
ON A NORMED VERSION OF A ROGERS-SHEPHARD TYPE
PROBLEM

ZSOLT LÁNGI

Abstract. A translation body of a convex body is the convex hull of two of its translates
intersecting each other. In the 1950s, Rogers and Shephard found the extremal values,
over the family of n-dimensional convex bodies, of the maximal volume of the translation
bodies of a given convex body. In our paper, we introduce a normed version of this
problem, and for the planar case, determine the corresponding quantities for the four
types of volumes regularly used in the literature: Busemann, Holmes-Thompson, and
Gromov’s mass and mass*. We examine the problem also for higher dimensions, and for
centrally symmetric convex bodies.

1. Introduction and preliminaries

The volume of the convex hull of convex bodies in the Euclidean n-space Rn has been in
the focus of research since the 1950s. One of the first results in this area is due to Rogers
and Shephard [17], who, besides other cases, investigated this volume for two intersecting
translates. They, for an n-dimensional convex body K, defined the translation body of
K as the convex hull of K ∪ (x + K) for some x ∈ Rn satisfying K ∩ (x + K) 6= ∅, and
determined the extremal values of the quantity

(1) ctr(K) =
1

λn(K)
max{λn(conv(K ∪ (x+K)) : (x+K) ∩K 6= ∅, x ∈ Rn}

over the family of n-dimensional convex bodies, where λn and conv denote n-dimensional
Lebesgue measure and convex hull, respectively. Their conjecture about the convex bodies
minimizing ctr(K) remained open for almost fifty years. A proof of this conjecture, using
measures in normes spaces, and another one based on more conventional tools, can be
found in [14] and [9], respectively.

The aim of our paper is to introduce a variant of this problem for normed spaces. In
our investigation we denote the family of n-dimensional convex bodies by Kn, and the
polar of a set S by S◦. If M ∈ Kn is symmetric to the origin o, the normed space with M
as its unit ball is denoted by M. The Euclidean unit ball with o as its centre is denoted
by Bn, and we set Sn−1 = bd Bn and vn = λn(Bn). For a point p ∈ Rn, |p| denotes its
Euclidean norm, and, for p, q ∈ Rn, by [p, q] we mean the closed segment with endpoints
p and q. For simplicity, we call a plane convex body a disk, and denote 2-dimensional
Lebesgue measure by λ.

Let us recall the well-known fact that any finite dimensional real normed space can be
equipped with a Haar measure, and that it is unique up to multiplication of the standard
Lebesgue measure by a scalar. Depending on the choice of this scalar, one may define
more than one version of normed volume. There are four variants that are regularly
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2 Z. LÁNGI

used in the literature. The Busemann and Holmes-Thompson volume of a set S in an
n-dimensional normed space with unit ball M , is defined as

(2) volBusM (S) =
vn

λn(M)
λn(S) and volHTM (S) =

λn(M◦)

vn
λn(S),

respectively. Note that the Busemann volume of the unit ball, and the Holmes-Thompson
volume of its polar, are equal to that of a Euclidean unit ball. For Gromov’s mass,
the scalar is chosen in such a way that the volume of a maximal volume cross-polytope,
inscribed in the unit ballM is equal to 2n

n!
, and for Gromov’s mass* (or Benson’s definition

of volume), the volume of a smallest volume parallelotope, circumscribed about M , is
equal to 2n (cf. [1]). We denote the two latter quantities by volmM(S) and volm∗M (S),
respectively.

In the light of the previous paragraph, it is clear that for any fixed normed space, the
Euclidean result can be immediately applied.

Theorem 1. Let M be a normed space with volume volM . Then, for any convex body
K ∈ Kn, we have

1 +
2vn−1
vn

≤ max{volM(conv(K ∪ (x+K))) : (x+K) ∩K 6= ∅, x ∈ Rn}
volM(K)

≤ 1 + n.

We observe that there is equality on the left if, and only if K is an ellipsoid (cf. [9]),
and on the right if, and only if K is a pseudo-double-pyramid (cf. [17]).

In the remaining part we use a different approach. For any K ∈ Kn, we say that the
relative norm of K is the norm with the central symmetral 1

2
(K−K) of K as its unit ball

(cf. [12] or [11]). Observe that, up to multiplication by a scalar, the relative norm of K
is the unique norm in which K is a body of constant width. We introduce the following
quantities.

Definition 1. Let K ∈ Kn and M be the space with its relative norm. For τ ∈
{Bus,HT,m,m∗}, let

(3) cτtr(K) = max{volτM(conv(K ∪ (x+K))) : (x+K) ∩K 6= ∅, x ∈ Rn}.

Note that the quantities in Definition 1 do not change under affine transformations.
Our aim is to characterize the extremal values of these quantities in the planar case. To
formulate our main result we need to define the following plane convex body.

Consider the square S0 with vertices
(
± 1√

2
,± 1√

2

)
in a Cartesian coordinate system.

Replace the two horizontal edges of S0 by the corresponding arcs of the ellipse with
equation

x2

a2
+
y2

b2
= 1,

where a = 1.61803 . . ., and b = a√
2a2−1 . Note that the vertices of S0 are points of this

ellipse. Replace the vertical edges of S0 by rotated copies of these elliptic arcs by π
2
.

We denote the plane convex body, obtained in this way and bounded by four congruent
elliptic arcs, by M0. We remark that the value of a is obtained as a root of a transcendent
equation, and has the property that the value of λ(M◦

0 ) (λ(M0) + 4) is maximal for all
possible values of a > 1.

Our main result is the following.

Theorem 2. Let K ∈ K2. Then
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2.1. we have 2π ≤ cBustr (K) ≤ 3π, with equality on the left if, and only if K is a triangle,
and on the right if, and only if K is a parallelogram.

2.2. We have 18
π
≤ cHTtr (K) ≤ 7.81111 . . ., with equality on the left if , and only if K is

a triangle, and on the right if K is an affine image of M0.
2.3. We have 6 ≤ cmtr(K) ≤ π + 4, with equality on the left if, and only if K is a

(possibly degenerate) convex quadrilateral, and on the right if, and only if K is an
ellipse.

2.4. We have 6 ≤ cm
∗

tr (K) ≤ 12, with equality on the left if, and only if K is a triangle,
and on the right if, and only if K is a parallelogram.

It is a natural question to ask for the extremal values of these four quantities over the
family of centrally symmetric plane convex bodies. This question is answered in the next
theorem.

Theorem 3. Let M ∈ K2 be o-symmetric. Then

2.1. we have π + 4 ≤ cBustr (M) ≤ 3, with equality on the left if, and only if M is an
ellipse, and on the right if, and only if M is a parallelogram.

2.2. We have 21
π
≤ cHTtr (M) ≤ 7.81111 . . ., with equality on the left if, and only if M is

an affine-regular hexagon, and on the right if M is an affine image of M0.
2.3. We have 6 ≤ cmtr(M) ≤ π + 4, with equality on the left if, and only if M is a

parallelogram, and on the right if, and only if M is an ellipse.
2.4. We have 7 ≤ cm

∗
tr (M) ≤ 12, with equality on the left if, and only if M is an

affine-regular hexagon, and on the right if, and only if M is a parallelogram.

The proof of Theorem 3 is a straightforward modification of the proof of Theorem 2,
and thus, we omit it.

In Section 2, we prove the left-hand side inequality about Holmes-Thompson area.
In Section 3 we deal with the right-hand side inequality regarding it. In Section 4 we
examine Busemann area, Gromov’s mass and its dual. Finally, in Section 5, we collect
our remarks, and propose some open questions.

2. The proof of the left-hand side inequality in 2.2

Let K ∈ K2 and M = 1
2
(K −K). From (2) and (3), one can deduce that

(4) cHTtr (K) =
λ(M◦)

π

(
λ(K) + max{dK(u)wK(u⊥) : u ∈ S1}

)
,

where dK(u) is the length of a longest chord of K in the direction of u, and wK(u⊥) is the
width of K in the direction perpendicular to u (cf. also the proof of Theorem 1 in [9]).

Observe that for any direction u, we have dK(u) = dM(u) and wK(u) = wM(u), which
yields that minimizing cBustr (K), over the class of convex disks with a given central symme-
tral, is equivalent to minimizing λ(K) within this class. For the special case that M is a
Euclidean unit ball, this problem is solved by a theorem of Blaschke [3] and Lebesgue [13],
which states that the smallest area convex disks of constant width two are the Reuleaux
triangles of width two. This result was generalized by Chakerian [6] for normed planes in
the following way.

Let M ⊂ K2 be an o-symmetric convex disk. Then, for every x ∈ bdM , there is an
affine-regular hexagon, inscribed in M , with x as a vertex. Let y be a consecutive vertex
of this hexagon. By joining the points o, x and y with the corresponding arcs in bdM
we obtain a ‘triangle’ T with three arcs from bdM as its ‘sides’ (cf. Figure 1). These
‘triangles’, and their homothetic copies, are called the Reuleaux triangles in the norm of
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M . Chakerian proved that, given a normed plane M, the area of any convex disk K of
constant width two in the norm ofM is minimal for some Reuleaux triangle in the norm.
It is not too difficult to see, and was also proven by Chakerian, that the area of such
a triangle is equal to λ(K) = 2λ(M) − 4

3
λ(H), where H is a largest area affine-regular

hexagon inscribed in the unit disk M .

o x

y

o x

y

M

T

Figure 1. The construction of Reuleaux triangles in a normed plane

Now, assume that K ∈ K2 is a minimizer of cHTtr (K) over K2; by compactness argu-
ments, such a minimizer exists. Then, from Chakerian’s result, we obtain that K is a
Reuleaux triangle in its relative norm, and that its area is λ(K) = 2λ(M)− 4

3
λ(H), where

H is a largest area affine-regular hexagon inscribed in M . Now let P be a largest area
parallelogram inscribed in M . Then, by (4) and the equality

max{dK(u)wK(u⊥) : u ∈ S1} = 2λ(P ),

we have

(5) cHTtr (K) =
λ(M◦)

π

(
2λ(M)− 4

3
λ(H) + 2λ(P )

)
.

It is easy to see that if K is a triangle, then M is an affine-regular hexagon, and vice
versa, if M is an affine-regular hexagon, then the smallest area Reuleaux triangles in its
norm are (Euclidean) triangles. Thus, we only need to show that the quantity in (5) is
minimal if, and only if M = H. Observe that λ(H) ≤ λ(M), and hence, it suffices to
prove that

(6) f(M) =
λ(M◦)

(
2
3
λ(M) + 2λ(P )

)
π

is minimal if, and only if M is an affine-regular hexagon.

Now we show that if f(M) is minimal for M , then its norm is a Radon norm (cf. [15]
or [2]). Recall that a norm is Radon if, for some affine image C of its unit disk, the polar
C◦ is a rotated copy of C by π

2
; in this case the boundary of the unit disk is called a

Radon curve.

Since f(M) is an affine invariant quantity, we may assume that P is a square, with
vertices (±1, 0) and (0,±1) in a Cartesian coordinate system. Note that as P is a largest
area inscribed parallelogram, the lines x = ±1 and y = ±1 support M . Thus, the arc
of bdM in the first quadrant determines the corresponding part of bdM◦. On the other
hand, the maximality of the area of P yields that for any point p ∈ bdM , the two lines,
parallel to the segment [0, p] and at the distance 1

|p| from the origin, are either disjoint
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from M or support it. Thus, the rotated copy of M◦ by π
2

contains M , and the two bodies
coincide if, and only if bdM is a Radon curve.

Let Q1 and Q2 denote the parts of M in the first and the second quadrant, re-
spectively. We define Q◦1 and Q◦2 similarly for M◦. Then λ(Q◦2) = λ(Q1) + x1 and
λ(Q◦1) = λ(Q2) + x2 for some 0 ≤ x1, x2 ≤ 1

2
. Using this notation, we have f(M) =

1
π

(λ(M) + 2x1 + 2x2)
(
2
3
λ(M) + 4

)
. Let M1 denote the convex disk obtained by replac-

ing the part of bdM in the second and fourth quadrants by the rotated copy of the arc
of bdM◦ in the first quadrant (cf. Figure 2). Similarly, let M2 be the disk obtained by
replacing the part of bdM in the other two quadrants by the rotated copy of the arc of
bdM◦ in the second quadrant.

M

o

M

M
o

y

x

1

Figure 2. The extension of M to the unit disk of a Radon norm

By our previous observations, we have that M1 and M2 are unit disks of Radon norms,
and M ⊂ M1 and M ⊂ M2. On the other hand, the area of a largest area parallelogram
inscribed in M1 or M2 is equal to λ(P ) = 2. Now an elementary computation shows that

f(Mi) =
1

π
(λ(M) + 2xi+1)

(
2

3
(λ(M) + 2xi+1) + 4

)
for i = 1, 2,

which, since 0 ≤ x1, x2 ≤ 1
2
, yields that

2f(M)− f(M1)− f(M2) =
1

π

(
8x1 + 8x2 −

8

3
x21 −

8

3
x22

)
≥ 0,

with equality if, and only if x1 = x2 = 0. From this, it follows that f(M) ≥ min{f(M1), f(M2)},
with equality if, and only if x1 = x2 = 0 and M1 = M2 = M . This readily implies that if
f(M) is minimal for M , then M is the unit disk of a Radon norm.

In the following, we assume that the norm of M is Radon. Observe that, under our
assumption about P , we have λ(M) = λ(M◦), since M◦ is a rotated copy of M . On the
other hand, since the volume product λ(M)λ(M◦) of M (cf. e.g. [4]) does not change
under affine transformations, the definition of Radon norm implies that, in general,

λ(M◦) =
4λ(M)

(λ(P ))2
.
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Since volmM(M) = 2
λ(P )

λ(M) (cf. the definition in Section 1, or [1]), this yields that

f(M) =
4λ(M)

(πλ(P ))2

(
2

3
λ(M) + 2λ(P )

)
=

2

3π
(volmM(M))2 +

2

π
volmM(M).

Hence, we need to find the minimum of volmM(M) under the condition that M defines
a Radon norm. This problem was examined in [2], where the authors proved that for any
Radon norm with unit disk M , volmM(M) is at least 3, with equality if, and only if M is
an affine-regular hexagon. Thus, the left-hand side of 2.2 immediately follows.

3. The proof of the right-hand side inequality in 2.2

Assume that cHTtr (K) is maximal for some K ∈ K2 and let M = 1
2
(K −K). Note that

by the Brunn-Minkowski Inequality, we have λ(K) ≤ λ(M), with equality if, and only if
K is centrally symmetric. Thus, (4) implies that K is centrally symmetric and, without
loss of generality, we may assume that K = M .

Let P be a largest area parallelogram inscribed in M . Since cHTtr (M) is affine invariant,
we may assume that P is the square with vertices (±1, 0) and (0,±1) in a Cartesian
coordinate system. Then the lines x = ±1 and y = ±1 support M . Let σ be a Steiner
symmetrization with a symmetry axis of P as its axis, and let M∗ = σ(M). Then, clearly,
λ(M∗) = λ(M). Observe that P is inscribed in M∗ as well, which yields that if P ∗ is
a maximal area parallelogram inscribed in M∗, then λ(P ∗) ≥ λ(P ). For the Euclidean
version of the problem, we have

(7) ctr(M) = 1 +
2λ(P )

λ(M)
.

Then, Theorem 1 of [17] yields that ctr(M) does not increase under Steiner symmetriza-
tion, which implies that λ(P ∗) ≤ λ(P ). Thus, we have λ(P ∗) = λ(P ).

Now we apply a result of Meyer and Pajor [16] about the Blascke-Santaló Inequality,
who proved that volume product does not decrease under Steiner symmetrizations, which
yields that λ((M∗)◦) ≥ λ(M◦). Thus, since M maximizes cHTtr (M), (4) implies that
λ((M∗)◦) = λ(M◦). Unfortunately, no geometric condition is known that characterizes
the equality case for Steiner symmetrization. Nevertheless, we may apply another method,
used by Saint-Raymond in [18], which he used to characterize the equality case of the
Blaschke-Santaló Inequality. This method, described also in [19], is as follows.

Let C be an o-symmetric convex body in Rn, and let H be the hyperplane with the
equation xn = 0. For any t ∈ R, let Ct be the section of C with the hyperplane {xn = t}.
Define C̄ as the union of the (n− 1)-dimensional convex bodies ten + 1

2
(Ct − Ct), where

en is the nth coordinate unit vector. Then we have the following (cf. Lemma 5.3.1 and
the proof of Theorem 5.3.2 of [19]).

• C̄ is an o-symmetric convex body.
• λn(C̄) ≥ λn(C), with equality if, and only if every t-section Ct has a centre of

symmetry.
• λn(C̄◦) ≥ λn(C◦).
• If λn(C̄◦)λn(C̄) = λn(C◦)λn(C), then the centres of symmetry of the sets Ct lie

on a straight line segment.

We note that this symmetrization procedure in the plane coincides with the Steiner
symmetrization with respect to the second coordinate axis.
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Let L be the axis of σ. Then, since in our case λ(M∗) = λ(M) and λ((M∗)◦) = λ(M◦),
it follows from the theorem of Saint-Raymond that the midpoints of the chords of M ,
perpendicular to L, lie on a straight line segment. On the other hand, as σ(P ) = P , we
have that this segment is contained in L. Thus, M is symmetric to L. Since L was an
arbitrary symmetry axis of P , we obtain that the symmetry group of M contains that of
P , and, in particular, M has a 4-fold rotational symmetry.

Observe that in this case M ⊆ B2. Indeed, if for some p ∈M we have |p| > 1, then, by
the 4-fold rotational symmetry of M , it follows that M contains a square of area greater
than λ(P ) = 2, which contradicts our assumption that P is a largest area parallelogram
inscribed in M . Since it is easy to check that cHTtr (M) is not maximal if M = B2, this
implies, in particular, that λ(M) < π. Note that in our case the area of the part of M in
each quadrant is equal.

In the next step, we use the following Proposition from [5].

Proposition 1 (Böröczky, Jr., Makai, Jr.). Let Q = conv{o, a, c, b} be a convex deltoid
symmetric about the line containing the diagonal [o, c]. Assume that a, b ∈ S1 and that
the lines containing [a, c] and [b, c] support B2. Let C be any o-symmetric plane convex
body such that a, b ∈ bdC and the lines containing [a, c] and [b, c] support C, and set
K = C ∩ Q and K◦ = C◦ ∩ Q. Let λ(K) = α ≤ λ(Q ∩ B2) be fixed. Then λ(K◦) is
maximal, e.g., if C is an o-symmetric ellipse E satisfying λ(E ∩Q) = α.

Applying this theorem for the part of M , say, in the first quadrant, we have that, under
our assumption about P , M is a convex body bounded by four congruent elliptic arcs,
having centres at o. Then it is a matter of computation to verify that f(M) is maximal
for a rotated copy of the body M0 described in the introduction.

4. The proofs of 2.1, 2.3 and 2.4

First, we prove 2.1. Observe that for any K ∈ K2,

cBustr (K) =
π

λ(M)
(λ(K) + 2λ(P )) ,

where M = 1
2
(K − K), and P is a largest area parallelogram inscribed in M . By the

result of Chakerian [6] described in Section 2, we have that if K minimizes cBustr (K) over
K2, then K is a minimal area Reuleaux triangle in the norm of M , and its area is

(8) λ(K) = 2λ(M)− 4

3
λ(H),

where H is a largest area affine-regular hexagon inscribed in M . Thus, we may assume,
without loss of generality, that

(9) cBustr (K) =
π

λ(M)

(
2λ(M) + 2λ(P )− 4

3
λ(H)

)
.

Note that in this case K is a (Euclidean) triangle if, and only if M = H.

From (9), it readily follows that

cBustr (K) = 2π + 2π
3λ(P )− 2λ(H)

3λ(M)
.

Observe that H contains a parallelogram of area λ(P̄ ) = 2
3
λ(H). Since H ⊆M , this yields

that λ(P ) ≥ 2
3
λ(H), with equality if, and only if M = H. This means that cBustr (K) ≥ 2π,

with equality if, and only if M = H, which proves the left-hand side inequality about
Busemann area.
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Now we prove the right-hand side inequality. The formula in (8) and the Brunn-
Minkowski Inequality shows, like in Section 3, that if cBustr (K) is maximal over K2, then
K is centrally symmetric. Thus we may apply Theorem 3 of [17] about the maximum of
ctr(K), which yields the assertion.

Next, we prove 2.3. Let P be a largest area parallelogram inscribed in M = 1
2
(K−K).

Then we have

(10) cmtr(K) =
2 (λ(K) + 2λ(P ))

λ(P )
= 4 +

2λ(K)

λ(P )
.

Observe that for any K ∈ K2, we have

ctr(K) =
λ(K) + 2λ(P )

λ(K)
= 1 +

2λ(P )

λ(K)
.

By Theorem 3 of [17], the latter expression is maximal if, and only if K is a convex
quadrilateral, and by Theorem 1 of [9], it is minimal if, and only if, K is an ellipse. Thus
the assertion readily follows.

Our next case is the left-hand side inequality of 2.4. Observe that

(11) cm
∗

tr (K) =
4 (λ(K) + 2λ(P ))

λ(P ′)
,

where P is a largest area inscribed, and P ′ is a smallest area circumscribed parallelogram
in M = 1

2
(K −K).

As in the previous sections, if cm
∗

tr (K) is minimal for some K ∈ K2, then, by [6], we
may assume that K is a Reuleaux triangle in its relative norm, and its area is λ(K) =
2λ(M)− 4

3
λ(H), where H is a largest area affine-regular hexagon inscribed in M . Thus,

λ(M) ≥ λ(H) implies that

(12) cm
∗

tr (K) ≥ 8 (λ(M) + 3λ(P ))

3λ(P ′)
.

On the other hand, we clearly have λ(P ) ≥ 1
2
λ(P ′), where we have equality, for example,

if M is an affine-regular hexagon. Furthermore, Corollary 5.1 of [2] states that Gromov’s
mass* of any o-symmetric convex disk is at least three, with equality if, and only if M
is an affine-regular hexagon. This implies that λ(M) ≥ 3

4
λ(P ′), and thus, we obtain

cm
∗

tr (K) ≥ 6. Here, we have equality if, and only if M is an affine-regular hexagon, which
immediately implies that K is a triangle.

Finally, we prove the right-hand side of 2.4. Similarly like in the previous sections,
we may assume that K = M . But then, clearly, λ(M) ≤ λ(P ′), λ(P ) ≤ λ(P ′) and (11)
yields that cm

∗
tr (K) ≤ 12. Since in both inequalities equality is possible only if M is a

parallelogram, the assertion follows.

5. Concluding remarks and open problems

Our first question is to find the plane convex bodies K for which the quantity cHTtr (K)
is maximal.

Problem 1. Prove or disprove such that if cHTtr (K) is maximal for some K ∈ K2, then
K is an affine image of the body M0 described in the Introduction.

Remark 1. For any K ∈ Kn and direction u ∈ Sn−1, let du(K) denote the length of a
maximal chord of K in the direction u, and let K|u⊥ be the orthogonal projection of K
onto the hyperplane, through o, that is perpendicular to u. Then the maximal volume of
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the convex hull of two intersecting translates of K (that is, the numerator in the definition
of ctr(K)), is

(13) λn(K) + max{du(K)λn−1(K|u⊥) : u ∈ Sn−1}.

This observation can also be found in the proof of Theorem 1 of [9]. Note that for any u ∈
Sn−1, the central symmetral of K|u⊥ is

(
1
2
(K −K)

)
|u⊥. Thus, by the Brunn-Minkowski

Inequality, the expression in (13) does not decrease under central symmetrization, with
equality if, and only if K is centrally symmetric. This yields that if cτtr(K) is maximal for
some K ∈ Kn for any τ ∈ {Bus,HT,m,m∗}, then K is centrally symmetric.

Remark 2. By Remark 1, to find the maximal value of cBustr (K), it suffices to find the
maximum of ctr(K) over the family of n-dimensional centrally symmetric convex bodies.
Thus, from Theorem 3 of [17] it follows that

cBustr (K) ≤ n+ 1,

with equality if, and only if K is a centrally symmetric pseudo-double-pyramid in the
sense of [17]. Similarly, by [17] and [9], over the family of n-dimensional o-symmetric
convex bodies, we have

cBustr (K) ≥ 1 +
2vn−1
vn

,

with equality if, and only if K is an ellipsoid.

Problem 2. For n ≥ 3 and τ ∈ {HT,m,m∗}, find the maximal values of cτtr(K) over
Kn.

Problem 3. For n ≥ 3 and τ ∈ {Bus,HT,m,m∗}, find the minimal values of cτtr(K)
over Kn.

When finding the minimal value of cBustr (K) over K ∈ K2, we had to examine the
smallest area convex disks of constant width two in a fixed normed plane. Nevertheless,
in R3, even for the Euclidean norm, this question has been open for a long while (cf. [10]).

Other problems arise if, instead of two translates of a convex body, we consider other
families related to the body. This was done also by Rogers and Shephard, who, among
other objects, studied the extrema of the volumes of differences bodies or reflection bodies.
We remark that a more general treatment of this type of questions can be found in [9]
(cf. also [7] or [8]).

Our problem applied to the case of difference bodies has already appeared in the
literature in a different setting. The Busemann volume of the difference body of K is 2n

for any K ∈ Kn. For Holmes-Thompson volume, its value is a constant multiple of the
volume product of the central symmetral of K, and thus, its maximum is attained for
ellipsoids, and the problem of finding its minimum leads to the famous Mahler Conjecture.
For Gromov’s mass, we have

4n

n!
≤ volmM(K −K) ≤ 2nvn

for every K ∈ Kn (cf. [1]), and these inequalities are sharp. For Gromov’s mass*, we have

volm∗M (K −K) ≤ 4n

and finding its minimum is also connected to the Mahler Conjecture (cf. [1]).

Another possibility is to examine the reflection bodies of K, which are defined as the
convex hull of K with one of its reflections about some point x ∈ K.
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Definition 2. Let K ∈ Kn and M = 1
2
(K −K). For τ ∈ {Bus,HT,m,m∗}, set

(14) cτp(K) = max{volτM(conv(K ∪ 2x−K)) : x ∈ K}.

Problem 4. For n ≥ 2 and τ ∈ {Bus,HT,m,m∗}, find the minimal and the maximal
values of cτp(K) over Kn.
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