We refer here to [21] /under publication/ which describes a
general structured abstract model of the program production

environment.

3.3 Description, design and implementation

of compilers

This section reports on our results concerning the formal
description of higher-level languages and their compilers. As
mentioned before, our starting point in the formal description
of SAM-s was VDL, which was originally designed for the formal
~ description of semantics programming languages. The first
practical applications for the definition of the abstract
semantics of PL/I, ALGOL 60 and BASIC are well known. At our
institute we first used VDL to give the interpretive semantics
of APL, see [1]. Of special interest in this paper is the fact
that it emphasizes the interactive features of an APL system,
our first effort of this kind of application.

The paper [6] in the description of the compiler of a very
gimple language, based on [McCarthy, 671, where the design is
proven correct. The notation of the abstract compiler is de-
fined; it is a VDL abstract machine which translates the

objects satisfying the abstract syntax of the source language

Fig.4 First few levels of a SAM for tracing
system (problem, decision)

LEVEL

PROBLEM

DECISION

Definition of the

basic structure of
the program to be

traced; definition
of the main steps

of tracing.

The two input components of tracing are: the
program to be traced and the commands speci-
fying the (kind of) trace. The trace consists
of an Znitialization activity and the execu-
tion of the program one instruction at a time.
Some of the instructions of the program are so
called trap instructions; the execution of one
of these is interpreted as the insertion of a
tracing step. Other instructions are left un-
defined for the purposes of this model.

Definition of the
format of user
commands .

The commands form command-gropus. Both the
initialization activity and the tracing step
mean the execution of given command-groups.

What is the struc-
ture of a command-
group?

How should a com-
mand-group be
interpreted?

A command-group is a list of commands; one of
these must be a special "return" command. The
execution of a command-group means the execu-
tion of the individual commands in sequence
until a return command is reached. The in-
terpretation of an individual command should
consist of the execution of some sort of
tracing activity and the selection of the next
command to be interpreted.

What kinds of com—
mands do we need?
How should these be
interpreted?

A command requesting information about the
current status of the running program, trap-
handling commands, control-sequencing commands
which allow the modification of the order of
execution of the commands, an Znquiry command
which allows the examination of the current
program status, an end command specifying
program termination, a newcommand command
which allows modification of commands "on the
fly" are allowed in the model.

Definition of the
interpretation of
the traphandling
commands.

The trap-handler commands can be trap-estab-
lishment or trap-removal commands; these will
specify a program address (using some sort of
address definition) and a command-group. The
trap-establishment command is interpreted as
placing a trap at the given address and
establishing a correspondence between the
address and the command-group; the trap-

LEVEL

PROBLEM

DECISION

removal command is interpreted as the
destruction of the above correspondence and the
removal of the trap (if necessary).

What do we mean by
trap—-establishment
and trap-removal?

Trap-establishment means that the instruction
at the given program address is exchanged for a
trap instruction, provided that a trap was not
previously placed here, and the original in-
struction at the address is recorded. A trap is
removed if all command-group correspondences
with this address are desolved; in this case
the original instruction is replaced at the
given address.

How is a corres-
pondence established
between an address
and a command-group
and how is such a
correspondence
desolved?

When a correspondence is established between
a command-group and a given address the com-
mand-group is recorded with respect to the
given address in such a way that a given com-
mand-group’s correspondence to a given address
be maintained uniquely even after several
requests for the establishment of the same cor-
respondence. Now the removal of the corres—
pondence can be achieved by the removal of the
- single record of the given relation.

What is meant by
the address defi-
nition mentioned
on level E?

The address definition given in trap-handling
commands can be an address or an address re-
ference which in a given state of tracing de-
fines an address; of these the model allows for
the use of the address of the next instruction
to be executed, the current address, the start
address of the program and in case of sub-
routine calls the return address.

- 58 -

into objects satisfying that of the target language. We can say
it is the plan of the concrete compiler and it can deal with

the semantics of the source language without taking into account
details of syntax. Assuming that the interpretive /abstract/
semantics of the source and object language are given, the
correctness of the compiler written in VDL can be proved by
showing the equivalence of the interpretive and compiler se-

mantics of the two languages. This is illustrated in Fig.3.

object satisfying —— object satisfying
the abstract syntax —3 : j=——=3» the abstract syntax
compiler

of source language of target language
abstract interpreter ‘ abstract ihterpreter

for the source for the target

language language
result result
~7

the equivalence /in some
sense/ of these results
must be proven

Fig.3: Equivalence of the interpretive-
and compiler<semantics of languages

The abstract compiler mentioned above constitutes the core
of a compiler construction method. According to this method
the production process consists of two phases. The first phase

separates into three independent activities:

i/ implementation of the lexical analyzer
| scanner/
ii/ implementation of syntax analyzer /[parser/
iii/ definition of the abstract compiler.

- 59 -

Since these activities are essentially independent they
can be carried out and verified in parallel. You can verify
formally (e.g. in the case of iii/ as described earlier), in-
formally or by tesﬁing (efg. in the case of i/ or ii/ if you
have no better tools).: . -

In the second phase of the construction process the "only"
task is to put together the scanner and the parser and to
"decorate" it with semantic actions which are a concrete rea-
lization of the abstract compiler. The places of the insertions
are presented by the abstract compiler as well. It was found
that using VDL as a definition language for the abstract com-
piler and CDL as an implementation language makes this process
quite mechanical. Since the elements to be linked together are
already proved to be correct, it is much easier to verify the
whole concrete compiler.

The method described above has been used in several proj-
ects. A two-pass BCPL compiler was written. The experiments of
this method in this project are analysed in [12]. The abstract
compiler for PASCAL in shown in [101 and C111. A BASIC inter-
preter is under development using [Lee, T72al’ definition of
BASIC in VDL. In [183] we shall try to construct a new descrip-
tion for BASIC using the new definition method proposed by
the Vienna Laboratories in 1974 /see [Bekic, T721/. In all these
projects the design is in VDL, the implementation in CDL.

3.4 Description of other programs

Of other applications we mention a description of the FIND
program, introduced in [LHoare, T1bJl. In [T7] a structured VDL
version of this program is used to illustrate the axioms and
inference rules introduced for VDL in the same paper. A summary
of the definitions and specifications of the VDL procedures for
FIND is given in Table 5. /where [J stands for PASS, ~ stands
for "is a permutation of" and the variables p and q are always
bounded by avuniversal quantifier. Some procedures have two

60

K.._—.-.._

(m<p<g=A <s)

le

A (h<g<nos M»nv
AP(A,f,m,n)

~ continue(B,f,m,i,j,n,8);
B:change(A,1i,3);
i:up(A,g,s),
jsdown(A,h,s)

PRE ey POST
1<f<length(A) find(A,f)=reduce(A,f,1,length(A)) QM@AmM@MHmnmnrngDvVD <O V>Dz>
P(A,f,m,n) m reduce(A,f,m,n)= P(O,f,f,£)A0-.A
m<n - reduce(vec(x),f,1b(x),
AumwAjmmMﬁAn Mpmnmﬁrﬁ>yu>vM%HA>) A ub(x)):
Am<f<n xsorder (A, f,m,n)
T - PASS:A
P(A,f,m,n) order (A, f,m,n)=ord Qumuav?s,?»mv P(vec(q),f,1b(Q) ,ub(@))Avec (D)~A
R(A,f,m,g,h,n,s) m owmﬁw £omagihatie mv| P(vec(D),f,1b(d) ,ub(@))Avec (D) ~A

AW.M.._ DR(B,£f,m,i+l,j~1,n, s))
m>QAwUWAwmmvBuw?.._ sy 8))

continue(B,f,m,i,j,n,8)=
i<j > ord(B,f,m,i+l,j-1,n, s)
HAm -+ PASS: toAA<mn B>, AEU 0

P(vec(Q),f,1b(0) ,ub(c))Avec (D)~B

h<p<n D mM>ﬁ

mA>r + down(A,h~1,s8)
- PASS:h

<ub:n>)
H.Au -+ PASS: t (<vec:B>,<lb:m>,
%<ubs i>)
T > PASS: toAAdmn $B>,~1bs mv
<ub:f>)
R(A,f,m,1,j,n,8)A A.<s<A. change(A,1,j)= AwMuUWADumwsuu..iLl_‘numvv\/
== PASS: u(Az<elem(i):elem(j,A)>, |(j<ioR(D,f,m,i,3,n,s))
1<i, j<length(A) <elem(j):elem(i,A)>) Dwu>u>D..._n>w >Am*w>w*u.UDwu>wv
_R(A,f,m,g.hsn,8) up(A,g,s)= R(A,f,m,0,h,n,s)As<A
A <s -~ up(A,g+l,s)
m<p<gDA <s & 7 > PASS:g (m<p<DA <s) N s<hg
R(A,f,m,g,h,n,s) down(A,h,s)= R(A,f,m,g,0,n,8) A ASs

@<p<n DsgAp) N AgSs

Table 5.

VDL definitions and procedure specifications for FIND

- B =

pairs of PRE- and POST-conditions as specification, in such
cases the upper one is the assumption used at the place where
the procedure is called, while the lower one is a theorem,
which can be proved from the definition, and implies the
assumption/. ‘

The verification conditions for this description generated
by VERGEN can be found in [151]. This paper describes a few
levels of VERGEN itself illustrated by the listing generated by
VERGEN for these levels.

The [20] paper gives a possible SAM-description of a general
small-computer file management system. A brief summary of the
problems and definitions section of the first levels of this
model is given is Table 6.

We are also planning the preparation of the SAM-s of
several other operating system components. This is partly to
satisfy the experimental requirements of the methodology
research, partly to continue with the development of the

Software Encyclopedia itself.

Table 6. First few levels of a SAM for
file-management system (problem,
decision)

LEVEL PROBLEM DECISION

The definition of the
basic structure of
the system executing
the user programs and
the definition of the
basic structure of
the program to be
executed.

Some of the program’s instructions are spe-
cial file-handling instructions. The system
executes the program instruction by in-
struction until a stop instruction is
reached. The model will only consider the
file-handling instructions.

Definition of the es-
sential structure of
files; the main steps
of grouping and in-
terpreting file-
handling commands.

A file consists of two parts: the header
which contains information about the file
as an organized unit of data, and the body
which contains the user data proper. The
file-handling instructions are of two kinds:
preparation [administration/ instructions
and data-handling instructions which oper-
ate on the header and the body respectively.
The interpretation of the file—handling
commands consists of a /security/
validation and depending on the result of
this execution of the required action or
the generation of an error report.

What is the vali-
dation condition
required for the in-
terpretation of
file-handling in-
structions?

Every file has a corresponding fZle de-
sceription table which the system uses to
record the current status of the file
during processing. The table contains an
opening flag which indicates that a given
file at a given time is ready or not for
processing. Examination of this flag is the
validation step. Data-handling instruction
may only be executed when the file is open;
the preparation instructions OPEN only when
the file is closed, the instruction CLOSE
only when the file is open.

Definition of the
structure of the body
of the file and of
the unit of data

accessible by the

data-handling in-
structions.

The file consists of records [logically
connected units which are moved together/.
The data-handling instructions manipulating
records. These consist of a secondary va-
lidation, the required manipulation or the
generation of an error report. There are
four types of data-handling instructions
/READ, WRITE, REWRITE, DELETE/. The

LEVEL PROBLEM

DECISTON

secondary validation checks whether the
required operation can be performed at the
given time.

The main stops of

D performing the indi-
vidual record ope-
rations.

The record operations are performed by the
system in three main steps: 7t determines
the position of the required record it checks
the record, and depending on the result of
the check it performs the required transput
or transfers control to a predetermined con—
tinuation address. The condition of the
transput in the case of the WRITE instruc-
tion is that the required record be not in
the file, in the other cases that it should
be there. -

E |How is the transput
of the record
actually performed?

Within the file the records form blocks,
these are the units of physical data trans-—
mission. During the transput of a record the
block containing the record is transmitted
first, if required /this is performed by
physical file~handling routines/, the actual
operation is then performed on the record as
it resides within the block.

F |How is the file cons-
tructed from records,
» |how are the records

I handled?

The model provides for three types of file
organization; sequential, relative and
indexed~sequential. Two types of file-access
are treated: sequential and random. In the
several different combinations the record
position is determined in a different manner
and some of the administrative actions are
performed differently,

Determination of the
J |main tasks of the
preparation instruc-
tions.

The OPEN instruction provides permission to
process the file in the manner supplied by
the opening mode [input, output or update/.
During the interpretation of the instruction
the system checks whether the opening mode
is compatible with the information in the
file description table and the file header;
if so the opening flag is set "FALSE", thus
no other processing can be performed on the
file until the next OPEN instruction.

What are the secondary
K |validation conditions
of the interpretation
of the data-handling
{instructions?

The secondary validation applies to whether
the operation type of the instruction and
the access mode is compatible with the
opening mode and the file organization

- 64 -

ly, APPLICATION POSSIBILITIES

The paper has presented a set of formal tools for specifi-
cation, design and implementation of software objects.

The method of Structured Abstract Models enables the pro-
grammer to describe the general and abstract features of pro-
grams and to develop a whole family of programs in a top-down
and verified manner. The data structures and algorithms are to
be presented in an abstract program spécification language.

Using the method of Structured Abstract Models - restric-
ting our objects to programs, software elements - it is pos-

sible

- to work out a design and implementation methodology
which in compliance with the rules of top-down, structured
problem solving, is based on the determination of the hier-
archical order of decisions, and allows verification to be
carried out in parallel with this;

- to give a formal description of software products which
can show the appropriate concrete [or perhaps only hypothet-
ical, unimplemented/ software products ordered by the decision

hierarchy defined by the user’s order of priorities.

Finally let us review in which phases of software produc-

tion we may use our models of software components:

- in the evaluation of a given product jto help customers
to choose from several alternatives/;

- in the specifications [problem definition/ of a new
product;

- in the preparation of a verifiably correct design plan,
and

- during the Zmplementation of a well-documented, error-

free product.

We should also mention the advantages of a clear, well-

- G5

structured description /i.e. SAM/ of the functions of the
computer operator as an example of a non-software product
application of SAM-s.

The educational importance of the method must also be
noted; the possibilities to use models of problem families
["Software Encyclopedia"/ in teaching should be exploited. We
should also note that our universities in recent years have in
fact started to utilize this possibility; [Varga, T76a-b] are

good examples of this.

ACKNOWLEDGEMENT

The research reported in this paper was supported by the
Hungarian National Bureau for Computer Applications. The
authors gratefully acknowledge the help they received from
Zs.Farkas and T.Langer in writing some parts of the paper.
They, together with J.Aszalds and I.Sikldési formed the core of
the team engaged in this research. Valuable help was received

from P.Kbves in preparing the English text.

REFERENCES

[Bekic, TL1

LBoehm, T3]

[Chang, T31

(Dijkstra, 681

[Dijkstra, TO13]

[Dijkstra, T21

[D6mS1ki, T33

[Good, TO3

H.Bekic, D.Bjorner, W.Henhapl,
C.B.Jones, P.Lucas:

A Formal Definition of a PL/I Subset
IBM Lab. Vienna, 1974. TR. 25.139.

B.W.Boehm: :

Software and Its Impact:

a Quantitative Assessment
Datamation, May, 1973. pp. 48-59.

Chin-Liang Chang, Richard Char-Ting Lee:
Symbolic Logic and Mechanical Theorem
Proving

Academic Press, 1973. New-York

E.W.Dijkstra:

The Structure of T.H.E. Multiprogramming
System

Comm.ACM. Vol.11l, No.5, May, 1968. pp.
341-3L6.

B.W.Dijkstra:

Structured Programming

Software engineering techniques,
J.N.Buxton and Randell /Eds/.
NATO Scientific Affairs Division,
Brussels, Belgium 1970, pp.84-88.

E’W.Dijkstra:

Notes on Structured Programming

APIC Studies in Data Processing No.8,
Academic Press, 1972. pp. 1-82.

B.D6mS1lki:

On the Formal Definition of Assembly
Languages

Symposium and Summer School on the
Mathematical Foundations of Computer
Science

High Tatras, Czechoslovakia,

Sept, 1973. pp. 27-39.

D.Good:

Toward a Man-Machine System for Proving
Program Correctness

The Univ. of Wisconsin, Philadelphia,
1970. T0-T2, 053. /Ph,D. thesis/

- 67 -

[Hoare, 693 C.A.R.Hoare:
An Axiomatic Basis of Computer
Programming
ACM Vol.l2, No.1lO, October, 1969.
Pp.576-583.

[(Hoare, Tlal C.A.R.Hoare:
Procedures and Parameters: an Axiomatic
Approach
Symposium on the Semantics of Algorithmic
Languages
Berlin-Heidelberg-New-York
Springer, 1971, pp. 101-117.

[Hoare, T1Dbl C.A.R.Hoare:
Proof of a Program: FIND
ACM, Vol.15, No.l, January, 1971.
pp.39-L45.

[(Hoare, T2al C.A.R.Hoare, M.Clint:
Program Proving: Jumps and Functions
Acta Informatica, 1972.1, pp. 21k-22L4,

C(Hoare, T72Db1 C.A.R.Hoare:
Proof of Correctness of Data Represen-
tation
Acta Informatica, 1972.1, pp.271-281.

[Hoare, T2c] C.A.R.Hoare:
Prospects for a Better Programming
Language
INFOTECH State of the Art Lectures on
Programming Languages,
1972. London, pp. 327-343.

[Koster, T113 C.H.A.Koster:
A Compiler Compiler
MR 127/71, Mathematics Centrum,
Amsterdam.

[Lucas, 6813 Lucas P., Laure P., Stigleitner H.:
i Method and Notation for the Formal
Definition of Programming Languages
IBM Lab.Vienna, 1968. TR 25087.

[Lee, T2al John A.N.Lee:
The Formal Definition of the BASIC
Language
The Computer Journal, Vol.l5. No.l,
pp. 37-h1.

[Lee, 72b3] John A.N.Lee:
Computer Semantics
Van Nostrand Reinhold Co., 1972.

[McCarthy, 673

CMills, T23

[Neuhold, T11

[Varga, T6al

[Varga, T6Db1]

(Wegner, T21

- 68 =~

McCarthy J., Painter J.A.:

Correctness of a Compiler for Arithmetic
Expressions

Proceedings of a Symposium in Applied
Mathematics, 19, Mathematical Aspects of
Computer Science, Pp. 33-41.
/ed.Schwartz J.T.-. Providence,

Rhode Island: American Mathematical
Society

Harlan, D.Mills:

Mathematical Foundations for Structured
Programming

International Business Machines

Corporation, Gaithersburg, Maryland, 19724

E.J.Neuhold:

The Formal Description of Programming
Languages

IBM System Journal 1971, 2.pp.86-112.

L.Varga:

The Abstractions of Machine Dependent
Program Forms

KFKI-76-11, Budapest, 1976.

L.Varga:
The VDL Graph .
KFKI-T6-28, Budapest, 1976.

P.Wegner:

The Vienna Definition Language

ACM. Computing Surveys, Vol.b, No.l,
1972.March, pp. 5-63.

- 69 -

APPENDIX. LIST OF INTERNAL PAPERS, 1973-76
[in Hungarian/

E4] T.Langer:
The Formal Description of APL by Using Vienna
Definition Language
Budapest, 1973. Inf. 1080/72.

[21 E.Santa:
Assembly Languages and Assemblers /Survey/
Budspest, 1973.Iaf. 11017T73.

£33 B.DOmd81ki:
Structured Abstract Models /in English/
Budapest, 1973.

[h3 B.D6m81ki, E.S&nta:
Some Aspects of the Foundation of Computer
Science
SAM-I. Introduction
Budapest, 19T7L4L. Inf. 1368/7L

5] B.D8m81ki, E.S&nta:
Structured Abstract Models -SAM- and their Use
SAM-I. Chapter 1.
Budapest, 197L. Inf. 1368/7hL4.

[63 T.Langer:
Structured Abstract Compiler as a Tool for
Verified Compiler Planning
SAM-I. Chapter 2.
Budapest, 19T74. Inf. 1368/7Tk.

71 I.Sik16si:

Verification of VDL Programs
SAM-I. Chapter 3.
Budapest, 197L4. Inf. 1368/Th.

L83 J.Aszalds:
Structured Abstract Macroassembler Model
SAM-II. Chapter 1.
Budapest, 19T4. Inf. 1L433/7hL.

91 E.S4nta:
Structured Abstract Assembler Model
SAM-II. Chapter 2.
Budapest, 1974. Inf. 1433/7L.

£10] S.Barany:
Compilation of PASCAL Statements
Diploma Thesis, Budapest, 1975.Inf. 1477/75.

£113 B.Janni:
The Universal Compiler-Compilation of PASCAL
Expression
Diploma Thesis, Budapest, 1975. Inf. 1L476/75.

L1231 T.Langer: ‘
Lessons of a Methodological Experiment /A BCPL
Compiler Planning in VDL and Implementing in CDL/
Budapest, 1975.
Inf. 1498/1975.

£131 J.Bankfalvi:
Symbolic Logic and Automatic Theorem Proving
SAM-III. Volume 1. Chapter 1.
Budeapest, 1979. Inf. 1525/75.

L1k I.88in¢
Model Theory and Automatic Theorem Proving
SAM-III.Volume 1. Chapter 2.
Budapest, 1975. Inf. 1525/75.

Cis53 I.Sik16si: .
Description of Program Verification Condition
"Generator, VERGEN
SAM-III. Volume 2.
Budapest, 1975. Inf. 1564/75.

L1631 J.Aszalbs:
Family of Structured Abstract Models for
Macroassemblers
SAM-TIII. Volume 3.
Budapest, 1976. Inf. 1555/75-

ELT3 Zs .Farkas:
Structured Abstract Model for Trace System
SAM-III. Volume k.
Budapest, 1975. Inf., 1597/75-

£[181 L.Verbovszki:
A New Method for the Description the Semantics

of Programming Languages and its Application in the
Case of BASIC

Diploma Thesis, Budapest, 1976. SZAMKI 1592/76.

£191 J.Aszalbds:
An Overview of Structured Programming
Techniques
SAM-IV. Volume 2. :
Budapest, 1976. /forthcoming/

201 G.Szendi:
Structured Abstract Model for File Management
System
SAM-IV. Volume 1., Budapest, 1976. SZAMKI 1635/T6.

21,1

22]

237

- JL ~

B.D6m81ki, Zs.Farkas, E.S&nta:
Structured Abstract Models for Program
Production Environment

SAM-IV., Volume 3. /forthcoming/

I.Sik16si: 4
Proving of Structured Abstract Programs /SAM-s/
Diploma Thesis, Budapest, 1976.SZAMKI 1589/76.

K.Krasnyanszki:

Methods of Program Proving
Verification of VDL Programs.
Diploma Thesis, Szeged, 1976.

