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Abstract

Recursions for moments of multi-type continuous state and continuous time branching
process with immigration are derived. It turns out that the k-th (mixed) moments and
the k-th (mixed) central moments are polynomials of the initial value of the process, and
their degree are at most k and [k/2], respectively.

1 Introduction

Moment formulas and estimations play an important role in the theory of stochastic processes,
since they are useful in proving limit theorems for processes and for functionals of processes
as well. Branching processes form a distinguished class, since they are frequently used for
modelling real data sets describing dynamic behaviour of populations, phenomenas in epidemi-
ology, cell kinetics and genetics, so moment estimation for them is of great importance as well.
The main purpose of the present paper is to derive recursions for moments of a multi-type
continuous state and continuous time branching process with immigration (CBI process) using
the identification of such a process as a pathwise unique strong solution of certain stochastic
differential equation with jumps, see (2.12)).
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For a special Dawson—Watanabe superprocess (without immigration) with a special branch-
ing mechanism a recursion for the moments has been provided by Dynkin [9] and Konno and
Shiga [19] Lemma 2.1], see also Li [20, Example 2.8]. Further, Dynkin [10, Chapter 5, Theo-
rems 1.1 and 1.2] gave recursive moment formulae for Dawson—Watanabe superprocesses. We
emphasize that our technique for deriving recursions for moments is completely different from
that of Dynkin [10]. Li [20, Propositions 2.27 and 2.38] derived formulas for the first and second
moments for such processes. For the class of regular immigration superprocesses, which con-
tains multitype CBI processes, Li [20, Propositions 9.11 and 9.14] derived first and second order
moment formulas using an explicit form for the Laplace transform of the transition semigroup
of the processes in question.

In Filipovi¢ et al. [I2 formula (4.4)], one can find a formal representation of polynomial
moments of affine processes, which include multitype CBI processes as well. The idea behind
this formal representation is that the infinitesimal generator of an affine process formally maps
the finite-dimensional linear space of all polynomials of degree less than or equal to k into
itself, where k € N, which suggests that the k-th moment of an affine process is a polynomial
of the initial value of degree at most k. Very recently, Filipovi¢ and Larsson [I1], Lemma 4.12
and Theorem 4.13] provided moment formulas and moment estimations for so-called polynomial
preserving diffusion processes.

Yamazato [26] considered time continuous Markov chains on the state space of non-negative
integers having the so-called branching property and allowing random immigration whenever
the population size is zero (as a special state-dependent immigration). He investigated under
which conditions the process in question has finite first and second moments, see [26, Theorem
3], and in the so-called critical case he also pointed out that the first moment is a first order
polynomial of the initial value of the process, while the second moment is a second order
polynomial, see [26, Theorem 5].

Dareiotis et al. [6, Lemma 2] derived some moment bounds for the pathwise unique strong
solution of a stochastic differential equation (SDE) with jumps having coefficients satisfying
some local Lipschitz condition. We emphasize that the coefficients of the SDE of a multi-type
CBI process given in (2I2)) do not satisfy the locally Lipschitz condition A-5 in Dareiotis et
al. [6], so their result can not be applied to a multi-type CBI process. However, our technique
is somewhat similar to theirs in the sense that they also use Ito’s formula and Gronwall’s
inequality.

For some moment estimates for Lévy processes, see Luschgy and Pages [21]; for nonlocal
SDEs with time-varying delay, see Hu and Huang [17]; for linear SDEs driven by analytic
fractional Brownian motion, see Unterberger [25]; for unstable INteger-valued AutoRegressive
models of order 2 (INAR(2)), see Barczy et al. [I, Appendix AJ; for a super-Brownian motion
in one dimension with constant branching rate, see Perkins [23, Lemma II1.4.6]; for discrete
time multi-type branching random walks, see Giin et al. [14], [15], where the main input comes
from the many-to-few lemma due to Harris and Roberts [16, Lemma 3|. Déring and Roberts [7,
Lemma 3| provided a recursion for moments for a spatial version of a Galton—Watson process for



which a system of branching particles moves in space and particles branch only in the presence
of a catalyst.

The paper is organized as follows. In Section 2] for completeness and better readability, we
recall from Barczy et al. [4] some notions and statements for multi-type CBI processes such
as the form of their infinitesimal generator, their branching and immigration mechanisms, and
their representation as pathwise unique strong solutions of certain SDEs with jumps, see The-
orem 20 In Section Bl we consider an appropriately truncated version (B of the SDE ([212I)
of a multi-type CBI process, where we truncate the integrand of the integral with respect to a
(non-compensated) Poisson random measure. We show that, under some moment conditions,
this truncated SDE has a pathwise unique strong solution which is a multi-type CBI process
with explicitly given parameters, especially, the jump measures of the branching and immigra-
tion mechanisms are truncated, see Theorem B.Jl Then we prove a comparison theorem with
respect to the truncation mentioned above, see Theorem [3.2] and, as a consequence, we show
that the truncated CBI process at a time point ¢ converges in L' and almost surely to the
non-truncated CBI process at the time point t as the level of truncation tends to oo, see
Theorem 3.3 Section@lis devoted to deriving recursion formulas for moments. First, we rewrite
the SDE (212) of a multi-type CBI process in a form which is more suitable for calculating
moments. Namely, we eliminate integrals with respect to non-compensated Poisson random
measures, and then we perform a linear transformation in order to remove randomness from
the drift, see Theorem Il In view of Theorem B.3], for the proof of the recursion formula (F.3])
in Theorem 3] it is enough to prove a recursion formula for moments of a truncated CBI
process. After applying It0’s formula for powers of a truncated CBI process, we would like to
take expectations, so we have to check martingale property of some stochastic integrals with
respect to certain compensated Poisson random measures. In order to do this, by induction
with respect to k, we prove certain estimates for the k-th moments of a truncated CBI pro-
cess, see (L7) and (L8). Truncations of the jump measures of the branching and immigration
mechanisms are needed to avoid integrability troubles when showing martingale property of the
stopped processes (LI1)). It turns out that the k-th (mixed) moments and the k-th (mixed)
central moments are polynomials of the initial value of the process, and their degrees are at
most k and |k/2], respectively, see Theorems and L5 and Corollaries 4 and 71 An
explicit formula for the second central moment, i.e., for the variance of a CBI process is given
in Proposition 4.8

In a companion paper, Barczy and Pap [5] used the results of the present paper for studying
the asymptotic behavior of critical irreducible multi-type continuous state and continuous time
branching processes with immigration. Further, in Barczy et al. [2] moment estimations to-
gether with the results in [5] serve as a key tool for studying asymptotic behavior of conditional
least squares estimators of some parameters for 2-type doubly symmetric critical irreducible
CBI processes.



2 Multi-type CBI processes

Let Z,, N, R, R, and R,, denote the set of non-negative integers, positive integers, real
numbers, non-negative real numbers and positive real numbers, respectively. For z,y € R,
we will use the notations = Ay := min{z,y} and 2% := max{0,z}. By ||z| and |[A],
we denote the Euclidean norm of a vector x € R? and the induced matrix norm of a matrix
A € R respectively. The natural basis in R? and the Borel o-algebras on R¢ and
on R? will be denoted by e, ..., €4, and by B(R?) and B(RZ), respectively. For
that z; <y; forall i€ {l,...,d}. By C?*R%,R) we denote the set of twice continuously
differentiable real-valued functions on ]Ri with compact support. Throughout this paper, we
make the conventions f; = f(a y and [ = f(a oy forany a,b€R with a <b.

a;; € Ry whenever 4,5 € {1,...,d} with i # j, i.e., if A has non-negative off-diagonal

entries. The set of essentially non-negative d X d matrices will be denoted by ]Rzl:)d.

2.2 Definition. A tuple (d,c,3,B,v,u) is called a set of admissible parameters if

.....

21) [{=innze 3 s | e <oo,

e dh\ {3}

2.3 Remark. Our Definition of the set of admissible parameters is a special case of
Definition 2.6 in Duffie et al. [8], which is suitable for all affine processes. Further, for all
ie{l,...,d}, the condition (2] is equivalent to

(2.2) / (1A 2)*+ Z (LA z)| pi(dz) < oo and / | 2]|Lgjz)=13 pi(dz) < o0,
Ua JE{L s\ (i} v

see Barczy et al. [4, Remark 2.3]. O



2.4 Theorem. Let (d,c,3,B,v,pu) be a set of admissible parameters in the sense of Defi-
nition [Z.4  Then there exists a unique conservative transition semigroup (Pp)ier, acting on
the Banach space (endowed with the supremum norm) of real-valued bounded Borel-measurable
functions on the state space RL such that its infinitesimal generator is

chxlf B+ Baf (@) + [ (fo+2)- (@) rldz)
(2.3)

+Zatz/ (+2) — f(z) — fl(2) (1A 2)) pi(dz)

for f € CHRL,R) and x € R, where f| and Vo1 € {1,...,d}, denote the first
and second order partial derivatives of f with respect to its i-th variable, respectively, and
fl(x) == (fi(x),..., fi(x))". Moreover, the Laplace transform of the transition semigroup

(Py)ier, has a representation
/ oMV Pz, dy) = e @CEN R v@ENds g e R XN eRY teR,,
Rd

where, for any A € RL, the continuously differentiable function Ry 3 t — v(t,X) =
(v1(t, ), .., va(t, A)) T € RL is the unique locally bounded solution to the system of differential
equations

(2.4) it A) = —pi(v(t,N),  w(0,A) =N,  ie{l,....d}

with

QOZ(A) = CZ)\Z2 — <B€i, A> + / (e_<>"z> —1 + )\z(l N Z,)) u,(dz)
Uq

for XeRL and i€ {1,...,d},
Y(N) = (B, A>—/U (e —1)v(dz), AeRi.

Further, the function Ry x RT3 (t,X) = v(t, ) is continuous.

2.5 Remark. This theorem is a special case of Theorem 2.7 of Duffie et al. [§] with m = d,
n =0 and zero killing rate. O

2.6 Definition. A conservative Markov process with state space Ri and with transition
semigroup (P,)ier, given in Theorem s called a multi-type CBI process with parame-
ters (d,e,3,B,v,p). The function RL 3 X — (01(A),...,04(X)"T € R? s called its
branching mechanism, and the function RL > X — (X) € Ry s called its immigration
mechanism. The measures p;, i € {1,...,d}, and v are the jump measures of the branching
and immigration mechanisms, respectively.



Let (Xy)ier, be a multi-type CBI process with parameters (d,c,8, B,v, ) such that
E(||Xo||) < oo and the moment condition

(2.5) /U ||Z||]l{||z||;1} I/(dz) < 0
holds. Then, by Lemma 3.4 in Barczy et al. [4],
- t

(2.6) E(X,) =P E(X,) + / B3 du, te Ry,

0
where
(2.7) B = (biijetays  biji=Dbi; +/U (2 — 0ig) " pj(dz),
(2.8) B:=08+ / zv(dz),

Uq

with §;;:=1 if ¢ =7, and §,;:=0 if 7# j. We also introduce the modified parameters
D = (di,j>i,j€{1 ..... d} given by
(2.9) dij = bi; —/ zilgz =1y py(d2).
Uq
Note that B € Rzl:)d, Be R? and D € Rzl:)d, since
(2.10) |z]| v(dz) < oo, / (zi — 80i )" pyi(dz) < oo, 4,5 €{1,...,d},
Ud Ud
see Barczy et al. |4l Section 2].
Let R := U?:o R;, where R;, j€{0,1,...,d}, are disjoint sets given by
Ro:=Us x {(0,0)}9 c R% x (RY x R,)“,
and
R;={0} x Hj; x -~ x Hjg CRT x (RT xRy, je{l,...,d},
where
{deU1 if =3,
jii c= e .
{(0,0)} if i#j.
(Recall that U; =R,;.) Let m be the uniquely defined measure on V :=R% x (RL x Ry)?
such that m(V \ R) =0 and its restrictions on R;, j € {0,1,...,d}, are
(2.11) m|r,(dr) = v(dr), m|gr,;(dz,du) = p;(dz)du, j€{1,...,d},

where we identify R with U; and R, ..., Rq with Uz x U; in a natural way. Using
again this identification, let f:R*xV — R%, and ¢:R?*xV — R?, be defined by

2lgsenlivcsy, if €= (21,...,29)" €RY r=(z,u) €R,;, jE€{1,...,d},
F(.r) ::{ Ozl<13 Lusa,} (71 d) (z,u) €Ry, je{ }

0, otherwise,



r, if £€RY reR,,
g(m,fr) = Z]l{||z||>1}]l{u<mj}, if = (:L’l, R ,CEd)T c Rd, T = (z,u) < Rj, j c {1, R ,d},

0, otherwise.

Consider the disjoint decomposition R = Vo U Vj, where V= Uj:1 Rjo and Vi :=RyU
(U?Zl R;1) are disjoint decompositions with R := {0} x Hj1p X+ x Hjap, j € {1,...,d},
k€ {0,1}, and

 JUse x Uy if =7,  J{zeUi: |zl <1} if k=0,
P 10,00 £, (zeUs:|z| =1} if k=1

Ui =
Note that f(z,7)=0 if r €V, g(xz,7) =0 if r €V, hence e/ f(z,7)g9(x,r)e; =0 for
all (z,7) €eRIxV and i,j€{1,...,d}.

Consider the following objects:

(E1) a probability space (9, F,P);

(E2) a d-dimensional standard Brownian motion (W).er, ;

(E3) a stationary Poisson point process p on V' with characteristic measure m;
(E4)

E4) a random vector & with values in Ri, independent of W and p.

2.7 Remark. Note that if objects (E1)—(E4) are given, then & W and p are automatically
mutually independent according to Remark 3.4 in Barczy et al. [3]. For a short review on point
measures and point processes needed for this paper, see, e.g., Barczy et al. [3 Section 2|. O

Provided that the objects (E1)—(E4) are given, let (ff’w’p)te& denote the augmented
filtration generated by &, W and p, see Barczy et al. [3].

Let us consider the d-dimensional SDE

t d t
X, =X —l—/ B+DX,)ds+ ei/ QCiXs'"idWsﬂ-
¢ 0 0( ) ; i \/ ,

t t
o[ [ Rasan + [ ] X Ndsdn), ek
0 Vo 0 Vi

(2.12)

where X; = (X;1,...,Xsq)", D is defined in 1), N(ds,dr) is the counting measure of
p on Ry, xV, and N(ds,dr):= N(ds,dr) — dsm(dr).

2.8 Definition. Suppose that the objects (E1)-(E4) are given. An R%-valued strong solution
of the SDE [212)) on (Q, F,P) and with respect to the standard Brownian motion W, the
stationary Poisson point process p and initial value &, is an Ri-valued (ff’w’p)tEM-adapted
cadlag process (X)ier, such that P(Xo=§) =1,

o[ [ asman <o) =1 2 [ o | ¥(@san) < o) =1

7



for all t € Ry, and equation ZI2)) holds P-a.s.

Note that the integrals fot(ﬁ + DX,)ds and f(f /26X dW,,, i€ {1,...,d}, exist,
since X is cadlag. For the following result see Theorem 4.6 and Remark 3.2 in Barczy et al.

.

2.9 Theorem. Let (d,c,3,B,v,pu) be a set of admissible parameters such that the moment
condition ([2.H) holds. Suppose that objects (E1)—(E4) are given. If E(||€]|) < oo, then there
1S a pathwise unique Ri-valued strong solution to the SDE ([2Z12) with initial value &, and
the solution is a CBI process with parameters (d,c,3, B,v,u). Moreover, for each t € R,

e[ [P asman) <o, 5( A [ asm(an)) <o

3 Approximation of multi-type CBI processes

First we study an appropriately truncated version of the SDE [2.12).

3.1 Theorem. Let (d,c,B,B,v,u) be a set of admissible parameters such that the moment
condition 28 holds. Suppose that objects (E1)—(E4) are given. Let K € (1,00]. If E(]|&|) <
o0, then there is a pathwise unique Ri—valued strong solution to the SDE

t d t
X, =X,+ / (B+DX,)ds+> e / 2¢; X AW,
(3.1) " =

t B t
o[ rxen Rasan s [ ] geXe Vs, ter.,
0 Vo 0 i

with initial value €, where the function gr : R4 xV — R s defined by

’I"]l{||,n||<K}, if e Rd, r € Ry,
2lpqzj<rxyliuce;y, if ® = (21,...,24)" € RY,
g (T, 7r) = .
r= (z,u) € 7-\)'j,l; J€ {1a"->d};
0, otherwise,

and the solution is a CBI process with parameters (d,c,3,By,vk,uy), where By =

(brij)ije{t, .y, Vi and pg = (g1, ..., LKd) are given by
(32) bK,i,j = b@j - 52"]‘/ (Zi AN 1)1{||z||2K} Mj(dZ),
Uy

VK(d’r') = ]l{||r||<K} V(d’l’*), ,LLKJ-(dz) = ]l{||z||<K} ,ul-(dz).



Proof. In case of K = oo, the SDE (BI) coincides with the SDE ([Z12), since g, =
g, hence, by Theorem 2.9, the SDE @Il with K = oo admits a pathwise unique R%-
valued strong solution with initial value &, and the solution is a CBI process with parameters

(d7 c7ﬁ7B7 V’u)'
For each K € (1,00),

/ F(X,_,7) N(ds,dr) / Vof o, 7) Ng(ds, dr),

Vo
/ / gK s— T dS d'l" / / 5 , T NK(dS d’l")
V1 Vl

where Nk (ds,dr) is the counting measure of the stationary Poisson point process pg, where

(3.3)

pr denotes the thinning of p onto Vo U Ry x U (U;lleM,K) given by
Rox :={r €U |r| < K} x {(0,0)}* c R x (RL x R})“,
Rj,l,K = {O} X Hj,l,l,K X oo X Hj,d,l,K C Ri X (le_ X R+>d, j - {1, .. .,d},
where
- {zeU:1<||z|| <K} x Uy if i=j,
P 0,00y if i #

and N (ds,dr) := Ng(ds,dr) — dsmg(r), where my denotes the restriction of m onto
VWURp kU (U 1Rja K) Ro KU( (R 0UR;A K)) Note that the characteristic measure of
pr is my (this can be checked calculatlng the corresponding conditional Laplace transforms,
see Tkeda and Watanabe [18, page 44]). Moreover, mgly,(dr) = m|y,(dr), mg|r, . (dr) =
vi(dr) and

ME|R; 0,1 (A2, du) = mk|r,,(dz, du) + mglg,, . (dz,du)
= Lyz|<3tj(d2) du + Lz <xyp;(dz) du = pg j(dz) du for je{1,...,d}.

Consequently, the SDE (B3] can be rewritten as

t d t
X, =X,+ / (B+DX,)ds+> ei/ \/26: X5 AW,
0 i—1 0

t B t
o[ [ rxen Retasan + [ gXe ) Neasaan), tere
0 Vo 0 1%

Further, for each K € (1,00), vg and pj, satisfy parts (v) and (vi) of Definition 2.2]
respectively. Further, By € R?:)d, hence (d,c, B, Bk, vk, iy ) is a set of admissible param-
eters. By Theorem 20 the SDE (B4]) admits a pathwise unique Ri—valued strong solution
with initial value &, and the solution is a CBI process with parameters (d, ¢, 3, By, Vi, g ),

(3.4)



since, using (Z7) and (2.9]),

diij = brij +/U (zi — 0ij) " prc,;(dz) — /U ziL{jz>1y prc 5 (d2)
d d

=b;; — 52’,]'/ (2 A1) Lz =k 1(d2)
Uq
+/ (zi = 0i) " Lgyz)< k) Mj(dz)—/ zil 1<)zl < iy 1y (dz)
Uy Uy

=%+/U (20 —0i5)" Mj(dz)—/ Ziﬂ{nzum}ﬂj(dz)—/ (2i = 0ig) " Ly =xy 1y (d2)
d

Uy Uy
+/ Ziﬂ{uzn%}uj(dZ)—&,j/ (2i A D)L zpzmy 1 (dz)
Uy Uq

equals d;; forall 4,5 € {1,...,d}, since the sum of the last three terms is 0. Especially,

5[ [P asmtan) ) <. 5 [ [ i asmcan) < o

for all ¢t € R;. Using ([B.3]), we conclude

e [ [P asmtan ) <o (| t [t asmar)) < 0

Hence the SDE [@BI)) also admits a pathwise unique R%-valued strong solution with initial
value &, and the solution is a CBI process with parameters (d, ¢, 3, Bk, Vi, g )- O

Next we prove a comparison theorem for the SDE [B1]) in K.

3.2 Theorem. Let (d,c,3,B,v,u) be a set of admissible parameters such that the moment
condition [ZH) holds. Suppose that objects (E1)—(E3) are given. Let & and & be random
vectors with values in RL independent of W and p such that E(||€]]) < oo, E(||€]]) < oo
and P(6<¢&)=1. Let K,K'€ (1,00] with K <K'. Let (X;)ier, be a pathwise unique
RY -valued strong solution to the SDE [B1l) with initial value €. Let (X))er, be a pathwise
unique Ri-valued strong solution to the SDE [B.1)) with initial value & and with K replaced
by K'. Then P(X,< X forallteRy)=1.

Proof. We follow the ideas of the proof of Theorem 3.1 of Ma [22], which is an adaptation of
that of Theorem 5.5 of Fu and Li [13]. There is a sequence ¢ : R — R, k € N, of twice
continuously differentiable functions such that

(i) dp(2) T 27 as k— oo forall 2 €R;
(i) ¢,(2) €10,1] forall ze Ry and k€ N;

(ili) ¢,(2) = ¢or(z) =0 whenever —z € Ry and k € N;

10



(iv) ¢i(z —y)(vVo — y)? <2/k forall z,y e Ry and ke N.

For a construction of such functions, see, e.g., the proof of Theorem 3.1 of Ma [22]. Let
Y= Y1,...,Yia)" =X, — X, forall t€R,. By the SDE (B, we have

n,i:mﬁ/tejDstH/t\/Tci(m— \/)T) AW,

/ / — F(X'_ 7)) N(ds, dr)
Vo
T / / el (9x (X, 7) — grr(X_ 7)) N(ds, dr)
0 i
forall t€ R, and i€ {l,...,d}. Foreach m €N, put

Tm i= inf{t eR;: Enaxd} max{X;;, X;,} > }

.....

By 1to’s formula, we obtain
7
Ok (Yirrmi) = or(Youi) + Z i e (t)
=1
forall teR,, i€ {l,...,d} and k,m € N, where

tATm
]i,m,k,l(t) = / ¢2:(}/s7z) (e;rDYs> dS,
0
tATm
Ii,m,k, t ::/ ¢ sz 202( 8,0 X;Z) ERS)
2(t) i s VXsi =/
1 t/\‘l",n 2
[i,m,k,?)(t) = —/ ,/(}{g’i)2ci(\/XS7i — Xé Z) dS
2 /o F Vo

tATm,

Vet e (F(X o) = (XL 1) — ou(Vee )| N(ds. ),

f(Yomi el (f(Xomm) = F(X_i7) — on(Yimy)

IzmkS

st = [ o
[ L

— (Yo )e] (F(Xomm) = f(X 7)) |ds m(dr),

n®) = [ [ [on(Vis el (X ) = 010 (XL 1) = i )| N )

11



Using formula (3.8) in Chapter II in Ikeda and Watanabe [1§], the last integral can be written
as Limke(t) = Limp7(t) + Limrs(t), where

tina®) = [ [ [ou0ans €] X ) = g X)) = 60| N (s, ),

Tonas®) = [ [ [Vt € (oK) = oK) = 0o )| ds ),

since the function
(3.5)
Ry x V x Q3 (s,7,0) = op (Yo i(w) + €] (9x(X s (W), 1) = grr (X, _(w),7))) = du(Ver s(w))

belongs to the class Fll, for each ¢ € {1,...,d} defined on page 62 in Ikeda and Watanabe
[18]. Indeed, the predictability follows from part (iii) of Lemma A.1 in Barczy et al. [3], and

tATm
([
0 1%

tATm
< E( / e (gx (X e m) — g (XL 7)) dsm(dfr)),
0 Vi

O (Yomii + €/ (9(X oy m) — g (X _,7)) — 0n(Yi-)

dsm(dr))

where we used that by properties (ii) and (iii) of the function ¢, we have ¢} (u) € [0,1] for
all v € R, and hence, by mean value theorem,

(3.6) —2<d(y—2) —du(y) KO< Gy +2) —dr(y) <2, yeR, zeR,, kel

We have eiT(gK(XS_,r) — gK/(X;_,’I“)) = ’l“i(]l{||,,a||<K} — ]l{||,,,||<Kr}) = _Ti]l{K<||r||<K/} fOI‘
r € Ry, and

el (gx(Xsm,r) = 90 (X2, 7)) = zi(Lagpzjey Lwsx, ) — Lpsge<rr Liusxt )

Zi if }{9_7]' > O, X; - <

=]

—z if }/;—,j <0, Xs_,j <

u
u
orif u< X, ; and K

(3.7)

<

<X/ . and 1< |z|| < K,
P-a.s.

<

0 otherwise,

for r=(z,u) € R;, je{l,...,d}. Consequently,

tATm
(1
0 1%
tATm
< E(/ / Ti]]-{K<||r||<K’} ds V(d'f‘))
0 Uq

d tATm
+Y E ( / / / zilixycuex. ylvee >0 laggz<ny ds py(dz) dU)
— 0 v, Jun

J

(bk (}/;—,i + e;r(gK(Xs—a T) - gK’(Xls—v T))) - Qﬁk(yi?—,Z)

dsm(dr))
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tATm
+ZE( / / / zilix, y<usx Ly <opliig)z)<ky ds p(dz) dU)
. 0 Uy J Uy

=1

tATm,
=1 0 Uy JU; :
tATm
=K (/ / il (k<) <Ky ds I/(d'r))
0 Ug

d

tATm,
+ Z E(/ / Zi]l{1<||z||<K}Y;_,j]l{ysi’j>0} ds Mj(dz))
0 Uy

J=1

<

]~

<
Il

d tATm

+ ZE(/ / Zi]]-{1<||2||<K}(_}/s—,j):ﬂ.{ysﬂj<0} ds uj(dz))
d tATm

- Z E(/ / zi]l{K<|lZ||<K’}X;_7j ds ,uj(dz))

d
< t/ 1712 g1y V(d"“)+2mt2/ 12| L2213 15(dz) < oo
Uq j=1 " Ua

by the moment condition (2.5) and (21).

As in the proof of Lemma 4.2 in Barczy et al. [4], we obtain that the processes (I p2(t))icr,

and  (I; m4(t))ier, are martingales. Moreover, the process (Iivmvkv7(t))teR+ is also a mar-

tingale by lkeda and Watanabe [I8 page 62], since the function (B.5) belongs to the class
F).
p

Using that the matrix D has non-negative off-diagonal entries and properties (ii) and (iii)
of the function ¢, we obtain

tATm
Limpa(t) = / ¢ (Ysi) (d“Y;z + Z di,jY;,j) Ig, (Ys:)ds
0 S ENG

tATm,
=/ ¢ (Ysi) <qu;§+ > di,jn,le(Ys,i))dS
0 JE{L,.... d}\{i}

tATm d tATm
< [T(aavie X as)as=al [ v
0 j=1 0

FE{Lmd)\ (i}

By property (iv) of the function ¢y,

13



As in the proof of Lemma 4.2 in Barczy et al. [4], by (2I0), we obtain

t tATm
Limks5(t) < E/ 27 z)<1y pi(dz) + Z / Y. dS/ 2 p(dz).
Uq Uq

jell,d\{i} V0

Using again (B.7) and integrating with respect to the variable w, we get I;,,xs(t) =
Sy Limkse(t), where

tATm,
zmkSl / ¢k s—i — T ) ¢k( s— z)}]]-{K<||'r||<K’}dSV(dr)
Uqg

tATm

2mk82 Z/ ¢k Y; 2+Zz) ¢k( z)} 5— j:ﬂ-{Yé J>O}:ﬂ-{l<||z||<K} ds,uj(dz)
tATm

Lim kg, 3 Z/ / - Zz') - ¢k(Ys—,i)] (_}/S—,j>]]'{Ys—,j<0}]]-{1<||2||<K} ds :U’j(dz)v

tATm,
[zmk84 / ¢k s—i T R ) ¢k( )} ; ]]]-{K<||z||<K’}dS:uJ(dz>
Uqg

By (2.1, fUd 2il{z=1y pj(dz) < oo forall 4,57 € {1,...,d}, thus applying (B.G), we obtain

Lim s,2(t i/tmm/[][m(ifs—,ﬁzz) oi(Ys )} sLo<izi<ry ds py(dz)

d tATm
< Z/O Yo dS/U Zil{jzz1y p15(d2).
d

By (BED, we obtain Ii,m,k,&l(t) < O, Ii,m,k,8,3(t) < 0 and [i,m,k,&zl(t) < 0.

Summarizing, we have

d tAT
m 2CZt t
Ok (Yinrn.i) < ox(You) + C; E / Y.hds+ T E/ 271z <1y ti(dz)
. 0 Uy

+ Limo(t) + Limpa(t) + Limpei(t)

for all t € R, where

Ci= max |d;|+  max /Zi'dZ“—/Zi]].z/ i(dz).
j€{l, s, d}| Jl je{ldN\{i} Jy, 1y (dz) v, (=151} 1i(dz)

The proof can be completed exactly as in the proof of Lemma 4.2 in Barczy et al. [4] using
Gronwall’s inequality. O

Next we give a useful approximation for a multi-type CBI process.
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3.3 Theorem. Let (d,c,3,B,v,pu) be a set of admissible parameters such that the moment
condition (2.5) holds. Suppose that objects (E1)—(E4) are given with E(||&]|) < oo.  Let
(Xt)ier, be a pathwise unique R%-valued strong solution to the SDE ([2I2) with initial value
€. Foreach K € (1,00), let (Xky)er, be a pathwise unique RZL-valued strong solution
to SDE B1) with initial value &. Then P(X g < Xgrp < Xy forallt e Ry) =1 for all
K, K'"e (1,00) with K < K'. Moreover, E(X; — Xg;) -0 and Xg; T X, P-as. as
K — oo forall teR,.

Proof. The first statement follows from Theorem B2l Further, by ([2I12) and B1l), for each
Ke(l,0), teRy, and i €{l,...,d}, we have

t t
Xii— Xppi= / e/ D(X,— Xg,)ds+ / \/2@-(\/)(57,. — \/XK,SJ)dW
0

(3.8) / /V O — f(X o, 7)) N(ds, dr)

//V — gx(Xics-,7)) N(ds, dr).

Here fo 2cz<\/X5, \/XK757Z') dWs,, t € R,, is a martingale, since

t 9 t t
E (/ 20,~<\/X8,i - \/XK,SJ) ds) < 4ci/ E(Xs; + Xk5:) ds < 86,’/ E(X;;)ds < 00
0 0 0

due to P(X g, < X, forallteRy)=1 and (Z0). The process

//VO — f(Xroym)) N(ds,dr),  tE€Ry,

is a martingale, since the mapping Ry xV xQ 3 (s,r,w) — f(X;_(w),7) — (X ks (w),7) €
R? is in the (multidimensional versions of the) class Ff, defined on page 62 in Ikeda and
Watanabe [I8]. The mapping Ry x V x Q3 (s,r,w) — ¢(X,_(w),7) — gx (X g s (w),7) € R?
is in the (multidimensional versions of the) class F), hence formula (3.8) in Chapter II in
Ikeda and Watanabe [I§] yields

</ /V — 9K (X ks ))N(ds,dr))
_E(/ /Vl 7) = g (X ks ))dsm(dfr))

Zt/ ril ez v(dr) +Z/ Xsj dS/ zilgz=ky i (dz)
d ¢
+Z/ E(XSJ—XKSJ) dS/ Zil{i<)z)<K) ,LLj(dZ),
j=1"0 Uq
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since eiT(g(Xs_,r) — gK(XK“;_,’I")) = 7’,'(1 — ]l{||'r||<K}) = 7’,']1{”74”21(} for r € RQ, and
e (9( X r) — g (X ks, ) = 2i(Lgzpony Luex._ ) — Lasgzj<my Lusxp. )

zi if Xgsj<u< X, ; and 1< |z] < K,
= orif u< X, ; and |z] > K, P-a.s.
0 otherwise,
for r=(z,u) eR;, je{l,....d} (dueto P(Xgs ; <X,_,;)=1).
Hence, by taking the expectations in (B.8)), we obtain

B(X, — Xicod) = [ €l DE(X. = X ds+Z / X [ e 02

d t
+ t/ Ti]l{”f,a”)[{} I/(d’l") + Z/ E(XSJ — XK,s,j) dS/ Zi]l{1<||z||<K} ,uj(dz).
Ua = Jo U

d

Thus
d

t d
> E(Xp — Xui) < a(t) +C / E(X,, — XKM-)) ds,
0 j=1

1=1

d

d d
a(t) :th/ rilgepery v(Ar) £ )
Jj=1

/IE S/ zilq)z)= k) 1y(d2),
0

i=1 i=1

d
C:= max (Idm|+/ Ziﬂ{nznm}ﬂj(dz))-
i=1 Ua

By Gronwall’s inequality and using that «g(t), t € R,, is monotone increasing for each
K € (1,00), we get

d ; ;
<D E(Xpi = Xigp) S axe(t) + C / ar(8)e%C) ds < a (t) + ax (H)C / 09 g,
i=1 0 0

hence E(X; — Xg¢) — 0 as K — oo for all t € Ry follows from ag(t) = 0 as
K — o (Whlch holds by dominated convergence theorem). Finally, a non-increasing sequence
of random variables converging to 0 in L; automatically converges to 0 almost surely, hence
Xg:+ T Xy P-as.as K — oo forall teRy. O

4 Recursions for moments of multi-type CBI processes

First we rewrite the SDE (2.12) in a form which does not contain integrals with respect to non-
compensated Poisson random measures, and then we perform a linear transformation in order
to remove randomness from the drift. This form will be very useful in calculating moments.
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4.1 Lemma. Let (d,c,3,B,v,u) be a set of admissible parameters such that the moment

condition ([2.H) holds. Suppose that objects (E1)—(E4) are given with E(||€]]) < oco. Let
(X¢)ier, be a pathwise unique RE-valued strong solution to the SDE ([2I2) with initial value
& Then

_ o d et
e_tBXt = X(] + / e_SBﬁ ds -+ Z/ e_SBek\/ 2Csz’k dWst
0 k=1 Y0

t ~ ~
—I—/ /e_SBh(XS_,r) N(ds,dr), teR,,
0o Jv

where the function h:R? xV — R? is defined by h:= f + g.

(4.1)

Proof. The SDE (2I2) can be written in the form

Xii = Xo; + / [ (B+ DX,) ds+/ V2¢; SZdWSZJr// N(ds, dr)

/ / Z,]l{u<X5 J}N ds d'l" / / Z,]l{u<Xé gt N(ds d'l")
]O

for t € Ry and i€ {1,...,d}. Using formula (3.8) in Chapter II in Ikeda and Watanabe
[18], for each j € {1,...,d},

t t
/ / Zi]].{ugxsij}N(dS,d'l“) :/ / Zi]]-{uéXs,j} N(dS,d’l")
0 JRju ’ 0 JRj1 ’
t
+/ / / 2ilgzizn Liusx, ;3 ds p(d2) du,
o Ju,Jun

t t
// / Zi1{||z||>1}1{u<xs,j}dsuj(dZ)du:/ Xs,de/ Zil{jzz1y 115(d2),
0 JUsJU 0 Ua

and consequently

t t
E (/ Xs,j dS/ Zi]l{||z||>1} ,uj(dz)) = / E(XSJ) dS/ Zi]l{||z||>1} ,uj(dz) < 00
0 Uq 0 Uqg

In a similar way,

t t t
// riN(ds,dr):// riN(ds,dr)—l—//mdsu(dr),
0 JRo 0 JRo 0 JUq
t
// ridsy(dr):t/ riv(dr) < oo
0 Uy Uqg

17

(4.2)

since

since



Consequently, by (2.8),

t d t
Xt:X(]‘i‘/ (ﬁ+BXS) dS"—Ze;r/ \/2CiXs,idWs,i
0 — 0

/ [ WX r) Kds.ar)

for ¢t € Ry, since, by (2.9,

(4.3)

d
e/ DX, + ZXSJ'/ zil{)jz>13 py(dz)

j=1 Ua

d d
= <dm’ +/ Zil{)jz)>1) Mj(dz)> Xoj= biyXy; = e/ BX,.
j=1 Ua j=1

The statement of the lemma follows by an application of the multidimensional It6’s formula
(see, e.g., Ikeda and Watanabe [I8, Chapter II, Theorem 5.1]). Indeed, for each i € {1,...,d},
el e tBX, = F,(t, X;) with the function F(t,z) := e, e Bz = Zj 1eZTe_t§ej:£j for t € R,
and = = (z1,...,24)" € RY. We have 9,F(t,x) = e] e "B(—B)x, O, Fi(t,x) = eletBe,,

0y, 05, Fi(t, ) =0, ik, 0 € {1,...,d}, hence

- t - .
TeBX, =e/ X, +/ e/ e *B(-B)X,ds
0
d t _ d t B o
+ Z / eiTe_SBek\/ QCkX&k dWs,k + Z/ eiTe_SBeke;(ﬁ + BXS) ds
k=170 k=170
t =~ = ~
+ / / [eiTe_SB (Xoo + W(X,,7)) — eiTe_SBXs_] N(ds, dr)
0o Jv

/ /{e e—sB (X +h(X,,7)) —e/e —Bx _ Z oBe el h(X,,7)|ds m(dr),

which yields the statement of the lemma (indeed, the integrand and hence the integral with
respect to the measure dsm(dr) is identically zero). O

4.2 Remark. We point out that in the proof of Lemma [Tl formally we have no right to
apply Theorem 5.1 in Ikeda and Watanabe [I8, Chapter II] for (43)), since the integrand of
the integral fot Jy (X 7) N(ds,dr) does not belong to the (multidimensional version of
the) space Ff;loc. Instead, we should apply 1to’s formula to (42]) (or equivalently to (Z12)).
However, after applying It6’s formula to (£2]), one could rewrite the obtained equation yielding
(@) under the moment condition (ZH]), as desired. We will use this observation in other proofs
as well later on. O
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4.3 Theorem. Let (X,)ier, be a CBI process with parameters (d,c,3,B,v,p) such that
E([[Xo|?) < o0

(44) / ||Z||q]l{||z||>1} y(dz) < 00, / ||Z||q]l{||z||>1} ,ui(dz) < 00, 1€ {1, e ,d}
Ud Ud
with some q € N. Then E(||X||?) < oo forall t € Ry, and we have the recursion

~ t _ _
B (XL)) = E [(e] P Xo)" ] + & /0 (e IPB)E |(e] P X )] ds

d t _
— 1) Z Ci/ (e;l'e(t—s)Bei)2E [(eTe(t s BXs)k—2Xs7i] ds
i=1

(4.5)

Z'?'

-2

’ ( )Z/ /U 2)" B[ (e] e P X)X, ;] ds pi(d2)

=0

w

-2

1 < )/ /Ud el et=9)B z)h= ZE[( T (t—s)EXS)z]dsy(dz)

4

Il
o

forall ke {l,...,q}, j€{1,...,d} and t € R.. Moreover, for each t € Ry, k€ {1,...,q}
and j€{l,...,d}, there exists a polynomial Q. ; :R? — R having degree at most k such
that

(4.6) E(XE) = E[Qu(Xo),  teR,.
The coefficients of the polynomial @y ; depend on d, c, B, B, v, pu, ..., 4.

Note that formula (L) with k=1 gives back formula (20l).

Proof of Theorem In the Introduction we gave a brief sketch of the present proof.
Consider objects (E1)-(E4) with initial value & =y = (y1,...,v2)" € RL. Let (Y)er,
be a pathwise unique R¢%-valued strong solution to the SDE (ZI2) with initial value y. By
Theorem2.9] Y is a CBI process with parameters (d, ¢, 3, B, v, p) having cadlag trajectories.
Then the finite dimensional distributions of X conditioned that Xy =1y and Y coincide.
Let K € (1,00), and let (Y g.)wcr, be a pathwise unique R%-valued strong solution to
SDE [B1) (or, equivalently, to SDE (B.4))) with initial value y. By Theorem BIl (Y x4)icr,
is a CBI process with parameters (d, ¢, 3, Bk, Vi, pbg). Truncation of measures v and p;,
i €{1,...,d}, will be needed to avoid integrability troubles when showing martingale property
of the stopped processes ([LIT]).

The aim of the following consideration is to show by induction with respect to k that for
each k€ Z, and K € (1,00) there exists a continuous function fx, : Ry — R, such
that

(4.7) E(IY xl) < fana(t), ¢ € Ry,

19



and for each k€ {0,1,...,¢q}, there exists a continuous function f;, : Ry — Ry such that

(48) swp E(IVical) < foglt),  tER,.
Ke(1,00)
For k=0, (A1) and (L)) are trivial. By Lemma 1]
~ t -
(49) ’l.UTe_tBKYK’t = 'wTy + / ’I.UTG_SBK,BK ds + ]K,w,l(t> + ']KAU,LO(T’> + JK,w,l,l(t>
0

forall teR,, weR? and K € (1,00), where
d . B
Ik wa(t) = Z/ (’wTe_SBKei)\/ 2¢;Yre s AW,
i=1 70

¢ = ~
JK,w,l,i(t) = / / ’LUTe_SBKh(YK78_, 'I") NK(dS, d’l"), Z - {0, 1},

with NK defined in the proof of Theorem [3.1] BK = (BKJ)Z-E{I
are given by

gK,i = ﬁl —|—/ T; VK(dT') = ﬁl —|—/ Ti]]-{||r||<K} I/(d’l") = El - / Ti]l{”""”?K} I/(d’l"),
Uy Uy Uq
and

brij = brcij + / (zi = 0ij) " pxj(dz)
Uq
= bij — 5@',;'/(] (2i A D)Lz =x3 p5(d2) +/U (2 = 0i3) "Lgjz)<y 1 (d2)
d d

me+/U (zi —0ij)" uj(dZ)—/U zil {2 =k} 1y (d2) ng'—/U zil{z)z 0y py(d2),

with by ; defined in (B:2), where we applied the identity (2 A1)+ (z—1)T =2 for z € R;.
By 1to’s formula, we obtain

(wTe_téKYKt)k = (W'Y + Igawr(t) + Txwro(t) + T wpa(t)

t ~ ~  ~
+ k/ ('wTe_SBKYK,S)k_l(’wTe_SBKﬁK) ds
0

1 t ~ d B
(4.10) +k(k—1) / (w e PRy )72y (w e PRe) 26, Y o ds

//{ —SBK (Y ks + MY ks, ))>k—(’wTe_SEKYK,S)’“

— k(w e Bry k! (wTe_SE’Kh(YKS, r))} ds mg (dr)
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forall k€N with £>2, teR,, weR? and K € (1,00), where
d + _ _
I wi(t) == kZ/ (we™BrY i Yt w e *Bre;)\/2¢;Yi s AW,
i=1 70

k ~ ~
JK,'w,k i / / |: _SBK YK s— T h(YKs ) ))) - (wTe_SBKYK,S—)k NK(dSa d’l")
k—1

t B B ~
- Z (l«;) / / (w e™PxY g ) (w e FPER(Y ko, r))k_e Ng (ds, dr)
=0 0 i

for i € {0,1}. Foreach n € N, consider the stopping time 7x,, :=inf{t € Ry : [|[Y x| > n}.
Clearly, 7x, 2% 00 as n — 0o, since (Y k)ier, has cadlag trajectories. The stopped
processes

(411) ([K,'w,k(t A TKv"))teR+ and (JK,'w,k,i(t A\ TKv"))t€R+ 5 Z - {0, 1},

are martingales for all k,n € N, K € (1,00) and w € R% Indeed,
tATK n _ _
E (/ (w e *BrY i )2 (w' e *Bre;) Vi, 4 ds) < 2w || P te(t)?F < oo,
0
since for all t € Ry and s € [0,¢], we have

||e_8§K|| < eS”EK” < eXp{t sup ||§K||} = C(t) < o0,
Ke(1,00)

because, for all i,7 € {1,...,d}, by monotone convergence theorem,

bicij = bi, —/ Zilgesry y(d2) by as K — oo,

Uy

Moreover, for each ¢ € {0,1,...,k— 1},

tATK n
E(/ / (w’
0 Vo

d tATK n
<Huﬂ%dﬂ%§:E(/‘ l/ HYk&w%uW%4mmﬂdﬁwngﬁdwwﬁwadg)
]:1 0 Ud U1

_ _ 2
e PRY ) (w e PE(Y koo, r))k_z‘ dsmy (d'r))

nww%ch”“23/|un O g1 o1y p1y(d2) <
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('wTe_SEKYK,S_)Z (wTe_SEKh(YK,S_, 'r))k_é‘ ds mK(dfr))

and
tATK n
()
0 i

tATK n
< ||w||'fc<t>kE( v impas VK(dr))
0 Uy
d

tATK n
+||w||kc<t>kZE(/o I/ ||YK,5_||f||z||’f—fﬂ{”z||>1}n{u<yK,S,j}dsux,xdz)du)
d 1

j=1
d
< [wl|*te(t) n’ (/U 7" Ly <y v(dr) +”Z ; 121" L rcyz <y ,uj(dz)) < 00,
d j=17Uda

hence, by Ikeda and Watanabe [I8, Chapter II, Proposition 2.2 and page 62|, the processes in
(I are martingales for all k,n € N, K € (1,00) and w € R% Here we used that for all
keN and ¢€{0,1,...,k—1},

(4.12) /U ||’I“||k_z]l{||r||<K} l/(dT) < /U ||’I"||]l{||,a||<1} I/(d’l") + Kk_g/U ]1{1<||'r||<K} I/(d’l") < o0
d d d

due to part (v) of Definition [2.2]

1225 DL gy pi(dz) < / 1212L gy p(d2)
d

</ <zf+
Uqg

Uq
(4.13)

> Zj) Lijzy<y pi(dz) < o0
JE(L A\ (i}

due to part (vi) of Definition 2.2, and

g |12[1" Loz <xy pi(dz) < K*° /U L{i<)jzi< ey pi(d2)
(4.14) ‘ ‘

< KM / 1219 ey ps(dz) < 0o
d

due to assumption ().

By replacing ¢t by t A7k, in ([L9) and (£I0), and then taking expectations on both sides
of these equations, we conclude

_ tATK n -
E [wTe_(tATK’")BKYKMTK’” —w'y+E (/ w'e*Bxg,. ds)
0
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and

E (wTe_(MTK’”)E’KYKvt/\TK’” )k]

tATK n -~ -
= (w'y)f +kE (/ (w'e™Bx g, ) (w' e Bry )it ds)
0

d tATK n . ~
kE—1) Z cE (/0 ('wTe_SBKei)2('wTe_SBKYK,S)]‘C_2 Yk s ds)
i=1

k—2
k’ tATK n —5~ _8~ )
+ Z (f) E (/0 /V(wTe Bry g o) (w e BEh(Y g5, 7)) dsmK(dfr))
=0

forall k,n € N with £ >2, K € (1,00) and w € R%. By Fatou’s lemma,

E [(wTe—tBKYK’t)k} —E [llm ('wTe (tATK,n) BKYKt/\TKn)k:|
n—o00

(4.15)
< liminf E [(wTe (t/\TKn)BKYKt/\TKn) ] < ||’w||k(||y||k +gK,k,y(t))

n— o0

with

N t d t
0y (t) = K| Bllc(t)” / B sl s+ k= el 3 / (Y kalF) ds

b

t
/ (¥l ds [ 2" vz

d t
+Z/ E(HYK,sH“l)dS/ Hﬂl’“‘%m(dz)]-
=1 o Uy

Here we used that 0 < BK <P foral K€ (1, 00),

r, if xRy, reRy,
e, r) = 2Ll{uce,}, if &= (21,...,20)" €RL, 7= (z,u) eR;, je{l,...,d},
0, otherwise,

and hence

tATK n
E ( [ ¥ el by i as w(dr))
0 1%

tATK n
_E ( / 1Y sl s w«(dr))
0 Uy

t/\TK,n
+D E (/ / 1Y kel 21T pusvie .y ds pae 5 (d2) du)
0 Uq /U

=1

.
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t d t
</0 E([|Y k[ ds g II’I“II’“_%<(<17“)JFZ/0 E(|Y ") ds ; 12015 g 5 (dz).
d j=1 d

If we suppose that (£7) holds for 0,1,...,k—1 with k£ € N and for some K € (1,00),
then g, is a continuous function on Ry. Note that, for each @« = (z1,...,24) € Ri and
k € N, we have

(4.16) |z||* < d*? max .
IS
For k > 2, this is a consequence of the power mean inequality, for k£ = 1, this is trivial.
Choosing w :=e¢;, i € {1,...,d}, by (AI6) and (IH), we have
E(le <Y gull*) < d?([yl" + grrn(®),  t€Ry, keN, Ke(1,00).
Consequently,

E[(Vicai)] = E [(€] Y )] = [(e] e/Bre Bry )"

< el Byl + grcny(t)) < A7) 1yl + gaesn (1)

for each i € {1,...,d}, and whence, again by (I,

E(IY rell*) < d% max | B [(Vier,)'] < ae@) Iyl + gmral®) = Frena (1)

where fr i, Ry — Ry is a continuous function, hence we obtain (A7) for k£ and K.

If we suppose that (L8] holds for 0,1,...,k—1 with k€ {1,..., ¢}, then the continuity of
the function ¢ and condition (4.4]) imply the existence of a continuous function gy, : Ry — Ry
such that

(4.17) SUD Gk ky(t) < gry(t), teR,.
Ke(1,00)

Namely, one can choose

Gy (1) = K[ Blle(t /fm s+ k(k — D /f

2

ey (4) [Z [ nateras [ el [ aras [ ||r||k—%<dr>] ,

/=

for t € Ry, and the continuity of g, is obvious, since

sup 12057 prey(dz) = [ =" p5(dz),  je{l,....d},
Ke(l,00) JUy Uy
(4.18)
sup I )* v (dr) = [ e l*Fv(dr).
Ke(l,00) JUy Uy
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We have gj,(t) < oo, since for all ke {l,...,q} and (€ {0,1,...,k—2},

(4.19) Il o) < [ el vdr) + [ g vidr) < oc
Uy Uy Uqg

due to part (v) of Definition 22l and assumption (4.4, fUd 2] L gz <1y ps(dz) < oo can be
derived as in ([£13), and

(4.20) |1 o s02) < [ 21 (d2) < o0
d d

due to assumption ([£4). Thus (L8) holds for %k with the continuous function fj,(t) =
df () (|lyll* + gry(t)), ¢t € Ri. Note that fi,(f) and gi,(t) are polynomials of |yl|
having degree k and k — 1, respectively.

Here we point out that (£8) may not hold for any k£ € N, but only for k€ {0,1,...,q}.
Indeed, the integrals in (4.18) are not necessarily finite, thus our constructions for f;, and
Jk,y do not necessarily work.

By Theorem 3.3l Y 1TY, as. as K — oco. Hence YI?,W T Ytkj a.s. as K — oo for
all je{l,...,d}, keN and t € Ry, which yields limg_. E(Y},;) =E(Y}) € [0,00] by
monotone convergence theorem. Using ([L.8) with k& = ¢, we obtain E(Y;) € [0,00), t € Ry,
Jj € A{l,...,d}, implying E(|]Y,[|?) < fy4(t) < oo for all t € Ry. By the tower rule for
conditional expectations (i.e., the law of iterated expectations), it suffices to show

(4.21) E(| X7 Xo) < fox,(t) P-as, teR,,

since f, x,(t) is a polynomial of || X| having degree ¢, where the conditional expectation
E(]| X:]|7] Xo) € [0,00] is meant in the generalized sense, see, e.g., Stroock [24, Theorem
5.1.6]. In order to show ([@ZI]), let ¢, : R, — R,, n € N, be simple functions such that
on(y) Ty as n — oo for all y € Ry. Then, by the monotone convergence theorem
for (generalized) conditional expectations, see, e.g., Stroock [24, Theorem 5.1.6], we obtain
E(o, (| X ||9) | Xo) T E(|| X4]|9| Xo) as n — oo P-almost surely. For each B € B(R?), we
have

B(15(X,)| Xo) = B(X, € B| Xo) = [ 1a(y) P(Xoudy) Pas.

d
RJr

hence  E(o, (|| X, [|9) | Xo) = [za on(llyll?) P(Xo,dy) P-almost surely. By the monotone
+

convergence theorem, fRi on(|ly||?) P(Xo,dy) T fRi lyll? P,(Xo,dy) as n — oo. By

E(IYell?) < fou(t) < o0, we get

E([| X1 X o) = /Rd lyl|? P.(Xo,dy) < f,x,(t) P-as.,
+

hence we conclude ([Z2T]).

The aim of the following discussion is to show that the processes
<IK7w7k<t>>te]R+ and (JKM,M(t))telR+ , 1€{0,1},
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are martingales for all K € (1,00), w € R? and k € N. These follow similarly to the earlier
discussion, since the estimates (4.1) yield

t _ _ t
E </ (w'e™BrY i )2 (w e Bre) Vi, ds) < ||'w||2kc(t)2k/ frok—14(s)ds < o0,
0 0

E ' }(wTe—sE’KYK’S_)é(wTe—sﬁK,r)k—Z‘ ds v (dr)
(L )

t
< Jwllfe(t)* / Frcaa(s)ds [ P~ Lgpicn vldr) < o0
d

t
B B 012
E( / /U /U [(w e BxY i ) (w e Br 2y, ) ]1{||z||<1}d8um(dZ)dU)
0 d 1

t
< [Jw|| () /O arsny®)ds | 0Ly ny(d2) <
d

t . -
E < / /U g [(w e *BY e ) (w e P 2 ey, 1) Lgays1y ds pixi(dz) dU)
d 1

t
<l [ Frena®)ds [T Lpcmpenn ns(d2) < oc
0 U,

for all ¢ € {0,1,...,k — 1}, where we used ([AI12), (AI3) and ([@I4). Thus, taking again
~T
expectations of ([EI0) and putting w = e'Pre;, j € {1,...,d}, we conclude

t ot ~ —~
= (Yllz,m) (eTetBK >k t k/o (eyTe(t_s)BKﬁK) E[(e;e“‘s)BKYK,s)k_l} ds

- 1) ch/ Telt=s BKeZ-)zE[(e;e(t_s)EKYKS)'C_QYKS,Z-] ds

(4.22)

Z'?'

-2

+ ( ) / / Telt= 5BKz)k_ZIE[(e;e(t_s)éf(YK,S)ZYKM-] ds pgi(dz)
i=1 Ua

=0

w

-2

. () / / Telt=9Br L) [(e]elt=9Bx Y . )] ds vy (d2)

4

Il
o

forall je{l,...,d}, te Ry and k€N with k> 2

Next we show (LH) with Xo =9y forall ke {1,...,q}, 7€ {1,...,d} and t € R,.
By monotone convergence theorem, B K — E and B K — B as K — oco. We will show
by the dominated convergence theorem that the integrals in (£22]) tends to those in (LX) as
K — oo. First, we check that the integrands converge pointwise. For all ¢t € R,, s € |0,1]
and j € {1,...,d}, we have

E [(eTe(t S)BKYK’S)Z:| S E [(e;e(t—s)ﬁYs)Z} —F [(e;e(t—s)ﬁxs)é]
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as K — oo forall £e€{l,...,k—1}, and

J

E [(e;’re(t_S)éKYK,S)ZYK,s,i] S E [(e;_re(t—s)éYS)éY's’i} . o) [(eTe(t_s)EXS)ZXSJ]

as K — oo forall ¢ e {l,...,k—2}. Indeed, E[(e;e(t_S)BKYK,S)Z] is a linear com-
bination of E(Yk i -+ Yksi), @1,...,00 € {1,...,d}. By Theorem B3 Yx; T Y.
a.s. as K — oo, hence Yggsi - Yisi, T Ysi - Ysi, as. as K — oo, which yields
g oo E(Yi s, - Yiesi,) = E(Ys, -
ing E(]|]Y||?) < oo, we have E(Yj
expectation E[(e}e(t_“)éff YK,S)ZYKM} can be handled in the same way (we only note that
E(Ysi, -+ Ysi,Ysi) < 00). Next we check that the integrands can be bounded by integrable
functions uniformly in K € (1,00). Applying (£10) and (AI7) with t =s and w = eté;ej,
and using that 0 < B < B, we obtain

0 [(e]e BB E [(e] B i) | < 1Bl Iyl + g1 ()
€(1,00

forall te Ry, s€[0,t] and j € {1,...,d}. The integrals in the first sum can be handled
in a similar way. Further,

--Y5;,) € 0,00] by monotone convergence theorem. Us-
--Y,,) < oo, and we can use again Byx — B. The

7i1 ’

sup ‘(e;—e(t—s)éxz)k—éE [(e;re(t_S)EKYK,S)ZYK,SJ} < Hsz—Zc(t)k(HyHZ—l—l ‘l'g&y(s))

Ke(1,00)
forall te Ry, s€(0,f], je{l,....d}, zeR%, £e€{0,1,....k—2} and ke {l,...,q},
where the function RZ 3 z — |2||** is integrable with respect to the measures p;, i €
{1,...,d}, by [(@I3) and (£20). The integrals in the third sum can be handled in a similar
way using (4I9). Hence we can apply dominated convergence theorem to obtain (5] with
Xy =1y. By the law of total expectation we obtain (LX) whenever E(||X,[|?) < oco.

Now we turn to prove (A@). Again by the law of total probability, it is enough to prove
(44) for Y. Using the recursion (AH) for Y, we obtain the existence of suitable polynomials
Qirj, t € Ry, ke {l,...,q}, j€{l,...,d}, by induction with respect to k. Indeed,
for k=1, we have E(Y;;) = ejTeSBy + fos ejTe”Bde, je{l,....,d}, t € R,. Now,
suppose that for some k € N with &+ 1 < ¢, suitable polynomials Q¢ 1, ..., Qui,; exist
forall t € Ry and j € {1,...,d}. We apply the recursion (LH) for &k + 1. Then the
function RY 3 y — (ejTe”g' y)**1 is a polynomial of degree at most k -+ 1. Moreover, for each
¢e{0,1,...,k} and s,t € Ry with s <t, the function

R: 5y = E[(e]e9BY,)]

is a polynomial of degree at most ¢ < k. Further, for each ¢ € {0,1,...,k—1} and s,t € R,
with s <t, the function -
R 5y E[(e] " 9PY )Y, ]

is a polynomial of degree at most ¢+ 1 < k. Consequently, by [@F), R% >y — E[(Y;;)""!]
is a polynomial of degree at most k+1, and we conclude the existence of suitable polynomials
Qiiy1; forall teRy and je {1,...,d}. O

For mixed moments, we have the following corollary.
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4.4 Corollary. Let (X,)ier, be a CBI process with parameters (d,c,B,B,v, ) such that
E(||X0||?) < oo and the moment conditions ([&4]) hold with some q € N. Then for all t € R,
ke{l,....q} and iy,...,i € {1,...,d}, there exists a polynomial Qiri, i : R? = R
having degree at most k such that

E(Xt,il e 'Xt,ik) - E(thuzk (Xo))-

The coefficients of the polynomial Qi iy, i depend on d, c, B, B, v, pi, ..., l4.

Proof. By the method of the proof of Theorem (formally replacing e; by w € R? in
([@5)), one can derive

E[(w, X))} =E [(wTetﬁXO) ] N k‘/ot(w olt—s B/@) [(,wTe(t—s)EeXS)k—l] ds

d t _
k— 1) Z ¢ / (wTe(t—s)Bei)2 E [(,w'l'e(t S)BXs)k_2Xs,i] ds
0

k—2 n _ _
+ (];) / / T (t_s)B'r)k_ZE[(wTe(t_s)BXs)q dsv(dr)
d

/=0

2

N < )Z// TetIB ) R (w eI X)X, ds pu(d2)

=

forall teR,, ke€{l,...,q} and w € R% Hence, by the proof of Theorem A3 for each
teRy, ke{l,...,qt and w € RY there exists a polynomial Q;x. : RY — R having
degree at most k such that

E [(’U), Xt>k:| = E[Qt,j,w(XO)] )

where the coefficients of the polynomial ;. dependson d,c, B, B, v, py, ..., [q.
For all ay,...,a; € R, we have
1 : ; O+, b b, 1k
al---ak—mg...g(—l) [(=1)%a; 4+ -+ (=1)%ay] .

Indeed, applying the multinomial theorem,

1 1
S S [ (1
5120 ék:O
: - k! . ,
— Z o Z(—l)zl‘l'"'-l-fk Z ﬁ((_l)zlal)]l L ((_1>£kak)]k — 5+ Sy,
b=0 " £4=0 Jittgn=k, IR
J1seees jkEZ+

28



where

1

Zk:(]
! k! . :
= Z N C I > (1)) - ((=1)%ag)’.
1=0  £,=0 gt =k, g1 gr= o JUT I

Clearly S, = 2*kla;---ap, and S, =0 because of cancellations. Hence

E (Xt,il e Xt,ik)

- ﬁ Z T Z(_l)éﬁm%k E [((_1)6161'1 toee Tt (—1)&“62‘“ Xt>k]

0=0  £,=0

1 1
1
= WZ---Z(—UZH FEE[Qu (16 ot (<1kes, (X0)] =1 E[Qupin,..in (Xo0)],
(=0 £,=0
which implies the statement. O

For central moments, we have the following recursion.

4.5 Theorem. Let (X,)ier, be a CBI process with parameters (d,c,3,B,v,p) such that
E(|| X]|7) < oo and the moment conditions [A4) hold with some q € N. Then

E [(Xi; — E(X:;))"]

k1 Zcz / (e] ~Be,) E[(e] V(X — E(X,))**X.]ds

429 +k:() //U (e] =B “E[( —>§(Xs_E(Xs)))ZXS,Z}dsm(dz)
(S0 g0 el on -

forall ke {l,...,q}, j€{1,...,d} and t € Ry. Moreover, for each t € Ry, k€ {1,...,q}
and j € {1,...,d}, there exists a polynomial P,y ;: R? — R having degree at most |k/2]
such that

(4.24) E[(Xij — E(Xej)*] =E[Pr(X0)],  tE€Ry.

The coefficients of the polynomial P,y ; depend on d, c, B, B, v, i1, ..., lq.
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4.6 Remark. Note that in case of E(X;) =0, t € R,, formulae ([L3) and ([£23) coincide.
Indeed, if E(X,;) =0, t € Ry, then, by (20), we have

~ t ~
E(ejTetBXo)—i-/ ejTe“Bﬁduzo, te Ry, je{l,...,d}.
0

Since e; TetB X o is a non-negative random variable and R, 3¢ — ejTetB B is a non-negative
continuous function, we obtain P(e/e'®Xy = 0) = 1 and eje'’®B =0 for all t € R,.

Consequently,
B t
E [(e;etBXg)k} +/€/ (ejTe(t s) B) (e, Tel=9)B x ) 1] ds=0
0

forall t € Ry, j € {1,...,d} and k € N, which yields that formulae (&3] and (@23

coincide.

Proof of Theorem [A.5.  Consider objects (E1)-(E4) with initial value & = y =
(y1,...,ya)" € RE. Foreach K €N, let (Y )er, be a pathwise unique RZ-valued
strong solution to the SDE (B.1]) with initial value y. Using (Z.9]), we obtain

w'e B (Y —E(Yky)) / w'e SBKel\/deS i

+ / / w' e BER(Y i, 7) Ng(ds, dr)
0 14

for all w € R? and t € R,.. By the method of the proof of Theorem H3] for a CBI process
(Y)ier, having parameters (d,c, 3, B,v, ) with initial value vy, one can derive

E|(w' e B(Y, ~ E(Y,)]

(125 ML ZCZ </ TeBe)2(w e *B(Y, — E(Y,)* 2V, ds)

<> ([ e

for all ke {2,.. .,q}, where

e=B(Y, —E(Y.) (w e Bh(Y,, 7)) dsm(dr)
([ fw )

~F ( / /U d e B —IE(YS))Z(wTe_SE"r)k_sty(dr))
+;E< /0 t /U d /U | e B(Y, —E(Y.) (w e B2l ey, y)" " ds pi(dz) du)
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_ /0 (we=Br) " E[(w e B(Y, — E(Y,))"] dsv(dr)

-+ Z;/ /Ud (wTe—sﬁz)k—f E[(’LUTQ_SE(YS . E(Ys))gYs,i} ds ,ui(dz).

As in the proof of Theorem 3] this yields that the recursion (23] holds for Y, and, by the
law of total probability, we obtain (23] for X as well.

Now we turn to prove (L24)). As it was explained before, by the law of total probability,
it is enough to prove (£24) for Y. Using the recursion (£23), we obtain the existence of
suitable polynomials P, t€ Ry ke {l,...,q}, j€{1,...,d}, by induction with respect
to k. Indeed, for k=1, we have E[Y,; —E(Y;;)] =0, je{l,...,d}, teR,. For k=2,
by [{23), we have

E (V) — E(%;,)) —2Zh/‘T@s PE(Y,. ) ds

// (e] e IB22 E(Y,,) ds py(dz) //e ~B2)2ds v(dz)
Uy Uy

forall j € {1,...,d} and t € Ry. Thus E[(Y;; — E(Y;))*] = Pm]( ), where Pio;: R — R
is a polynomial of degree at most 1, since E(Y;;) = eTeSBy + fos “Bﬁ du, s € R, from
2.9).

Now, suppose that for some k' € N with 2k" 4+ 1 < ¢, suitable polynomials P, ...,
P, o ; exist for all ¢ € Ry and j€A{l,....d}. We apply the recursion (£.23) for k = 2k"+1.
Then for each ¢ € {0,1,...,2k" — 1} and s, t € R, with s <t, the function

(4.26)

RSy E [(e}e<t—8>§(Ys - E(YS)))Z}

is a polynomial of degree at most |¢/2] < |(2k' — 1)/2| = k' — 1. Moreover, for each
0e{0,1,...,2k' — 1} and s,t € Ry with s <t, the function

RSy E[(e}e@—s)ff(ys _ E(YS)))ZYSJ]

is a polynomial of degree at most max{[¢/2] + 1, (¢ + 1)/2]} < max{K/, [(2K)/2]} = K/,
since, by (2.0),

Y., = E(Y.,) + (Ya; — E(Y.,) = Twy+/ el BB du + (YVa, — E(Y,)).
0

Consequently, by (LZ3), R? >y — E [(Y;; — E(Y;;))**!] is a polynomial of degree at most
k' = [(2K' +1)/2], and we conclude the existence of suitable polynomials F; 41, for all
teR, and je{l,...,d}.

In a similar way, if for some £k’ € N with 2k' 4+ 2 < ¢, suitable polynomials P4, ...,
Popr1; exist for all t € Ry and j € {1,...,d}, then we apply the recursion (£23) for
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k =2k +2. Then for each ¢ € {0,1,...,2k'}, the function R? >y — E[(e et=9B(y —
E(YS)))Z} is a polynomial of degree at most |¢/2] < [(2k)/2] = k’. Further, for each

¢ e {0,1,...,2k'}, the function RZ 3 y E[( Te(t-9)B (Y:—E(Y, )))ZYSZ} is a polynomial of
degree at most max{|[¢/2]+1,[((+1)/2]} < max{k'+1, [(2k'+1)/2|} = k'+1. Consequently,
by @EZ3), RL 5>y — E[(Y,; — E(Y;;)**?] is a polynomial of degree at most k' + 1 =
| (2K +2)/2], and we conclude the existence of suitable polynomials P, o510 ; for all t € Ry
and j e {l,...,d}. O

For mixed central moments, we have the following corollary:.

4.7 Corollary. Let (X,)ier, be a CBI process with parameters (d,c,B,B,v, ) such that
E(|| X0]|7) < oo and the moment conditions (&) hold with some q € N. Then for all t € R,
ke {l,....q} and iy,...,ix € {1,...,d}, there exists a polynomial Py . : R — R
having degree at most |k/2] such that

(4.27) E [(Xes — E(Xei,)) (X, — (X)) = E(Ppi .. (X0))-

The coefficients of the polynomial Py, .. .. depend on d, c, B, B, v, i1, ..., |4

k

~T
tB

Proof. Replacing w by e w in ([@2H), and then using the law of total probability, one

obtains

E [(w, X; — E(X,))"]

— k(k - 1) ch / we™Pe) E(wel P (X, ~E(X.)" X, ]ds

??‘

-2

+ ( )Z/ /u ~5)B 5 )k- ZE[( T (t—s)lg’(XS—E(Xs)))ng,i}dS,Ui(dZ)

=0

?r

-2

- ()//u Telt=IB2) B (w el IB (X, — (X)) |ds v(d2)

0

o~
Il

forall t e Ry, k€ {l,...,q} and w € R? and hence, by the proof of Theorem EF] for
each t e Ry, ke {l,...,q} and w € R? there exists a polynomial P, ,, : R? = R having
degree at most |k/2], such that

E [(w, X; — E(X))*] = E[Pikw(X0)],

where the coefficients of the polynomial P, ., depend on d, e, 3, B, v, pi, ..., pq. The
proof can be finished as the proof of Corollary .4 0

4.8 Proposition. Let (X,)ier, be a CBI process with parameters (d,c,B,B,v,u) such
that E(|| X o||?) < oo and the moment conditions ) hold with q = 2. Then for all t € Ry,
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we have

d t _ _ T t T
Var(X ) = Z/ (e/ "B E(X))e"BC "B du+/ "B (/ ZZTV(dZ)) "B du
=1 0 Ua

0

d t t—u
+Y / < / e/ e ”Bﬁdv> BCe" B du,
(=170 \JO
where
C, = 2ciee] +/ zz'p(dz) € RYY, ted{l,....d}.
Uq

Proof. By (A.26]), we have

e] E[(X, —E(X))(X,—E(X,) | e; = e Var(X,)e; = E [(X;; — E(Xy;))?]

~T t ~ ~T
—Z/ Tet=B g, olt-wB e; E(Xu,) du+/ e; TeltmwB (/ zz' V(dz)) =B e du,
Uqg

0

which is finite by ([@4]) with ¢ = 2 and part (v) of Definition 221 Using the identities

L tes + )T Var(X)(e: + €)) — (e — €;)T Var(X,)(es — e;)]

e/ Var(X,)e; = 1

for i,5 € {1,...,d}, and Var(X,) = > 123 L ei(e] Var(Xy)e;)e/, we obtain

t _ ~
Var(X Z/ (=B, o= E(Xu,e) du—l—/o eltmw)B (/U zz' I/(dz)) cl=B’ gy,
d

By (Z6), we have E(X,,) = e;e“’é E(Xo) + [y e}evéﬁ dv, thus

t
Var(X,) = Z/ (e “BE(X,)) "B elt-mB du—l—/ (/U
0

d

ZZTV(dZ)) B gy

t u

+Z/ </ TevB 3 dpelt-wBC et-0)B )du

¢=1 70 \JO
d t _ T t T

- Z/ (ef B E(X,)) e"BC "B dv—i—/ eB (/ ZZTV(dZ)) "B du

= 7o 0 Uy

d t t—u
+ Z/ (/ e e”Bﬁ dv) e“BCge“B du,

=170 \J0

and hence we obtain the statement.
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