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Mátyás Barczy∗,⋄ and Gyula Pap∗∗

* Faculty of Informatics, University of Debrecen, Pf. 12, H–4010 Debrecen, Hungary.

** Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H–6720 Szeged, Hungary.
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Abstract

We study asymptotic properties of maximum likelihood estimators for Heston models based on

continuous time observations of the log-price process. We distinguish three cases: subcritical (also

called ergodic), critical and supercritical. In the subcritical case, asymptotic normality is proved for

all the parameters, while in the critical and supercritical cases, non-standard asymptotic behavior

is described.

1 Introduction

Affine processes and especially the Heston model have been frequently applied in financial mathematics

since they can be well-fitted to financial time series, and also due to their computational tractability.

They are characterized by their characteristic function which is exponentially affine in the state vari-

able. A precise mathematical formulation and a complete characterization of regular affine processes

are due to Duffie et al. [19]. A very recent monograph of Baldeaux and Platen [4] gives a detailed

survey on affine processes and their applications in financial mathematics.

Let us consider a Heston model
{
dYt = (a− bYt) dt+ σ1

√
Yt dWt,

dXt = (α− βYt) dt+ σ2
√
Yt

(
̺dWt +

√
1− ̺2 dBt

)
,

t > 0,(1.1)

where a > 0, b, α, β ∈ R, σ1 > 0, σ2 > 0, ̺ ∈ (−1, 1) and (Wt, Bt)t>0 is a 2-dimensional standard

Wiener process. In this paper we study maximum likelihood estimator (MLE) of (a, b, α, β) based

on continuous time observations (Xt)t∈[0,T ] with T > 0, starting the process (Y,X) from some

known non-random initial value (y0, x0) ∈ (0,∞) × R. We do not suppose the process (Yt)t∈[0,T ]

being observed, since it can be determined using the observations (Xt)t∈[0,T ], see Remark 2.5. We do

not estimate the parameters σ1, σ2 and ̺, since these parameters could —in principle, at least—

be determined (rather than estimated) using the observations (Xt)t∈[0,T ], see Remark 2.6. Further,
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it will turn out that for the calculation of the MLE of (a, b, α, β), one does not need to know the

values of the parameters σ1 > 0, σ2 > 0, and ̺ ∈ (−1, 1), see (3.4). Note also that (Yt,Xt)t>0

is a 2-dimensional affine diffusion process with state space [0,∞) × R, see Proposition 2.1. In the

language of financial mathematics, provided that β = σ2
2/2, one can interpret

St := exp

{
Xt − α+

σ2
2

2
t

}

as the asset price, Xt − α+
σ2
2

2 t as the log-price (log-spot) and σ2
√
Yt as the volatility of the asset

price at time t > 0. Indeed, using (1.1), by an application of Itô’s formula, if β = σ2
2/2, then we

have

dSt = (α+ σ2
2/2)St dt+ σ2

√
YtSt

(
̺dWt +

√
1− ̺2 dBt

)
, t > 0,

which is Equation (19) in Heston [22]. The squared volatility process (σ2
2Yt)t>0 is a continuous time

continuous state branching process with immigration, also called Cox–Ingersoll–Ross (CIR) process,

first studied by Feller [21].

Parameter estimation for continuous time models has a long history, see, e.g., the monographs of

Liptser and Shiryaev [33, Chapter 17], Kutoyants [29] and Bishwal [13]. For estimating continuous time

models used in finance, Phillips and Yu [36] gave an overview of maximum likelihood and Gaussian

methods. Since the exact likelihood can be constructed only in special cases (e.g., geometric Brownian

motion, Ornstein–Uhlenbeck process, CIR process and inverse square-root process), much attention

has been devoted to the development of methods designed to approximate the likelihood.

Aı̈t-Sahalia [1] provides closed-form expansions for the log-likelihood function of multivariate dif-

fusions based on discrete time observations. He proved that, under some conditions, the approximate

maximum likelihood exists almost surely, and the difference of the approximate and the true maxi-

mum likelihood converges in probability to 0 as the time interval separating observations tends to 0.

The above mentioned closed-form expansions for the Heston model can be found in Aı̈t-Sahalia and

Kimmel [2, Appendix A.1]. We note that in Sørensen [38] one can find a brief and concise summary

of the approach of Aı̈t-Sahalia. In fact, Sørensen [38] gives a survey of estimation techniques for

stationary and ergodic (one-dimensional) diffusion processes observed at discrete time points. Besides

the above mentioned approach of Aı̈t-Sahalia, she recalls estimating functions with special emphasis

on martingale estimating functions and so-called simple estimating functions, together with Bayesian

analysis of discretely observed diffusion processes.

Azencott and Gadhyan [3] considered another parametrization of the Heston model (1.1), and

they investigated only the subcritical (also called ergodic) case, i.e., when b > 0 (see Definition

2.3). They developed an algorithm to estimate the parameters of the Heston model based on discrete

time observations for the asset price and the volatility. They supposed that σ2 = 1 and β = 1/2,

and estimated the parameters σ1 and ̺ as well. They assumed the time interval separating two

consecutive observations also to be unknown and used MLE based on Euler and Milstein discretization

schemes. They showed that parameter estimates derived from the Euler scheme using constrained

optimization of the approximate MLE are strongly consistent. Note that we obtain results also on the

asymptotic behavior of the MLE, and not only in the subcritical case.

Hurn et al. [23] developed a quasi-maximum likelihood procedure for estimating the parameters

of multi-dimensional diffusions based on discrete time obervations by replacing the original transition
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density by a multivariate Gaussian density with first and second moments approximating the true

moments of the unknown density. For affine drift and diffusion functions, these moments are exactly

those of the true transitional density. As an example, the Heston stochastic volatility model has been

analyzed in the subcritical case. However, they did not investigate consistency or asymptotic behavior

of their estimators.

Recently, Varughese [41] has studied parameter estimation for time inhomogeneous multi-

dimensional diffusion processes given by SDEs based on discrete time observations. The likelihood of

a diffusion process in question sampled at discrete time points has been estimated by a so-called sad-

dlepoint approximation. In general, the saddlepoint approximation is an algebraic expression based on

a random variable’s cumulant generation function. In cases where the first few moments of a random

variable are known but the corresponding probability density is difficult to obtain, the saddlepoint

approximation to the density can be calculated. The parameter estimates are taken to be the values

that maximize this approximate likelihood, which may be estimated by a Markov Chain Monte Carlo

(MCMC) procedure. However, the asymptotic properties of the estimators have not been studied. As

an example, the saddlepoint MCMC is used to fit a subcritical Heston model to the S&P 500 and the

VIX indices over the period December 2009–November 2010.

In case of the one-dimensional CIR process Y , the parameter estimation of a and b goes back to

Overbeck and Rydén [34] (conditional least squares estimator (LSE)), Overbeck [35] (MLE), and see

also Bishwal [13, Example 7.6] and the very recent papers of Ben Alaya and Kebaier [10], [11] (MLE).

We also note that Li and Ma [31] started to investigate the asymptotic behaviour of the (weighted)

conditional LSE of the drift parameters for a CIR model driven by a stable noise (they call it a stable

CIR model) from some discretely observed low frequency data set.

To the best knowledge of the authors the parameter estimation problem for multi-dimensional

affine processes has not been tackled so far. Since affine processes are frequently used in financial

mathematics, the question of parameter estimation for them needs to be well-investigated. In Barczy

et al. [5] we started the discussion with a simple non-trivial 2-dimensional affine diffusion process given

by the SDE

{
dYt = (a− bYt) dt+

√
Yt dWt,

dXt = (m− θXt) dt+
√
Yt dBt,

t > 0,(1.2)

where a > 0, b,m, θ ∈ R, (Wt, Bt)t>0 is a 2-dimensional standard Wiener process. Chen and Joslin

[14] have found several applications of the model (1.2) in financial mathematics, see their equations

(25) and (26). In the special critical case b = 0, θ = 0 we described the asymptotic behavior of the

LSE of (m, θ) based on discrete time observations X0,X1, . . . ,Xn as n → ∞. The description of

the asymptotic behavior of the LSE of (m, θ) in the other critical cases b = 0, θ > 0 or b > 0,

θ = 0 remained opened. In Barczy et al. [7] we dealt with the same model (1.2) but in the so-called

subcritical (ergodic) case: b > 0, θ > 0, and we considered the MLE of (a, b,m, θ) and the LSE of

(m, θ) based on continuous time observations. To carry out the analysis in the subcritical case, we

needed to examine the question of existence of a unique stationary distribution and ergodicity for the

model given by (1.2). We solved this problem in a companion paper Barczy et al. [6].

Next, we summarize our results comparing with those of Overbeck [35] and Ben Alaya and Kebaier

[10], [11], and give an overview of the structure of the paper. Section 2 is devoted to some preliminaries.

We recall that the SDE (1.1) has a pathwise unique strong solution and show that it is a regular
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affine process, see Proposition 2.1. We describe the asymptotic behaviour of the first moment of

(Yt,Xt)t>0, and, based on it, we introduce a classification of Heston processes given by the SDE

(1.1), see Proposition 2.2 and Definition 2.3. Namely, we call (Yt,Xt)t>0 subcritical, critical or

supercritical if b > 0, b = 0, or b < 0, respectively. We recall a result about existence of a

unique stationary distribution and ergodicity for the process (Yt)t>0 given by the first equation in

(1.1) in the subcritical case, see Theorem 2.4. From Section 3 we will consider the Heston model (1.1)

with a non-random initial value. In Section 3 we study the existence and uniqueness of the MLE of

(a, b, α, β) by giving an explicit formula for this MLE as well. It turned out that the MLE of (a, b)

based on the observations (Yt)t∈[0,T ] for the CIR process Y is the same as the MLE of (a, b) based

on the observations (Xt)t∈[0,T ] for the Heston process (Y,X) given by the SDE (1.1), see formula

(3.4) and Overbeck [35, formula (2.2)] or Ben Alaya and Kebaier [11, Section 3.1].

In Section 4 we investigate consistency of MLE. For subcritical Heston models we prove that the

MLE of (a, b, α, β) is strongly consistent whenever a ∈
(σ2

1

2 ,∞
)

(which is an extension of strong

consistency of the MLE of (a, b) proved by Overbeck [35, Theorem 2 (ii)], see Remark 4.5), and

weakly consistent whenever a =
σ2
1

2 (which is an extension of weak consistency of the MLE of (a, b)

following from part 1 of Theorem 7 in Ben Alaya and Kebaier [11], see Remark 4.5), see Theorem 4.1.

For critical Heston models with a ∈
(σ2

1

2 ,∞
)
, we obtain weak consistency of the MLE of (a, b, α, β)

(as a consequence of Theorem 6.2), which is an extension of weak consistency of the MLE of (a, b)

following from Theorem 6 in Ben Alaya and Kebaier [11], see Remark 4.6. For supercritical Heston

models a ∈
[σ2

1

2 ,∞
)
, we get strong consistency of the MLE of b, see Theorem 4.4, and weak

consistency of the MLE of β, see Theorem 7.1, and it turns out that the MLE of a and α is not

even weakly consistent, see Corollary 7.3. This is an extension of Overbeck [35, Theorem 2, parts (i)

and (v)], see Remark 4.7.

Sections 5, 6 and 7 are devoted to study asymptotic behaviour of the MLE of (a, b, α, β) for

subcritical, critical and supercritical Heston models, respectively. In Section 5 we show that the

MLE of (a, b, α, β) is asymptotically normal in the subcritical case with a ∈
(σ2

1

2 ,∞
)
, which is a

generalization of the asymptotic normality of the MLE of (a, b) proved by Ben Alaya and Kebaier [11,

Theorem 5], see Remark 5.2. We also show asymptotic normality with random scaling for the MLE of

(a, b, α, β) generalizing the asymptotic normality with random scaling for the MLE of (a, b) due to

Overbeck [35, Theorem 3 (iii)], see Remark 5.2. In Section 6 we describe the asymptotic behaviour of

the MLE in the critical case with a ∈
(σ2

1

2 ,∞
)
generalizing the second part of Theorem 6 in Ben Alaya

and Kebaier [11], see Remark 6.3. It turns out that the MLE of a and α is asymptotically normal,

but we have a different limit behaviour for the MLE of b and β, see Theorem 6.2. In Theorem 6.4 we

incorporate random scaling for the MLE of (a, b, α, β) in case of critical Heston models generalizing

part (ii) of Theorem 3 in Overbeck [35], see Remark 6.5. In Section 7 for supercritical Heston models

with a ∈
[σ2

1

2 ,∞
)
, we prove that the MLE of a and α has a weak limit without any scaling

(consequently, not weakly consistent, see Corollary 7.3), and the appropriately normalized MLE of

b and β has a mixed normal limit distribution, which is a generalization of the second part of

Theorem 3 (i) of Overbeck [35], see Remark 7.2. We also show asymptotic normality with random

scaling for the MLE of (b, β) generalizing the asymptotic normality with random scaling for the MLE

of b due to Overbeck [35, first part of Theorem 3 (i)], see Remark 7.2. In the Appendix we recall

some limit theorems for continuous local martingales for studying asymptotic behaviour of the MLE

of (a, b, α, β).
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In the proofs, mainly for the critical and supercritical cases, we extensively used the following

results of Ben Alaya and Kebaier [10, Propositions 3 and 4], [11, Theorems 4 and 6]: for b > 0

and a =
σ2
1

2 , weak convergence of 1
T 2

∫ T
0

ds
Ys

as T → ∞; for b = 0 and a >
σ2
1

2 , the explicit

form of the moment generating function of the quadruplet
(
log YT , YT ,

∫ T
0 Ys ds,

∫ T
0

ds
Ys

)
, T > 0; for

b < 0 and a >
σ2
1

2 , a representation of the weak limit of
(
ebTYT ,

∫ T
0

ds
Ys

)
as T → ∞. However,

our results are not simple consequences of those of Ben Alaya and Kebaier, we will have to find

appropriate decompositions of the derived MLEs and then to investigate the joint weak convergence

of the components via continuity theorem.

In Barczy et al. [9], we study conditional least squares estimation for the drift parame-

ters (a, b, α, β) of the Heston model (1.1) starting from some known non-random initial value

(y0, x0) ∈ [0,∞) × R based on discrete time observations (Yi,Xi)i∈{1,...,n}, and in the subcritical

case we describe its asymptotic properties.

Finally, note that Benke and Pap [12] study local asymptotic properties of likelihood ratios of the

Heston model (1.1) under the assumption a ∈
(σ2

1

2 ,∞
)
. Local asymptotic normality has been proved

in the subcritical case and for the submodel when b = 0 and β ∈ R are known in the critical case.

Moreover, local asymptotic mixed normality has been shown for the submodel when a ∈
(σ2

1

2 ,∞
)

and α ∈ R are known in the supercritical case. As a consequence, there exist asymptotic minimax

bounds for arbitrary estimators in these models, the MLE (for the appropriate submodels in the critical

and supercritical cases) attains this bound for bounded loss function, and the MLE is asymptotically

efficient in Hájek’s convolution theorem sense, see Benke and Pap [12].

2 Preliminaries

Let N, Z+, R, R+, R++, R− and R−− denote the sets of positive integers, non-negative

integers, real numbers, non-negative real numbers, positive real numbers, non-positive real numbers

and negative real numbers, respectively. For x, y ∈ R, we will use the notations x ∧ y := min(x, y)

and x ∨ y := max(x, y). By ‖x‖ and ‖A‖, we denote the Euclidean norm of a vector x ∈ R
d

and the induced matrix norm of a matrix A ∈ R
d×d, respectively. By Id ∈ R

d×d, we denote the

d-dimensional unit matrix.

Let
(
Ω,F ,P

)
be a probability space. By C2

c (R+×R,R) and C∞
c (R+×R,R), we denote the set

of twice continuously differentiable real-valued functions on R+ ×R with compact support, and the

set of infinitely differentiable real-valued functions on R+ × R with compact support, respectively.

The next proposition is about the existence and uniqueness of a strong solution of the SDE (1.1)

stating also that (Y,X) is a regular affine process. Note that these statements for the first equation

of (1.1) are well known.

2.1 Proposition. Let (η0, ζ0) be a random vector independent of (Wt, Bt)t∈R+
satisfying P(η0 ∈

R+) = 1. Then for all a ∈ R++, b, α, β ∈ R, σ1, σ2 ∈ R++, ̺ ∈ (−1, 1), there is a (pathwise)

unique strong solution (Yt,Xt)t∈R+
of the SDE (1.1) such that P((Y0,X0) = (η0, ζ0)) = 1 and

5



P(Yt ∈ R+ for all t ∈ R+) = 1. Further, for all s, t ∈ R+ with s 6 t,




Yt = e−b(t−s)

(
Ys + a

∫ t
s e

−b(s−u) du+ σ1
∫ t
s e

−b(s−u)
√
Yu dWu

)
,

Xt = Xs +
∫ t
s (α− βYu) du+ σ2

∫ t
s

√
Yu (̺dWu +

√
1− ̺2 dBu).

(2.1)

Moreover, (Yt,Xt)t∈R+
is a regular affine process with infinitesimal generator

(Af)(y, x) = (a− by)f ′
1(y, x) + (α− βy)f ′

2(y, x)

+
1

2
y
(
σ2
1f

′′
1,1(y, x) + 2̺σ1σ2f

′′
1,2(y, x) + σ2

2f
′′
2,2(y, x)

)
,

(2.2)

where (y, x) ∈ R+ × R, f ∈ C2
c (R+ × R,R), and f ′

i and f ′′
i,j, i, j ∈ {1, 2}, denote the first and

second order partial derivatives of f with respect to its i-th, and i-th and j-th variables, respectively.

Proof. By a theorem due to Yamada and Watanabe (see, e.g., Karatzas and Shreve [27, Proposition

5.2.13]), the strong uniqueness holds for the first equation in (1.1). By Ikeda and Watanabe [24,

Example 8.2, page 221], there is a (pathwise) unique non-negative strong solution (Yt)t∈R+
of the

first equation in (1.1) with any initial value η0 such that P(η0 ∈ R+) = 1. Clearly, the second

equation in (2.1) gives the (pathwise) unique strong solution (Xt)t∈R+
of the second equation in

(1.1). Next, by an application of the Itô’s formula for the process (Yt)t∈R+
, we obtain

d(ebtYt) = bebtYt dt+ ebtdYt = bebtYt dt+ ebt
(
(a− bYt) dt+ σ1

√
Yt dWt

)
= aebt dt+ σ1e

bt
√

Yt dWt

for all t ∈ R+, which implies the first equation in (2.1).

Now we turn to check that (Yt,Xt)t∈R+
is an affine process with the given infinitesimal generator.

We may and do suppose that the initial value is deterministic, say, (Y0,X0) = (y0, x0) ∈ R+ × R,

since the infinitesimal generator of a time homogeneous Markov process does not depend on the initial

value of the Markov process. By Itô’s formula, for all f ∈ C2
c (R+ × R,R) we have

f(Yt,Xt) = f(y0, x0) + σ1

∫ t

0
f ′
1(Ys,Xs)

√
Ys dWs + σ2

∫ t

0
f ′
2(Ys,Xs)

√
Ys

(
̺dWs +

√
1− ̺2 dBs

)

+

∫ t

0
f ′
1(Ys,Xs)(a− bYs) ds+

∫ t

0
f ′
2(Ys,Xs)(α − βYs) ds

+
1

2

(
σ2
1

∫ t

0
f ′′
1,1(Ys,Xs)Ys ds+ 2̺σ1σ2

∫ t

0
f ′′
1,2(Ys,Xs)Ys ds+ σ2

2

∫ t

0
f ′′
2,2(Ys,Xs)Ys ds

)

= f(y0, x0) +

∫ t

0
(Af)(Ys,Xs) ds+Mt(f), t ∈ R+,

where

Mt(f) := σ1

∫ t

0
f ′
1(Ys,Xs)

√
Ys dWs + σ2

∫ t

0
f ′
2(Ys,Xs)

√
Ys

(
̺dWs +

√
1− ̺2 dBs

)
, t ∈ R+,

and Af is given by (2.2). It is enough to show that (Mt(f))t∈R+
is a local martingale with respect

to the augmented filtration corresponding to (Wt, Bt)t∈R+
and (η0, ζ0), constructed as in Karatzas

6



and Shreve [27, Section 5.2]. However, it turns out that it is a square integrable martingale with

respect to this filtration, since

∫ t

0
E((f ′

1(Ys,Xs))
2Ys) ds 6 C1

∫ t

0
E(Ys) ds < ∞, t ∈ R+,

∫ t

0
E((f ′

2(Ys,Xs))
2Ys) ds 6 C2

∫ t

0
E(Ys) ds < ∞, t ∈ R+,

with some constants C1, C2 ∈ R++, where the finiteness of the integrals follows by

(2.3) E(Ys) = e−bsy0 + a

∫ s

0
e−bu du, s ∈ R+,

see, e.g., Cox et al. [15, Equation (19)] or Jeanblanc et al. [26, Theorem 6.3.3.1].

Finally, we check that the transition semigroup (Pt)t∈R+
with state space R+×R corresponding

to (Yt,Xt)t∈R+
is a regular affine semigroup having infinitesimal generator given by (2.2). With the

notations of Dawson and Li [16],

([
0 0

0 0

]
,
1

2
S,

[
a

α

]
,

[
−b 0

−β 0

]
, 0, 0

)

is a set of admissible parameters corresponding to the affine process (Yt,Xt)t∈R+
, where

(2.4) S :=

[
σ2
1 ̺σ1σ2

̺σ1σ2 σ2
2

]
.

Hence Theorem 2.7 in Duffie et al. [19] (see also Theorem 6.1 in Dawson and Li [16]) yields

that for this set of admissible parameters, there exists a regular affine semigroup (Qt)t∈R+
with

infinitesimal generator given by (2.2). By Theorem 2.7 in Duffie et al. [19], C∞
c (R+ × R,R) is a

core of the infinitesimal generator corresponding to the affine semigroup (Qt)t∈R+
. Since we have

checked that the infinitesimal generators corresponding to the transition semigroups (Pt)t∈R+
and

(Qt)t∈R+
(defined on the Banach space of bounded real-valued functions on R+ × R) coincide on

C∞
c (R+ × R,R), by the definition of a core, we get they coincide on the Banach space of bounded

real-valued functions on R+ × R. This yields that (Yt,Xt)t∈R+
is a regular affine process with

infinitesimal generator (2.2). We also note that we could have used Lemma 10.2 in Duffie et al. [19]

for concluding that (Yt,Xt)t∈R+
is a regular affine process with infinitesimal generator (2.2), since

we have checked that (Mt(f))t∈R+
is a martingale with respect to the filtration (Ft)t∈R+

for any

f ∈ C2
c (R+ × R,R). ✷

Next we present a result about the first moment of (Yt,Xt)t∈R+
. We note that Hurn et al. [23,

Equation (23)] derived the same formula for the expectation of (Yt,Xt), t ∈ R+, by a different

method. Note also that the formula for E(Yt), t ∈ R+, is well known.

2.2 Proposition. Let (Yt,Xt)t∈R+
be the unique strong solution of the SDE (1.1) satisfying P(Y0 ∈

R+) = 1 and E(Y0) < ∞, E(|X0|) < ∞. Then

[
E(Yt)

E(Xt)

]
=

[
e−bt 0

−β
∫ t
0 e

−bu du 1

] [
E(Y0)

E(X0)

]
+

[ ∫ t
0 e

−bu du 0

−β
∫ t
0

(∫ u
0 e−bv dv

)
du t

][
a

α

]
, t ∈ R+.

7



Consequently, if b ∈ R++, then

lim
t→∞

E(Yt) =
a

b
, lim

t→∞
t−1

E(Xt) = α− βa

b
,

if b = 0, then

lim
t→∞

t−1
E(Yt) = a, lim

t→∞
t−2

E(Xt) = −1

2
βa,

if b ∈ R−−, then

lim
t→∞

ebt E(Yt) = E(Y0)−
a

b
, lim

t→∞
ebt E(Xt) =

β

b
E(Y0)−

βa

b2
.

Proof. It is sufficient to prove the statement in the case when (Y0,X0) = (y0, x0) with an arbitrary

(y0, x0) ∈ R++×R, since then the statement of the proposition follows by the law of total expectation.

The formula for E(Yt), t ∈ R+, can be found, e.g., in Cox et al. [15, Equation (19)] or Jeanblanc

et al. [26, Theorem 6.3.3.1]. Next we observe that
(∫ t

0

√
Yu d(̺Wu +

√
1− ̺2Bu)

)

t∈R+

(2.5)

is a square integrable martingale, since

E

[(∫ t

0

√
Yu d(̺Wu +

√
1− ̺2Bu)

)2
]
=

∫ t

0
E(Yu) du < ∞,

where the finiteness of the integral follows from (2.3).

Taking expectations of both sides of the second equation in (2.1) and using the martingale property

of the process in (2.5), we have

E(Xt) = x0 +

∫ t

0
(α− β E(Yu)) du

= x0 + αt− β

∫ t

0

(
e−buy0 + a

∫ u

0
e−bv dv

)
du

= x0 − βy0

∫ t

0
e−bu du+ αt− βa

∫ t

0

(∫ u

0
e−bv dv

)
du

for all t ∈ R+.

Further, if b ∈ R++, then

lim
t→∞

E(Yt) = lim
t→∞

(
e−bty0 −

a

b
(e−bt − 1)

)
=

a

b
,

lim
t→∞

t−1
E(Xt) = lim

t→∞

(
x0
t

+
β

b
y0

e−bt − 1

t
+ α+

βa

bt

(
e−bt − 1

−b
− t

))
= α− βa

b
.

If b = 0, then

lim
t→∞

t−1
E(Yt) = lim

t→∞
t−1(y0 + at) = a,

lim
t→∞

t−2
E(Xt) = lim

t→∞

(
x0
t2

− βy0
t

+
α

t
− βa

2

)
= −βa

2
.

8



If b ∈ R−−, then

lim
t→∞

ebt E(Yt) = lim
t→∞

(
y0 +

a

b
(ebt − 1)

)
= y0 −

a

b
,

lim
t→∞

ebt E(Xt) = x0 lim
t→∞

ebt +
β

b
y0 lim

t→∞
(1− ebt) + α lim

t→∞
tebt +

βa

b
lim
t→∞

(
1− ebt

−b
− tebt

)

=
β

b
y0 −

βa

b2
.

✷

Based on the asymptotic behavior of the expectations (E(Yt),E(Xt)) as t → ∞, we introduce a

classification of Heston processes given by the SDE (1.1).

2.3 Definition. Let (Yt,Xt)t∈R+
be the unique strong solution of the SDE (1.1) satisfying P(Y0 ∈

R+) = 1. We call (Yt,Xt)t∈R+
subcritical, critical or supercritical if b ∈ R++, b = 0 or b ∈ R−−,

respectively.

In the sequel
P−→,

D−→ and
a.s.−→ will denote convergence in probability, in distribution and

almost surely, respectively.

The following result states the existence of a unique stationary distribution and the ergodicity for

the process (Yt)t∈R+
given by the first equation in (1.1) in the subcritical case, see, e.g., Feller [21],

Cox et al. [15, Equation (20)], Li and Ma [31, Theorem 2.6] or Theorem 3.1 with α = 2 and Theorem

4.1 in Barczy et al. [6].

2.4 Theorem. Let a, b, σ1 ∈ R++. Let (Yt)t∈R+
be the unique strong solution of the first equation

of the SDE (1.1) satisfying P(Y0 ∈ R+) = 1.

(i) Then Yt
D−→ Y∞ as t → ∞, and the distribution of Y∞ is given by

E(e−λY∞) =

(
1 +

σ2
1

2b
λ

)−2a/σ2
1

, λ ∈ R+,(2.6)

i.e., Y∞ has Gamma distribution with parameters 2a/σ2
1 and 2b/σ2

1 , hence

E(Y κ
∞) =

Γ
(

2a
σ2
1

+ κ
)

(
2b
σ2
1

)κ
Γ
(

2a
σ2
1

) , κ ∈
(
−2a

σ2
1

,∞
)
.

Especially, E(Y∞) = a
b . Further, if a ∈

(
σ2
1

2 ,∞
)
, then E

(
1

Y∞

)
= 2b

2a−σ2
1

.

(ii) Supposing that the random initial value Y0 has the same distribution as Y∞, the process

(Yt)t∈R+
is strictly stationary.

(iii) For all Borel measurable functions f : R → R such that E(|f(Y∞)|) < ∞, we have

(2.7)
1

T

∫ T

0
f(Ys) ds

a.s.−→ E(f(Y∞)) as T → ∞.

In the next remark we explain why we suppose only that the process X is observed.
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2.5 Remark. If a ∈ R++, b, α, β ∈ R, σ1, σ2 ∈ R++, ̺ ∈ (−1, 1), and (Y0,X0) = (y0, x0) ∈
R++ × R, then, by the SDE (1.1),

〈X〉t = σ2
2

∫ t

0
Ys ds, t ∈ R+.

By Theorems I.4.47 a) and I.4.52 in Jacod and Shiryaev [25],

⌊nt⌋∑

i=1

(X i
n
−X i−1

n
)2

P−→ 〈X〉t as n → ∞, t ∈ R+.

This convergence holds almost surely along a suitable subsequence, the members of this sequence are

measurable functions of (Xs)s∈[0,t], hence, using Theorems 4.2.2 and 4.2.8 in Dudley [18], we obtain

that 〈X〉t = σ2
2

∫ t
0 Ys ds is a measurable function of (Xs)s∈[0,t]. Moreover,

(2.8)
〈X〉t+h − 〈X〉t

h
=

σ2
2

h

∫ t+h

t
Ys ds

a.s.−→ σ2
2Yt as h → 0, t ∈ R+,

since Y has almost surely continuous sample paths. In particular,

〈X〉h
hy0

=
σ2
2

hy0

∫ h

0
Ys ds

a.s.−→ σ2
2

Y0

y0
= σ2

2 as h → 0,

hence, for any fixed T > 0, σ2
2 is a measurable function of (Xs)s∈[0,T ], i.e., it can be determined

from a sample (Xs)s∈[0,T ] (provided that (Y,X) starts from some known non-random initial value

(y0, x0) ∈ (0,∞) × R). However, we also point out that this measurable function remains abstract.

Consequently, by (2.8), for all t ∈ [0, T ], Yt is a measurable function of (Xs)s∈[0,T ], i.e., it can be

determined from a sample (Xs)s∈[0,T ] (provided that (Y,X) starts from some known non-random

initial value (y0, x0) ∈ (0,∞)×R). Finally, we note that the sample size T is fixed above, and it is

enough to know any short sample (Xs)s∈[0,T ] to carry out the above calculations. ✷

Next we give statistics for the parameters σ1, σ2 and ̺ using continuous time observations

(Xt)t∈[0,T ] with some T > 0 (provided that (Y,X) starts from some known non-random initial

value (y0, x0) ∈ (0,∞)×R). Due to this result we do not consider the estimation of these parameters,

they are supposed to be known.

2.6 Remark. If a ∈ R++, b, α, β ∈ R, σ1, σ2 ∈ R++, ̺ ∈ (−1, 1), and (Y0,X0) = (y0, x0) ∈
R++ × R, then for all T > 0,

S =
1

∫ T
0 Ys ds

[
〈Y 〉T 〈Y,X〉T

〈Y,X〉T 〈X〉T

]
=: ŜT almost surely,

where (〈Y,X〉t)t∈R+
denotes the quadratic cross-variation process of Y and X, since, by the SDE

(1.1),

〈Y 〉T = σ2
1

∫ T

0
Ys ds, 〈X〉T = σ2

2

∫ T

0
Ys ds, 〈Y,X〉T = ̺σ1σ2

∫ T

0
Ys ds.

10



Here ŜT is a statistic, i.e., there exists a measurable function Ξ : C([0, T ],R) → R
2×2 such that

ŜT = Ξ((Xs)s∈[0,T ]), where C([0, T ],R) denotes the space of continuous real-valued functions defined

on [0, T ], since

(2.9)
1

1
n

∑⌊nT ⌋
i=1 Y i−1

n

⌊nT ⌋∑

i=1


 Y i

n
− Y i−1

n

X i
n
−X i−1

n




 Y i

n
− Y i−1

n

X i
n
−X i−1

n



⊤

P−→ ŜT as n → ∞,

where ⌊x⌋ denotes the integer part of a real number x ∈ R, the convergence in (2.9) holds

almost surely along a suitable subsequence, by Remark 2.5, the members of the sequence in (2.9) are

measurable functions of (Xs)s∈[0,T ], and one can use Theorems 4.2.2 and 4.2.8 in Dudley [18]. Next

we prove (2.9). By Theorems I.4.47 a) and I.4.52 in Jacod and Shiryaev [25],

⌊nT ⌋∑

i=1

(Y i
n
− Y i−1

n
)2

P−→ 〈Y 〉T ,
⌊nT ⌋∑

i=1

(X i
n
−X i−1

n
)2

P−→ 〈X〉T ,

⌊nT ⌋∑

i=1

(Y i
n
− Y i−1

n
)(X i

n
−X i−1

n
)

P−→ 〈Y,X〉T

as n → ∞. Consequently,

⌊nT ⌋∑

i=1


 Y i

n
− Y i−1

n

X i
n
−X i−1

n




 Y i

n
− Y i−1

n

X i
n
−X i−1

n



⊤

P−→
(∫ T

0
Ys ds

)
ŜT

as n → ∞, see, e.g., van der Vaart [40, Theorem 2.7, part (vi)]. Moreover,

1

n

⌊nT ⌋∑

i=1

Y i−1
n

a.s.−→
∫ T

0
Ys ds as n → ∞

since Y has almost surely continuous sample paths. Here P
(∫ T

0 Ys ds ∈ R++

)
= 1. Indeed, if

ω ∈ Ω is such that [0, T ] ∋ s 7→ Ys(ω) is continuous and Yt(ω) ∈ R+ for all t ∈ R+, then we

have
∫ T
0 Ys(ω) ds = 0 if and only if Ys(ω) = 0 for all s ∈ [0, T ]. Using the method of the proof

of Theorem 3.1 in Barczy et. al [5], we get P(
∫ T
0 Ys = 0) = 0, as desired. Hence (2.9) follows by

properties of convergence in probability. ✷

3 Existence and uniqueness of MLE

From this section, we will consider the Heston model (1.1) with a known non-random initial value

(y0, x0) ∈ R++×R, and we equip
(
Ω,F ,P

)
with the augmented filtration (Ft)t∈R+

corresponding to

(Wt, Bt)t∈R+
, constructed as in Karatzas and Shreve [27, Section 5.2]. Note that (Ft)t∈R+

satisfies

the usual conditions, i.e., the filtration (Ft)t∈R+
is right-continuous and F0 contains all the P-null

sets in F .

Let P(Y,X) denote the probability measure induced by (Yt,Xt)t∈R+
on the measurable space

(C(R+,R+ × R),B(C(R+,R+ × R))) endowed with the natural filtration (Gt)t∈R+
, given by Gt :=

ϕ−1
t (B(C(R+,R+ × R))), t ∈ R+, where ϕt : C(R+,R+ × R) → C(R+,R+ × R) is the mapping
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ϕt(f)(s) := f(t ∧ s), s, t ∈ R+, f ∈ C(R+,R+ × R). Here C(R+,R+ × R) denotes the set of

R+ ×R-valued continuous functions defined on R+, and B(C(R+,R+ ×R)) is the Borel σ-algebra

on it. Further, for all T ∈ R++, let P(Y,X),T := P(Y,X) |GT
be the restriction of P(Y,X) to GT .

3.1 Lemma. Let a ∈
[σ2

1

2 ,∞
)
, b, α, β ∈ R, σ1, σ2 ∈ R++, and ̺ ∈ (−1, 1). Let (Yt,Xt)t∈R+

and

(Ỹt, X̃t)t∈R+
be the unique strong solutions of the SDE (1.1) with initial values (y0, x0) ∈ R++ × R,

(ỹ0, x̃0) ∈ R++×R such that (y0, x0) = (ỹ0, x̃0), corresponding to the parameters (a, b, α, β, σ1, σ2, ̺)

and (σ2
1 , 0, 0, 0, σ1, σ2, ̺), respectively. Then for all T ∈ R++, the measures P(Y,X),T and P

(Ỹ ,X̃),T

are absolutely continuous with respect to each other, and the Radon–Nikodym derivative of P(Y,X),T

with respect to P(Ỹ ,X̃),T (the so called likelihood ratio) takes the form

L
(Y,X),(Ỹ ,X̃)
T

(
(Ys,Xs)s∈[0,T ]

)
= exp

{∫ T

0

1

Ys

[
a− bYs − σ2

1

α− βYs

]⊤
S−1

[
dYs

dXs

]

− 1

2

∫ T

0

1

Ys

[
a− bYs − σ2

1

α− βYs

]⊤
S−1

[
a− bYs + σ2

1

α− βYs

]
ds

}
,

where S is defined in (2.4).

Proof. First note that the SDE (1.1) can be written in the matrix form

[
dYt

dXt

]
=

([
−b 0

−β 0

][
Yt

Xt

]
+

[
a

α

])
dt+

√
Yt

[
σ1 0

σ2̺ σ2
√

1− ̺2

] [
dWt

dBt

]
, t ∈ R+.(3.1)

Note also that under the condition a ∈
[σ2

1

2 ,∞
)
, we have P(Yt ∈ R++ for all t ∈ R+) = 1, see,

e.g., page 442 in Revuz and Yor [37].

We intend to use formula (7.139) in Section 7.6.4 of Liptser and Shiryaev [32]. We have to check

their condition (7.137) which takes the form

(3.2) P

(∫ T

0

1

Ys

[
a− bYs

α− βYs

]⊤
S−1

[
a− bYs

α− βYs

]
+

1

Ys

[
σ2
1

0

]⊤
S−1

[
σ2
1

0

]
ds < ∞

)
= 1, ∀ T ∈ R+.

Here note that the matrix S is invertible, since σ1, σ2 ∈ R++ and ̺ ∈ (−1, 1). Since Y has

continuous sample paths almost surely, condition (3.2) holds if

P

(∫ T

0

1

Ys
ds < ∞

)
= 1 for all T ∈ R+.(3.3)

Since Y has continuous sample paths almost surely and P(Yt ∈ R++, ∀ t ∈ R+) = 1, we have

P(inft∈[0,T ] Yt ∈ R++) = 1 for all T ∈ R+, which yields (3.3). Note that under the condition

a ∈
[σ2

1

2 ,∞
)
, Theorems 1 and 3 in Ben Alaya and Kebaier [10] also imply (3.3). Applying formula

(7.139) in Section 7.6.4 of Liptser and Shiryaev [32] we obtain the statement.

We call the attention that conditions (4.110) and (4.111) are also required for Section 7.6.4 in

Liptser and Shiryaev [32], but the Lipschitz condition (4.110) in Liptser and Shiryaev [32] does not

hold for the SDE (1.1). However, we can use formula (7.139) in Liptser and Shiryaev [32], since
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they use their conditions (4.110) and (4.111) only in order to ensure that the SDE they consider in

Section 7.6.4 has a unique strong solution (see, the proof of Theorem 7.19 in Liptser and Shiryaev

[32]). By Proposition 2.1, under the conditions of the present lemma, there is a (pathwise) unique

strong solution of the SDE (1.1). ✷

By Lemma 3.1, under its conditions the log-likelihood function satisfies

(1− ̺2) logL
(Y,X),(Ỹ ,X̃)
T

(
(Ys,Xs)s∈[0,T ]

)

=

∫ T

0

1

Ys

[(
a− bYs − σ2

1

σ2
1

− ̺(α− βYs)

σ1σ2

)
dYs +

(
−̺(a− bYs − σ2

1)

σ1σ2
+

α− βYs

σ2
2

)
dXs

]

− 1

2

∫ T

0

1

Ys

[
(a− bYs)

2 − σ4
1

σ2
1

− 2̺(a− bYs)(α − βYs)

σ1σ2
+

(α− βYs)
2

σ2
2

]
ds

= a

∫ T

0

(
dYs

σ2
1Ys

− ̺dXs

σ1σ2Ys

)
+ b

∫ T

0

(
−dYs

σ2
1

+
̺dXs

σ1σ2

)

+ α

∫ T

0

(
− ̺dYs

σ1σ2Ys
+

dXs

σ2
2Ys

)
+ β

∫ T

0

(
̺dYs

σ1σ2
− dXs

σ2
2

)

− 1

2
a2
∫ T

0

ds

σ2
1Ys

+ ab

∫ T

0

ds

σ2
1

− 1

2
b2
∫ T

0

Ys ds

σ2
1

− 1

2
α2

∫ T

0

ds

σ2
2Ys

+ αβ

∫ T

0

ds

σ2
2

− 1

2
β2

∫ T

0

Ys ds

σ2
2

+ aα

∫ T

0

̺ds

σ1σ2Ys
− (bα+ aβ)

∫ T

0

̺ds

σ1σ2
+ bβ

∫ T

0

̺Ys ds

σ1σ2
−
∫ T

0

dYs

Ys
+

∫ T

0

̺σ1 dXs

σ2Ys
+

1

2

∫ T

0

σ2
1 ds

Ys

= θ⊤dT − 1

2
θ⊤AT θ −

∫ T

0

dYs

Ys
+

∫ T

0

̺σ1 dXs

σ2Ys
+

1

2

∫ T

0

σ2
1 ds

Ys
,

where

θ :=




a

b

α

β



, dT := d

(σ1,σ2,̺)
T

(
(Ys,Xs)s∈[0,T ]

)
:=




∫ T
0

(
dYs

σ2
1Ys

− ̺ dXs

σ1σ2Ys

)

∫ T
0

(
−dYs

σ2
1

+ ̺ dXs

σ1σ2

)

∫ T
0

(
− ̺ dYs

σ1σ2Ys
+ dXs

σ2
2Ys

)

∫ T
0

(
̺ dYs

σ1σ2
− dXs

σ2
2

)




,

AT := A
(σ1,σ2,̺)
T

(
(Ys,Xs)s∈[0,T ]

)
:=




∫ T
0

ds
σ2
1Ys

−
∫ T
0

ds
σ2
1

−
∫ T
0

̺ ds
σ1σ2Ys

∫ T
0

̺ ds
σ1σ2

−
∫ T
0

ds
σ2
1

∫ T
0

Ys ds
σ2
1

∫ T
0

̺ ds
σ1σ2

−
∫ T
0

̺Ys ds
σ1σ2

−
∫ T
0

̺ ds
σ1σ2Ys

∫ T
0

̺ ds
σ1σ2

∫ T
0

ds
σ2
2Ys

−
∫ T
0

ds
σ2
2∫ T

0
̺ ds
σ1σ2

−
∫ T
0

̺Ys ds
σ1σ2

−
∫ T
0

ds
σ2
2

∫ T
0

Ys ds
σ2
2




.

If we fix σ1, σ2 ∈ R++, ̺ ∈ (−1, 1), the initial value (y0, x0) ∈ R++ × R, and T ∈ R++,

then the probability measures P(Y,X),T induced by (Yt,Xt)t∈R+
corresponding to the parameters

(a, b, α, β, σ1, σ2, ̺), where a ∈
[σ2

1

2 ,∞
)
, b, α, β ∈ R, are absolutely continuous with respect to

each other. Hence it does not matter which measure is taken as a reference measure for defining the

MLE (we have chosen the measure corresponding to the parameters (σ2
1 , 0, 0, 0, σ1, σ2, ̺)). For more

details, see, e.g., Liptser and Shiryaev [32, page 35].
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The random symmetric matrix AT can be written as a Kronecker product of a deterministic

symmetric matrix and a random symmetric matrix, namely,

AT =




1
σ2
1

− ̺
σ1σ2

− ̺
σ1σ2

1
σ2
2


⊗



∫ T
0

ds
Ys

−
∫ T
0 1 ds

−
∫ T
0 1 ds

∫ T
0 Ys ds


 .

The first matrix is strictly positive definite. The second matrix is strictly positive definite if and only

if
∫ T
0 Ys ds

∫ T
0

ds
Ys

> T 2. The eigenvalues of AT coincides with the products of the eigenvalues of the

two matrices in question (taking into account their multiplicities), hence the matrix AT is strictly

positive definite if and only if
∫ T
0 Ys ds

∫ T
0

ds
Ys

> T 2, and in this case the inverse A−1
T has the form

(applying the identity (A⊗B)−1 = A−1 ⊗B−1)

A−1
T =




1
σ2
1

− ̺
σ1σ2

− ̺
σ1σ2

1
σ2
2



−1

⊗



∫ T
0

ds
Ys

−T

−T
∫ T
0 Ys ds



−1

=

S ⊗



∫ T
0 Ys ds T

T
∫ T
0

ds
Ys




(1− ̺2)
(∫ T

0 Ys ds
∫ T
0

ds
Ys

− T 2
) .

Hence we have

2(1− ̺2) logL
(Y,X),(Ỹ ,X̃)
T

(
(Ys,Xs)s∈[0,T ]

)

= −(θ −A−1
T dT )

⊤AT (θ −A−1
T dT ) + d⊤

TA
−1
T dT − 2

∫ T

0

dYs

Ys
+ 2

∫ T

0

̺σ1 dXs

σ2Ys
+

∫ T

0

σ2
1 ds

Ys
,

provided that
∫ T
0 Ys ds

∫ T
0

ds
Ys

> T 2. Recall that σ1, σ2 ∈ R++ and ̺ ∈ (−1, 1) are supposed to

be known. Then maximizing (1 − ̺2) logL
(Y,X),(Ỹ ,X̃)
T

(
(Ys,Xs)s∈[0,T ]

)
in (a, b, α, β) ∈ R

4 gives the

MLE of (a, b, α, β) based on the observations (Xt)t∈[0,T ] having the form

θ̂T =




âT

b̂T

α̂T

β̂T



= A−1

T dT ,

provided that
∫ T
0 Ys ds

∫ T
0

ds
Ys

> T 2. The random vector dT can be expressed as

dT =




1
σ2
1

− ̺
σ1σ2


⊗



∫ T
0

dYs
Ys

−
∫ T
0 dYs


+


−

̺
σ1σ2

1
σ2
2


⊗



∫ T
0

dXs
Ys

−
∫ T
0 dXs


 .
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Applying the identity (A⊗B)(C ⊗D) = (AC)⊗ (BD), we can calculate

S ⊗



∫ T
0 Ys ds T

T
∫ T
0

ds
Ys




dT

=


S




1
σ2
1

− ̺
σ1σ2




⊗





∫ T
0 Ys ds T

T
∫ T
0

ds
Ys





∫ T
0

dYs
Ys

−
∫ T
0 dYs






+


S


−

̺
σ1σ2

1
σ2
2




⊗





∫ T
0 Ys ds T

T
∫ T
0

ds
Ys





∫ T
0

dXs
Ys

−
∫ T
0 dXs






=

[
1− ̺2

0

]
⊗



∫ T
0 Ys ds

∫ T
0

dYs
Ys

− T (YT − y0)

T
∫ T
0

dYs
Ys

− (YT − y0)
∫ T
0

ds
Ys


+

[
0

1− ̺2

]
⊗



∫ T
0 Ys ds

∫ T
0

dXs
Ys

− T (XT − x0)

T
∫ T
0

dXs
Ys

− (XT − x0)
∫ T
0

ds
Ys


 .

Consequently, we obtain




âT

b̂T

α̂T

β̂T



=

1
∫ T
0 Ys ds

∫ T
0

ds
Ys

− T 2




∫ T
0 Ys ds

∫ T
0

dYs
Ys

− T (YT − y0)

T
∫ T
0

dYs
Ys

− (YT − y0)
∫ T
0

ds
Ys∫ T

0 Ys ds
∫ T
0

dXs
Ys

− T (XT − x0)

T
∫ T
0

dXs
Ys

− (XT − x0)
∫ T
0

ds
Ys



,(3.4)

provided that
∫ T
0 Ys ds

∫ T
0

ds
Ys

> T 2. In fact, it turned out that for the calculation of the MLE of

(a, b, α, β), one does not need to know the values of the parameters σ1, σ2 ∈ R++ and ̺ ∈ (−1, 1).

Note that the MLE of (a, b) based on the observations (Xt)t∈[0,T ] for the Heston model (Y,X) is

the same as the MLE of (a, b) based on the observations (Yt)t∈[0,T ] for the CIR process Y , see,

e.g., Overbeck [35, formula (2.2)] or Ben Alaya and Kebaier [11, Section 3.1].

In the next remark we point out that the MLE (3.4) of (a, b, α, β) can be approximated using

discrete time observations for X, which can be reassuring for practical applications, where data in

continuous record is not available.

3.2 Remark. For the stochastic integrals
∫ T
0

dXs
Ys

and
∫ T
0

dYs
Ys

in (3.4), we have

(3.5)

⌊nT ⌋∑

i=1

X i
n
−X i−1

n

Y i−1
n

P−→
∫ T

0

dXs

Ys
and

⌊nT ⌋∑

i=1

Y i
n
− Y i−1

n

Y i−1
n

P−→
∫ T

0

dYs

Ys
as n → ∞,

following from Proposition I.4.44 in Jacod and Shiryaev [25] with the Riemann sequence of determinis-

tic subdivisions
(
i
n ∧ T

)
i∈N, n ∈ N. Thus, there exist measurable functions Φ,Ψ : C([0, T ],R) → R

such that
∫ T
0

dXs
Ys

= Φ((Xs)s∈[0,T ]) and
∫ T
0

dYs
Ys

= Ψ((Xs)s∈[0,T ]), since the convergences in (3.5)

hold almost surely along suitable subsequences, by Remark 2.5, the members of both sequences in

(3.5) are measurable functions of (Xs)s∈[0,T ], and one can use Theorems 4.2.2 and 4.2.8 in Dudley

[18]. Moreover, since Y has continuous sample paths almost surely,

1

n

⌊nT ⌋∑

i=1

Y i−1
n

a.s.−→
∫ T

0
Ys ds as n → ∞, and

1

n

⌊nT ⌋∑

i=1

1

Y i−1
n

a.s.−→
∫ T

0

ds

Ys
as n → ∞,
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hence the right hand side of (3.4) is a measurable function of (Xs)s∈[0,T ], i.e., it is a statistic. Further,

one can define a sequence (θ̂T,n)n∈N of estimators of θ = (a, b, α, β)⊤ based only on the discrete

time observations (Y i
n
,X i

n
)i∈{1,...,⌊nT ⌋} such that θ̂T,n

P−→ θ̂T as n → ∞. This is also called

infill asymptotics. This phenomenon is similar to the approximate MLE, used by Aı̈t-Sahalia [1], as

discussed in the Introduction. ✷

Using the SDE (1.1) one can check that




âT − a

b̂T − b

α̂T − α

β̂T − β



=

1
∫ T
0 Ys ds

∫ T
0

ds
Ys

− T 2




∫ T
0 Ys ds

∫ T
0

dYs
Ys

− T (YT − y0)− a
∫ T
0 Ys ds

∫ T
0

ds
Ys

+ aT 2

T
∫ T
0

dYs
Ys

− (YT − y0)
∫ T
0

ds
Ys

− b
∫ T
0 Ys ds

∫ T
0

ds
Ys

+ bT 2

∫ T
0 Ys ds

∫ T
0

dXs
Ys

− T (XT − x0)− α
∫ T
0 Ys ds

∫ T
0

ds
Ys

+ αT 2

T
∫ T
0

dXs
Ys

− (XT − x0)
∫ T
0

ds
Ys

− β
∫ T
0 Ys ds

∫ T
0

ds
Ys

+ βT 2




=
1

∫ T
0 Ys ds

∫ T
0

ds
Ys

− T 2




σ1
∫ T
0 Ys ds

∫ T
0

dWs√
Ys

− σ1T
∫ T
0

√
Ys dWs

σ1T
∫ T
0

dWs√
Ys

− σ1
∫ T
0

ds
Ys

∫ T
0

√
Ys dWs

σ2
∫ T
0 Ys ds

∫ T
0

dW̃s√
Ys

− σ2T
∫ T
0

√
Ys dW̃s

σ2T
∫ T
0

dW̃s√
Ys

− σ2
∫ T
0

ds
Ys

∫ T
0

√
Ys dW̃s



,(3.6)

provided that
∫ T
0 Ys ds

∫ T
0

ds
Ys

> T 2, where the process

W̃s := ̺Ws +
√

1− ̺2Bs, s ∈ R+,

is a standard Wiener process.

The next lemma is about the existence of
(
âT , b̂T , α̂T , β̂T

)
.

3.3 Lemma. If a ∈
[σ2

1

2 ,∞
)
, b ∈ R, σ1 ∈ R++, and Y0 = y0 ∈ R++, then

P

(∫ T

0
Ys ds

∫ T

0

1

Ys
ds > T 2

)
= 1 for all T ∈ R++,(3.7)

and hence, supposing also that α, β ∈ R, σ2 ∈ R++, ̺ ∈ (−1, 1), and X0 = x0 ∈ R, there exists a

unique MLE
(
âT , b̂T , α̂T , β̂T

)
for all T ∈ R++.

Proof. First note that P(Yt ∈ R++ for all t ∈ R+) = 1 as it was detailed in the proof of Lemma

3.1. We have P(
∫ T
0 Ys ds < ∞) = 1 for all T ∈ R+, since Y has continuous trajectories almost

surely, and further, P(
∫ T
0

1
Ys

ds < ∞) = 1 by (3.3). For each T ∈ R++, put

AT := {ω ∈ Ω : t 7→ Yt(ω) is continuous and positive on [0, T ]} .

Then AT ∈ F , P(AT ) = 1, and for all ω ∈ AT , by the Cauchy–Schwarz’s inequality, we have

∫ T

0
Ys(ω) ds

∫ T

0

1

Ys(ω)
ds ∈ [T 2,∞),

and
∫ T
0 Ys(ω) ds

∫ T
0

1
Ys(ω)

ds = T 2 if and only if KT (ω)Ys(ω) =
LT (ω)
Ys(ω)

for almost every s ∈ [0, T ]

with some KT (ω), LT (ω) ∈ R+ satisfying KT (ω)
2 + LT (ω)

2 ∈ R++. Clearly, KT (ω) = 0 would
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imply LT (ω) = 0, thus KT (ω) 6= 0 and Ys(ω) =
(

LT (ω)
KT (ω)

)1/2
for almost every s ∈ [0, T ]. Hence

Ys(ω) = y0 for all s ∈ [0, T ] if ω ∈ AT and
∫ T
0 Ys(ω) ds

∫ T
0

1
Ys(ω)

ds = T 2. Since the quadratic

variation of a deterministic process is the identically zero process, the quadratic variation process

(〈Y 〉t)t∈[0,T ] of (Yt)t∈[0,T ] should be identically zero on the event

AT ∩
{
ω ∈ Ω :

∫ T

0
Ys(ω) ds

∫ T

0

1

Ys(ω)
ds = T 2

}
.

Since 〈Y 〉t = σ2
1

∫ t
0 Ys ds, t ∈ R+, we have

∫ t
0 Ys(ω) ds = 0 for all t ∈ [0, T ] on the event

AT ∩
{
ω ∈ Ω :

∫ T

0
Ys(ω) ds

∫ T

0

1

Ys(ω)
ds = T 2

}
.

However,
{
ω ∈ Ω :

∫ T
0 Ys(ω) ds = 0

}⋂
AT = ∅, since t 7→ Yt(ω) is continuous and positive on [0, T ]

for all ω ∈ AT . Consequently, since P(AT ) = 1, we have P

(∫ T
0 Ys ds

∫ T
0

1
Ys

ds = T 2
)
= 0. ✷

4 Consistency of MLE

First we consider the case of subcritical Heston models, i.e., when b ∈ R++.

4.1 Theorem. If b ∈ R++, α, β ∈ R, σ1, σ2 ∈ R++, ̺ ∈ (−1, 1), and (Y0,X0) = (y0, x0) ∈
R++×R, then the MLE of (a, b, α, β) is strongly consistent, i.e.,

(
âT , b̂T , α̂T , β̂T

) a.s.−→ (a, b, α, β) as

T → ∞, whenever a ∈
(
σ2
1

2 ,∞
)
, and it is weakly consistent, i.e.,

(
âT , b̂T , α̂T , β̂T

) P−→ (a, b, α, β)

as T → ∞, whenever a =
σ2
1

2 .

Proof. In both cases we have to show coordinate-wise convergences. Indeed, for the almost sure

convergence, one can use that the intersection of four events with probability one is an event with

probability one, and for the convergence in probability one can apply, e.g., van der Vaart [40, Theorem

2.7, part (vi)].

By Lemma 3.3, there exists a unique MLE
(
âT , b̂T , α̂T , β̂T

)
of (a, b, α, β) for all T ∈ R++,

which has the form given in (3.4). By (3.6), we have

α̂T − α =

σ2 ·
∫ T
0

dW̃s√
Ys∫ T

0
ds
Ys

− σ2
1
T

∫ T
0

ds
Ys

·
∫ T
0

√
Ys dW̃s∫ T

0
Ys ds

1− 1
1
T

∫ T
0

Ys ds · 1T
∫ T
0

ds
Ys

(4.1)

provided that
∫ T
0 Ys ds

∫ T
0

ds
Ys

> T 2 (implying
∫ T
0 Ys ds

∫ T
0

ds
Ys

∈ R++) which holds a.s.

First we consider the case of a ∈
(
σ2
1

2 ,∞
)
. The strong consistency of the MLE of (a, b) has

been proved by Overbeck [35, Theorem 2, part (ii)]. By part (i) of Theorem 2.4, E(Y∞) = a
b and

E

(
1

Y∞

)
= 2b

2a−σ2
1

, and hence, part (iii) of Theorem 2.4 implies

1

T

∫ T

0
Ys ds

a.s.−→ E(Y∞) and
1

T

∫ T

0

ds

Ys

a.s.−→ E

(
1

Y∞

)
as T → ∞.(4.2)
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Further, since E(Y∞),E
(

1
Y∞

)
∈ R++, (4.2) yields

∫ T

0
Ys ds

a.s.−→ ∞ and

∫ T

0

ds

Ys

a.s.−→ ∞ as T → ∞.

Applying a strong law of large numbers for continuous local martingales (see, e.g., Theorem A.1), we

obtain

α̂T − α
a.s.−→

σ2 · 0− σ2
2b

2a−σ2
1

· 0

1− 1
a
b
· 2b

2a−σ2
1

= 0 as T → ∞,

where we also used that the denominator above is not zero due to σ1 ∈ R++.

Next we consider the case of a =
σ2
1

2 . Weak consistency of the MLE of (a, b) follows from part

1 of Theorem 7 in Ben Alaya and Kebaier [11]. We have again E(Y∞) = a
b ∈ R++, implying

1

T

∫ T

0
Ys ds

a.s.−→ E(Y∞) and

∫ T

0
Ys ds

a.s.−→ ∞ as T → ∞.(4.3)

Due to Ben Alaya and Kebaier [10, Proposition 4], we have

1

T 2

∫ T

0

ds

Ys

D−→ τ as T → ∞,(4.4)

where τ := inf{t ∈ R++ : Wt = b
σ1
} with a standard Wiener process (Wt)t∈R+

. Since P(τ ∈
R++) = 1, we conclude

1
1
T

∫ T
0

ds
Ys

=
1

T

1
1
T 2

∫ T
0

ds
Ys

D−→ 0 · 1
τ
= 0 as T → ∞,

and hence,

(4.5)
1

1
T

∫ T
0

ds
Ys

P−→ 0 as T → ∞,

implying also
1

∫ T
0

ds
Ys

=
1

T

1
1
T

∫ T
0

ds
Ys

P−→ 0 as T → ∞.

Since the function R++ ∋ T 7→ 1∫ T
0

ds
Ys

is monotone decreasing, we obtain

1
∫ T
0

ds
Ys

a.s.−→ 0 and

∫ T

0

ds

Ys

a.s.−→ ∞ as T → ∞.

Using (4.1) and a strong law of large numbers for continuous local martingales (see, e.g., Theorem

A.1), we obtain

α̂T − α
P−→ σ2 · 0− 0 · 0

1− b
a · 0

= 0 as T → ∞.

Here we have convergence only in probability because of (4.5).
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By (3.6), we have

β̂T − β =

σ2
1
T

∫ T
0

Ys ds
·
∫ T
0

dW̃s√
Ys∫ T

0
ds
Ys

− σ2 ·
∫ T
0

√
Ys dW̃s∫ T

0
Ys ds

1− 1
1
T

∫ T
0

Ys ds · 1T
∫ T
0

ds
Ys

(4.6)

provided that
∫ T
0 Ys ds

∫ T
0

ds
Ys

> T 2 (implying
∫ T
0 Ys ds

∫ T
0

ds
Ys

∈ R++) which holds a.s.

First we consider the case of a ∈
(
σ2
1

2 ,∞
)
. Applying again a strong law of large numbers for

continuous local martingales (see, e.g., Theorem A.1), we obtain

β̂T − β
a.s.−→

σ2

E(Y∞) · 0− σ2 · 0
1− 1

E(Y∞)E
(

1
Y∞

)
= 0 as T → ∞,

where we also used that the denominator above is not zero due to σ1 ∈ R++.

Next we consider the case of a =
σ2
1

2 . Using (4.5) and (4.6), we obtain

β̂T − β
P−→

σ2

E(Y∞) · 0− σ2 · 0
1− 1

E(Y∞) · 0
= 0 as T → ∞.

✷

In order to handle supercritical Heston models, i.e., when b ∈ R−−, we need the following integral

version of the Toeplitz Lemma, due to Dietz and Kutoyants [17].

4.2 Lemma. Let {ϕT : T ∈ R+} be a family of probability measures on R+ such that ϕT ([0, T ]) = 1

for all T ∈ R+, and limT→∞ ϕT ([0,K]) = 0 for all K ∈ R++. Then for every bounded and

measurable function f : R+ → R for which the limit f(∞) := limt→∞ f(t) exists, we have

lim
T→∞

∫ ∞

0
f(t)ϕT (dt) = f(∞).

As a special case, we have the following integral version of the Kronecker Lemma, see Küchler and

Sørensen [30, Lemma B.3.2].

4.3 Lemma. Let a : R+ → R+ be a measurable function. Put b(T ) :=
∫ T
0 a(t) dt, T ∈ R+.

Suppose that limT→∞ b(T ) = ∞. Then for every bounded and measurable function f : R+ → R for

which the limit f(∞) := limt→∞ f(t) exists, we have

lim
T→∞

1

b(T )

∫ T

0
a(t)f(t) dt = f(∞).

The next theorem states strong consistency of the MLE of b in the supercritical case. Overbeck

[35, Theorem 2, part (i)] contains this result for CIR processes with a slightly incomplete proof.

4.4 Theorem. If a ∈
[
σ2
1

2 ,∞
)
, b ∈ R−−, α, β ∈ R, σ1, σ2 ∈ R++, ̺ ∈ (−1, 1), and (Y0,X0) =

(y0, x0) ∈ R++ × R, then the MLE of b is strongly consistent, i.e., b̂T
a.s.−→ b as T → ∞.
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Proof. By Lemma 3.3, there exists a unique MLE b̂T of b for all T ∈ R++ which has the form

given in (3.4). First we check that

E(Yt | FY
s ) = E(Yt |Ys) = e−b(t−s)Ys + a

∫ t

s
e−b(t−u) du

for all s, t ∈ R+ with 0 6 s 6 t, where FY
s denotes the σ-algebra σ({Yu, u ∈ [0, s]}). The

first equality follows from the Markov property of the process (Yt)t∈R+
. The second equality is a

consequence of the time-homogeneity of the Markov process Y and

E
(
Yt | (Y0,X0) = (y0, x0)

)
= e−bty0 + a

∫ t

0
e−b(t−u) du, t ∈ R+,

valid for all (y0, x0) ∈ R+ × R, following from Proposition 2.2. Thus

E(ebtYt | FY
s ) = ebsYs + a

∫ t

s
ebu du > ebsYs

for all s, t ∈ R+ with 0 6 s 6 t, consequently, the process (ebtYt)t∈R+
is a non-negative

submartingale with respect to the filtration (FY
t )t∈R+

. Moreover,

E(ebtYt) = y0 + a

∫ t

0
ebu du 6 y0 + a

∫ ∞

0
ebu du = y0 −

a

b
< ∞, t ∈ R+,

hence, by the submartingale convergence theorem, there exists a non-negative random variable V

such that

ebtYt
a.s.−→ V as t → ∞.(4.7)

Note that the distribution of V coincides with the distribution of Ỹ−1/b, where (Ỹt)t∈R+
is a CIR

process given by the SDE

dỸt = adt+ σ1

√
Ỹt dWt, t ∈ R+,

with initial value Ỹ0 = y0, where (Wt)t∈R+
is a standard Wiener process, see Ben Alaya and Kebaier

[10, Proposition 3]. Consequently, P(V ∈ R++) = 1 due to P(Ỹt ∈ R++, ∀ t ∈ R+) = 1. If ω ∈ Ω

such that R+ ∋ t 7→ Yt(ω) is continuous and ebtYt(ω) → V (ω) as t → ∞, then, by the integral

Kronecker Lemma 4.3 with f(t) = ebtYt(ω) and a(t) = e−bt, t ∈ R+, we have

1∫ t
0 e

−bu du

∫ t

0
e−bu(ebuYu(ω)) du → V (ω) as t → ∞.

Here
∫ t
0 e

−bu du = e−bt−1
−b , t ∈ R+, thus we conclude

ebt
∫ t

0
Yu du

a.s.−→ −V

b
as t → ∞.(4.8)

Further,

∫ t

0

du

Yu

a.s.−→
∫ ∞

0

du

Yu
as t → ∞,(4.9)
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where
∫∞
0

du
Yu

D
=
∫ −1/b
0 Ỹu du, see Ben-Alaya and Kebaier [10, Proposition 4]. Consequently,

P(
∫∞
0

du
Yu

∈ R++) = 1 due to P(Ỹt ∈ R++, ∀ t ∈ R+) = 1.

Since P(Yt ∈ R++ for all t ∈ R+) = 1, one can apply Itô’s rule to the function f(x) = log x,

x ∈ R++, for which f ′(x) = 1/x, f ′′(x) = −1/x2, x ∈ R++, and we obtain

log Yt = log y0 +

∫ t

0

dYs

Ys
− σ2

1

2

∫ t

0

ds

Ys
, t ∈ R+,(4.10)

for all b ∈ R, see von Weizsäcker and Winkler [43, Theorem 8.1.1].

Using (3.4) and (4.10), we have

b̂T =

T
∫ T
0

dYs
Ys∫ T

0
Ys ds

∫ T
0

ds
Ys

− YT−y0∫ T
0

Ys ds

1− 1
1

T2

∫ T
0

Ys ds
∫ T
0

ds
Ys

=

T (log YT−log y0)∫ T
0

Ys ds
∫ T
0

ds
Ys

− YT−y0−
σ2
1
2
T

∫ T
0

Ys ds

1− 1
1

T2

∫ T
0

Ys ds
∫ T
0

ds
Ys

provided that
∫ T
0 Ys ds

∫ T
0

ds
Ys

> T 2 (implying
∫ T
0 Ys ds

∫ T
0

ds
Ys

∈ R++) which holds a.s. Applying

(4.7), (4.8) and (4.9), we conclude

b̂T =

T ebT log(ebT YT )−bT 2ebT−T ebT log y0

(ebT
∫ T
0

Ys ds)
∫ T
0

ds
Ys

− ebT YT−ebT y0−
σ2
1
2
T ebT

ebT
∫ T
0

Ys ds

1− T 2ebT 1

(ebT
∫ T
0

Ys ds)
∫ T
0

ds
Ys

a.s.−→
0·logV−0

−V
b

∫∞
0

ds
Ys

− V−0
−V

b

1− 0 · 1
−V

b

∫∞
0

ds
Ys

= b

as T → ∞. ✷

4.5 Remark. For subcritical (i.e., b ∈ R++) CIR models with a ∈
(σ2

1

2 ,∞
)
, Overbeck [35, Theorem

2, part (ii)] proved strong consistency of the MLE of (a, b). For subcritical (i.e., b ∈ R++) CIR

models with a =
σ2
1

2 , weak consistency of the MLE of (a, b) follows from part 1 of Theorem 7 in

Ben Alaya and Kebaier [11]. ✷

4.6 Remark. For critical (i.e., b = 0) CIR models with a ∈
[σ2

1

2 ,∞
)
, weak consistency of the

MLE of (a, b) follows from Theorem 2 (iii) in Overbeck [35] or Theorem 6 in Ben Alaya and Kebaier

[11]. For critical Heston models with a ∈ (
σ2
1

2 ,∞), weak consistency of the MLE of (a, b, α, β) is a

consequence of Theorem 6.2. ✷

4.7 Remark. For supercritical (i.e., b ∈ R−−) CIR models with a ∈
[σ2

1

2 ,∞
)
, Overbeck [35,

Theorem 2, parts (i) and (v)] proved that the MLE of b is strongly consistent, however, there is no

strongly consistent estimator of a. See also Ben Alaya and Kebaier [11, Theorem 7, part 2]. For

supercritical Heston models with a ∈
[σ2

1

2 ,∞
)
, it will turn out that the MLE of a and α is not

even weakly consistent, but the MLE of β is weakly consistent, see Theorem 7.1. ✷

5 Asymptotic behaviour of MLE: subcritical case

We consider subcritical Heston models, i.e., when b ∈ R++.
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5.1 Theorem. If a ∈
(
σ2
1

2 ,∞
)
, b ∈ R++, α, β ∈ R, σ1, σ2 ∈ R++, ̺ ∈ (−1, 1), and (Y0,X0) =

(y0, x0) ∈ R++ × R, then the MLE of (a, b, α, β) is asymptotically normal, i.e.,

√
T




âT − a

b̂T − b

α̂T − α

β̂T − β




D−→ N4


0,S ⊗




2b
2a−σ2

1

−1

−1 a
b



−1
 as T → ∞,(5.1)

where S is defined in (2.4).

With a random scaling, we have

1
(∫ T

0
ds
Ys

)1/2

(
I2 ⊗

[∫ T
0

ds
Ys

−T

0
(∫ T

0 Ys ds
∫ T
0

ds
Ys

− T 2
)1/2

])



âT − a

b̂T − b

α̂T − α

β̂T − β




D−→ N4 (0,S ⊗ I2)(5.2)

as T → ∞.

Proof. By Lemma 3.3, there exists a unique MLE
(
âT , b̂T , α̂T , β̂T

)
of (a, b, α, β) for all T ∈ R++,

which has the form given in (3.4). By (3.6), we have

√
T (âT − a) =

1
T

∫ T
0 Ys ds · σ1√

T

∫ T
0

dWs√
Ys

− σ1√
T

∫ T
0

√
Ys dWs

1
T

∫ T
0 Ys ds · 1

T

∫ T
0

ds
Ys

− 1
,

√
T (̂bT − b) =

σ1√
T

∫ T
0

dWs√
Ys

− 1
T

∫ T
0

ds
Ys

· σ1√
T

∫ T
0

√
Ys dWs

1
T

∫ T
0 Ys ds · 1

T

∫ T
0

ds
Ys

− 1
,

√
T (α̂T − α) =

1
T

∫ T
0 Ys ds · σ2√

T

∫ T
0

dW̃s√
Ys

− σ2√
T

∫ T
0

√
Ys dW̃s

1
T

∫ T
0 Ys ds · 1

T

∫ T
0

ds
Ys

− 1
,

√
T (β̂T − β) =

σ2√
T

∫ T
0

dW̃s√
Ys

− 1
T

∫ T
0

ds
Ys

· σ2√
T

∫ T
0

√
Ys dW̃s

1
T

∫ T
0 Ys ds · 1

T

∫ T
0

ds
Ys

− 1

provided that
∫ T
0 Ys ds

∫ T
0

1
Ys

ds > T 2 which holds a.s. Consequently,

√
T




âT − a

b̂T − b

α̂T − α

β̂T − β



=

1
1
T

∫ T
0 Ys ds · 1

T

∫ T
0

ds
Ys

− 1

(
I2 ⊗

[
1
T

∫ T
0 Ys ds 1

1 1
T

∫ T
0

ds
Ys

])
1√
T
MT

=


I2 ⊗

[
1
T

∫ T
0

ds
Ys

−1

−1 1
T

∫ T
0 Ys ds

]−1

 1√

T
MT ,
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where

M t :=




σ1
∫ t
0

dWs√
Ys

−σ1
∫ t
0

√
Ys dWs

σ2
∫ t
0

dW̃s√
Ys

−σ2
∫ t
0

√
Ys dW̃s



, t ∈ R+.

Next, we show that

1√
T
MT

D−→ ηZ as T → ∞,(5.3)

where Z is a 4-dimensional standard normally distributed random vector and η ∈ R
4×4 such that

ηη⊤ = S ⊗


E
(

1
Y∞

)
−1

−1 E(Y∞)


 .

Here the two symmetric matrices on the right hand side are positive definite, since

σ2
1σ

2
2(1− ̺2) ∈ R++ and E

(
1

Y∞

)
E(Y∞)− 1 =

σ2
1

2a− σ2
1

∈ R++,

so η can be chosen, for instance, as the uniquely defined symmetric positive definite square root of

the Kronecker product of the two matrices in question. The process (M t)t∈R+
is a 4-dimensional

continuous local martingale with quadratic variation process

〈M〉t = S ⊗
[∫ t

0
1
Ys

ds −t

−t
∫ t
0 Ys ds

]
, t ∈ R+.

By Theorem 2.4, we have

Q(t)〈M 〉tQ(t)⊤
a.s.−→ S ⊗


E
(

1
Y∞

)
−1

−1 E(Y∞)


 as t → ∞

with Q(t) := t−1/2I4, t ∈ R++. Hence, Theorem A.2 yields (5.3). Then Slutsky’s lemma yields

√
T




âT − a

b̂T − b

α̂T − α

β̂T − β




D−→


I2 ⊗


E
(

1
Y∞

)
−1

−1 E(Y∞)



−1
 ηZ

D
= N4(0,Σ1) as T → ∞,

where (applying the identities (A⊗B)⊤ = A⊤ ⊗B⊤ and (A⊗B)(C ⊗D) = (AC)⊗ (BD))

Σ1 :=


I2 ⊗


E
(

1
Y∞

)
−1

−1 E(Y∞)



−1


S ⊗


E
(

1
Y∞

)
−1

−1 E(Y∞)






I2 ⊗


E
(

1
Y∞

)
−1

−1 E(Y∞)



−1


⊤

= (I2SI2)⊗





E
(

1
Y∞

)
−1

−1 E(Y∞)



−1 
E
(

1
Y∞

)
−1

−1 E(Y∞)






E
(

1
Y∞

)
−1

−1 E(Y∞)



−1


⊤

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= S ⊗


E
(

1
Y∞

)
−1

−1 E(Y∞)



−1

,

which yields (5.1) recalling E(Y∞) = a
b and E

(
1

Y∞

)
= 2b

2a−σ2
1

.

Slutsky’s lemma and (5.1) yield

1
(∫ T

0
ds
Ys

)1/2

(
I2 ⊗

[∫ T
0

ds
Ys

−T

0
(∫ T

0 Ys ds
∫ T
0

ds
Ys

− T 2
)1/2

])



âT − a

b̂T − b

α̂T − α

β̂T − β




=
1

(
1
T

∫ T
0

ds
Ys

)1/2

(
I2 ⊗

[
1
T

∫ T
0

ds
Ys

−1

0
(
1
T

∫ T
0 Ys ds · 1

T

∫ T
0

ds
Ys

− 1
)1/2

])
√
T




âT − a

b̂T − b

α̂T − α

β̂T − β




D−→ 1
(
E
(

1
Y∞

))1/2

(
I2 ⊗

[
E
(

1
Y∞

)
−1

0
(
E(Y∞)E

(
1

Y∞

)
− 1
)1/2

])
N4


0,S ⊗

[
E
(

1
Y∞

)
−1

−1 E(Y∞)

]−1



D
= N4(0,Σ2) as T → ∞,

where (applying the identities (A⊗B)⊤ = A⊤ ⊗B⊤ and (A⊗B)(C ⊗D) = (AC)⊗ (BD))

Σ2 :=
1

E
(

1
Y∞

)
(
I2 ⊗

[
E
(

1
Y∞

)
−1

0
(
E(Y∞)E

(
1

Y∞

)
− 1
)1/2

])
S ⊗

[
E
(

1
Y∞

)
−1

−1 E(Y∞)

]−1



×
(
I2 ⊗

[
E
(

1
Y∞

)
−1

0
(
E(Y∞)E

(
1

Y∞

)
− 1
)1/2

])⊤

=
1

E
(

1
Y∞

)(I2SI2)

⊗



[
E
(

1
Y∞

)
−1

0
(
E(Y∞)E

(
1

Y∞

)
− 1
)1/2

] [
E
(

1
Y∞

)
−1

−1 E(Y∞)

]−1 [
E
(

1
Y∞

)
0

−1
(
E(Y∞)E

(
1

Y∞

)
− 1
)1/2

]


= S ⊗ I2,

since

[
E
(

1
Y∞

)
−1

−1 E(Y∞)

]
=

1

E
(

1
Y∞

)
[
E
(

1
Y∞

)
0

−1
(
E(Y∞)E

(
1

Y∞

)
− 1
)1/2

][
E
(

1
Y∞

)
−1

0
(
E(Y∞)E

(
1

Y∞

)
− 1
)1/2

]
.

Thus we obtain (5.2). ✷
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5.2 Remark. For subcritical (i.e., b ∈ R++) CIR models, for the MLE of (a, b), Ben Alaya and

Kebaier [11, Theorems 5 and 7] proved asymptotic normality whenever a ∈
(σ2

1

2 ,∞
)
, and derived a

limit theorem with a non-normal limit distribution whenever a =
σ2
1

2 . For subcritical (i.e., b ∈ R++)

CIR models, for the MLE of (a, b), with random scaling, Overbeck [35, Theorem 3 (iii)] showed

asymptotic normality. ✷

6 Asymptotic behaviour of MLE: critical case

We consider critical Heston models, i.e., when b = 0. First we present an auxiliary lemma.

6.1 Lemma. The mapping C(R+,R) ∋ f 7→
(∫ t

0 f(u) du
)
t∈R+

∈ C(R+,R) is continuous, hence

measurable, where C(R+,R) denotes the set of real-valued continuous functions defined on R+.

Proof. The space C(R+,R) is topologized by the locally uniform metric

δlu(f, g) :=

∞∑

N=1

2−N min

{
1, sup

t∈[0,N ]
|f(t)− g(t)|

}
, f, g ∈ C(R+,R),

see, e.g., Jacod and Shiryaev [25, Chapter VI, Section 1]. Let f ∈ C(R+,R) and fn ∈ C(R+,R),

n ∈ N, such that δlu(f, fn) → 0 as n → ∞. Put F (t) :=
∫ t
0 f(s) ds, t ∈ R+, and Fn(t) :=∫ t

0 fn(s) ds, t ∈ R+, n ∈ N. Then supt∈[0,N ] |F (t) − Fn(t)| 6 N supt∈[0,N ] |f(t) − fn(t)| for all

N ∈ N, hence for each K ∈ N, we have

δlu(F,Fn) =

∞∑

N=K+1

2−N min

{
1, sup

t∈[0,N ]
|F (t)− Fn(t)|

}
+

K∑

N=1

2−N min

{
1, sup

t∈[0,N ]
|F (t) − Fn(t)|

}

6

∞∑

N=K+1

2−N +
K∑

N=1

2−N min

{
1, N sup

t∈[0,N ]
|f(t)− fn(t)|

}

6 2−K +
K∑

N=1

N2−N min

{
1, sup

t∈[0,N ]
|f(t)− fn(t)|

}

6 2−K + δlu(f, fn)

K∑

N=1

N = 2−K +
K(K + 1)

2
δlu(f, fn) → 2−K as n → ∞.

Consequently,

lim sup
n→∞

δlu(F,Fn) 6 2−K for all K ∈ N,

thus we obtain the statement.

We present another short proof. Applying Problem 3.11.26 in Ethier and Kurtz [20] and Proposi-

tion VI.1.17 in Jacod and Shiryaev [25], the mapping C(R+,R) ∋ f 7→ (
∫ t
0 f(u) du)t∈R+

∈ C(R+,R)

is continuous, hence measurable. ✷

The next result can be considered as a generalization of part 2 of Theorem 6 in Ben Alaya and

Kebaier [11] for critical Heston models.
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6.2 Theorem. If a ∈
(σ2

1

2 ,∞
)
, b = 0, α, β ∈ R, σ1, σ2 ∈ R++, ̺ ∈ (−1, 1) and (Y0,X0) =

(y0, x0) ∈ R++ × R, then




√
log T (âT − a)

√
log T (α̂T − α)

T b̂T

T (β̂T − β)




D−→




(
a− σ2

1

2

)1/2
S1/2Z2

a−Y1∫ 1

0
Ys ds

α−X1∫ 1

0
Ys ds




as T → ∞,(6.1)

where (Yt,Xt)t∈R+
is the unique strong solution of the SDE

{
dYt = adt+ σ1

√Yt dWt,

dXt = α dt+ σ2
√Yt

(
̺dWt +

√
1− ̺2 dBt

)
,

t ∈ R+,(6.2)

with initial value (Y0,X0) = (0, 0), where (Wt,Bt)t∈R+
is a 2-dimensional standard Wiener process,

Z2 is a 2-dimensional standard normally distributed random vector independent of
(
Y1,
∫ 1
0 Yt dt,X1

)
,

S is defined in (2.4), and S1/2 denotes its uniquely determined symmetric, positive definite square

root.

Proof. By Lemma 3.3, there exists a unique MLE
(
âT , b̂T , α̂T , β̂T

)
of (a, b, α, β) for all T ∈ R++,

which has the form given in (3.4). By (3.6), we have

√
log T (âT − a) =

1(
1

log T

∫ T
0

ds
Ys

)1/2
σ1

∫ T
0

dWs√
Ys(∫ T

0
ds
Ys

)1/2 −
1√

log T
1

logT

∫ T
0

ds
Ys

Tσ1

∫ T
0

√
Ys dWs∫ T

0
Ys ds

1− 1
1

T2

∫ T
0

Ys ds

1∫ T
0

ds
Ys

,

√
log T (α̂T − α) =

1(
1

log T

∫ T
0

ds
Ys

)1/2
σ2

∫ T
0

dW̃s√
Ys(∫ T

0
ds
Ys

)1/2 −
1√

log T
1

log T

∫ T
0

ds
Ys

Tσ2

∫ T
0

√
Ys dW̃s∫ T

0
Ys ds

1− 1
1

T2

∫ T
0

Ys ds

1∫ T
0

ds
Ys

,

T b̂T =

1
1

T2

∫ T
0

Ys ds

1(∫ T
0

ds
Ys

)1/2
σ1

∫ T
0

dWs√
Ys(∫ T

0
ds
Ys

)1/2 − Tσ1

∫ T
0

√
Ys dWs∫ T

0
Ys ds

1− 1
1

T2

∫ T
0

Ys ds

1∫ T
0

ds
Ys

,

and

T (β̂T − β) =

1
1

T2

∫ T
0

Ys ds

1(∫ T
0

ds
Ys

)1/2
σ2

∫ T
0

dW̃s√
Ys(∫ T

0
ds
Ys

)1/2 − Tσ2

∫ T
0

√
Ys dW̃s∫ T

0
Ys ds

1− 1
1

T2

∫ T
0

Ys ds

1∫ T
0

ds
Ys

,

provided that
∫ T
0 Ys ds

∫ T
0

1
Ys

ds > T 2 which holds a.s. It is known that

1

log T

∫ T

0

ds

Ys

P−→
(
a− σ2

1

2

)−1

as T → ∞,(6.3)
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see, e.g., Overbeck [35, Lemma 5] or Ben Alaya and Kebaier [10, Proposition 2]. Consequently,

1
∫ T
0

ds
Ys

a.s.−→ 0 and

∫ T

0

ds

Ys

a.s.−→ ∞ as T → ∞,(6.4)

where we used that
(∫ t

0
ds
Ys

)
t∈R+

is monotone increasing and convergence in probability implies the

existence of a subsequence which converges almost surely. Note that

Tσ1
∫ T
0

√
Ys dWs∫ T

0 Ys ds
=

1
T (YT − y0)− a

1
T 2

∫ T
0 Ys ds

, T ∈ R++,(6.5)

Tσ2
∫ T
0

√
Ys dW̃s∫ T

0 Ys ds
=

σ2̺

σ1

Tσ1
∫ T
0

√
Ys dWs∫ T

0 Ys ds
+

σ2
√

1− ̺2
(

1
T 2

∫ T
0 Ys ds

)1/2

∫ T
0

√
Ys dBs

(∫ T
0 Ys ds

)1/2 , T ∈ R++.(6.6)

Consequently, (6.1) will follow from

(
σ1
∫ T
0

dWs√
Ys(∫ T

0
ds
Ys

)1/2 ,
σ2
∫ T
0

dW̃s√
Ys(∫ T

0
ds
Ys

)1/2 ,
∫ T
0

√
Ys dBs

(∫ T
0 Ys ds

)1/2 ,
1

T
YT ,

1

T 2

∫ T

0
Ys ds

)
D−→
(
S1/2Z2, Z3,Y1,

∫ 1

0
Ys ds

)
(6.7)

as T → ∞, where Z3 is a standard normally distributed random variable independent of(
Z2,Y1,

∫ 1
0 Ys ds

)
, from (6.3), (6.4), (6.5), (6.6), Slutsky’s lemma, continuous mapping theorem,

and P
(∫ 1

0 Ys ds ∈ R++

)
= 1 (which has been shown in the proof of Theorem 3.1 in Barczy et al. [5]).

Indeed,




√
log T (âT − a)

√
log T (α̂T − α)

T b̂T

T (β̂T − β)




D−→ 1

1− 1∫ 1

0
Ys ds

· 0




1(
a−σ2

1
2

)−1/2 (S
1/2Z2)1 − 0(

a−σ2
1
2

)−1

Y1−a∫ 1

0
Ys ds

1(
a−σ2

1
2

)−1/2 (S
1/2Z2)2 − 0(

a−σ2
1
2

)−1

X1−α∫ 1

0
Ys ds

1∫ 1

0
Ys ds

· 0 · (S1/2Z2)1 − Y1−a∫ 1

0
Ys ds

1∫ 1

0
Ys ds

· 0 · (S1/2Z2)2 − X1−α∫ 1

0
Ys ds




as T → ∞, where S1/2Z2 =:
(
(S1/2Z2)1, (S

1/2Z2)2
)⊤

, since

(
Z2,Y1,

∫ 1

0
Ys ds,

σ2̺

σ1

Y1 − a∫ 1
0 Ys ds

+
σ2
√

1− ̺2
(∫ 1

0 Ys ds
)1/2Z3

)
D
=

(
Z2,Y1,

∫ 1

0
Ys ds,

X1 − α∫ 1
0 Ys ds

)
.(6.8)

The statement (6.8) is equivalent to

(
Y1,

∫ 1

0
Ys ds,

σ2̺

σ1

Y1 − a∫ 1
0 Ys ds

+
σ2
√

1− ̺2
(∫ 1

0 Ys ds
)1/2Z3

)
D
=

(
Y1,

∫ 1

0
Ys ds,

X1 − α∫ 1
0 Ys ds

)
,(6.9)

since Z2 is independent of (Z3,Y1,
∫ 1
0 Ys ds) and of (Y1,

∫ 1
0 Ys ds,X1). The equality of the distribu-

tions in (6.9) follows from the equality of their characteristic functions. Namely, for all (q1, q2, r) ∈ R
3

and T ∈ R++,

E

(
exp

{
iq1Y1 + iq2

∫ 1

0
Ys ds+ ir

(
σ2̺

σ1

Y1 − a∫ 1
0 Ys ds

+
σ2
√

1− ̺2
(∫ 1

0 Ys ds
)1/2Z3

)}∣∣∣∣∣Y1,

∫ 1

0
Ys ds

)
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= exp

{
iq1Y1 + iq2

∫ 1

0
Ys ds+ ir

σ2̺

σ1

Y1 − a∫ 1
0 Ys ds

}
E

(
exp

{
ir

σ2
√

1− ̺2
(∫ 1

0 Ys ds
)1/2Z3

}∣∣∣∣∣Y1,

∫ 1

0
Ys ds

)

= exp

{
iq1Y1 + iq2

∫ 1

0
Ys ds+ ir

σ2̺

σ1

Y1 − a∫ 1
0 Ys ds

}
exp

{
−1

2
r2

σ2
2(1− ̺2)∫ 1
0 Ys ds

}
,

thus

E

(
exp

{
iq1Y1 + iq2

∫ 1

0
Ys ds+ ir

(
σ2̺

σ1

Y1 − a∫ 1
0 Ys ds

+
σ2
√

1− ̺2
(∫ 1

0 Ys ds
)1/2Z3

)})

= E

(
exp

{
iq1Y1 + iq2

∫ 1

0
Ys ds+ ir

σ2̺

σ1

Y1 − a∫ 1
0 Ys ds

− 1

2
r2

σ2
2(1− ̺2)∫ 1
0 Ys ds

})
.

Further, by (6.2),

X1 − α = σ2

∫ 1

0

√
Ys (̺dWs +

√
1− ̺2 dBs) =

σ2̺

σ1
(Y1 − a) + σ2

√
1− ̺2

∫ 1

0

√
Ys dBs,

hence for all (q1, q2, r) ∈ R
3 and T ∈ R++, we have

E

(
exp

{
iq1Y1 + iq2

∫ 1

0
Ys ds+ ir

X1 − α∫ 1
0 Ys ds

}∣∣∣∣∣Ys, s ∈ [0, 1]

)

= E

(
exp

{
iq1Y1 + iq2

∫ 1

0
Ys ds+ ir

(
σ2̺

σ1

Y1 − a∫ 1
0 Ys ds

+
σ2
√

1− ̺2∫ 1
0 Ys ds

∫ 1

0

√
Ys dBs

)}∣∣∣∣∣Ys, s ∈ [0, 1]

)

= exp

{
iq1Y1 + iq2

∫ 1

0
Ys ds+ ir

σ2̺

σ1

Y1 − a∫ 1
0 Ys ds

}

× E

(
exp

{
ir
σ2
√
1− ̺2∫ 1

0 Ys ds

∫ 1

0

√
Ys dBs

}∣∣∣∣∣Ys, s ∈ [0, 1]

)

= exp

{
iq1Y1 + iq2

∫ 1

0
Ys ds+ ir

σ2̺

σ1

Y1 − a∫ 1
0 Ys ds

}
exp

{
−1

2
r2

σ2
2(1− ̺2)∫ 1
0 Ys ds

}
,

where the last equality follows from the independence of (Yt)t∈R+
and (Bt)t∈R+

yielding that the

conditional distribution of
∫ 1
0

√Ys dBs given (Ys)s∈[0,1] is normal. Thus

E

(
exp

{
iq1Y1 + iq2

∫ 1

0
Ys ds+ ir

X1 − α∫ 1
0 Ys ds

})

= E

(
exp

{
iq1Y1 + iq2

∫ 1

0
Ys ds+ ir

σ2̺

σ1

Y1 − a∫ 1
0 Ys ds

− 1

2
r2

σ2
2(1− ̺2)∫ 1
0 Ys ds

})
,

and hence we obtain (6.9).

Now we turn to prove (6.7). Using that

σ2

∫ T

0

dW̃s√
Ys

= σ2̺

∫ T

0

dWs√
Ys

+ σ2
√

1− ̺2
∫ T

0

dBs√
Ys

, T ∈ R++,(6.10)
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and

[
σ1 0

σ2ρ σ2
√
1− ρ2

] [
σ1 0

σ2ρ σ2
√

1− ρ2

]⊤
= S,(6.11)

by continuous mapping theorem, to prove (6.7), it is sufficient to verify

( ∫ T
0

dWs√
Ys(∫ T

0
ds
Ys

)1/2 ,
∫ T
0

dBs√
Ys(∫ T

0
ds
Ys

)1/2 ,
∫ T
0

√
Ys dBs

(∫ T
0 Ys ds

)1/2 ,
1

T
YT ,

1

T 2

∫ T

0
Ys ds

)
D−→
(
Z2, Z3,Y1,

∫ 1

0
Ys ds

)
(6.12)

as T → ∞. First we prove

(
1

T
YT ,

1

T 2

∫ T

0
Ys ds

)
D−→
(
Y1,

∫ 1

0
Ys ds

)
as T → ∞.(6.13)

By part (ii) of Remark 2.7 in Barczy et al. [5], we have

( 1

T
YTt

)
t∈R+

D
= (Yt)t∈R+

for all T ∈ R++.

Indeed, by Proposition 2.1, (Yt)t∈R+
is a regular affine process, and the so-called admissible set of

parameters corresponding to (Yt)t∈R+
takes the form (0, 12σ

2
1, a, 0, 0, 0), and then part (ii) of Remark

2.7 in Barczy et al. [5] can be applied. Hence, by Lemma 6.1, we obtain

(
Y1,

∫ 1

0
Ys ds

)
D
=

(
1

T
YT ,

1

T 2

∫ T

0
Ys ds

)
for all T ∈ R++.

Then, by Slutsky’s lemma, in order to prove (6.13), it suffices to show convergences

1

T
(YT − YT )

P−→ 0,
1

T 2

∫ T

0
(Ys − Ys) ds

P−→ 0, as T → ∞.(6.14)

By (3.21) in Barczy et al. [5], we have

E(|Yt − Yt|) 6 y0, t ∈ R+,(6.15)

hence

E

(∣∣∣∣
1

T
(YT − YT )

∣∣∣∣
)

6
1

T
y0 → 0,

E

(∣∣∣∣
1

T 2

∫ T

0
(Ys − Ys) ds

∣∣∣∣
)

6
1

T 2

∫ T

0
E(|Ys − Ys|) ds 6

1

T
y0 → 0,

as T → ∞ implying (6.14). Thus we conclude (6.13).

We will prove (6.12) using continuity theorem. Applying (4.10), one can write

σ1

∫ T

0

dWs√
Ys

= log YT − log y0 +

(
σ2
1

2
− a

)∫ T

0

ds

Ys
, T ∈ R++,(6.16)
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hence
∫ T
0

dWs√
Ys

is measurable with respect to the σ-algebra σ(Ys, s ∈ [0, T ]). For all

(u1, u2, u3, v1, v2) ∈ R
5 and T ∈ R++, we have

E

(
exp

{
iu1

∫ T
0

dWs√
Ys(∫ T

0
ds
Ys

)1/2 + iu2

∫ T
0

dBs√
Ys(∫ T

0
ds
Ys

)1/2 + iu3

∫ T
0

√
Ys dBs

(∫ T
0 Ys ds

)1/2

+ iv1
1

T
YT + iv2

1

T 2

∫ T

0
Ys ds

}∣∣∣∣∣Ys, s ∈ [0, T ]

)

= exp

{
iu1

∫ T
0

dWs√
Ys(∫ T

0
ds
Ys

)1/2 + iv1
1

T
YT + iv2

1

T 2

∫ T

0
Ys ds

}

× E

(
exp

{
i

∫ T

0

(
u2(∫ T

0
dt
Yt

)1/2
1√
Ys

+
u3(∫ T

0 Yt dt
)1/2

√
Ys

)
dBs

}∣∣∣∣∣Ys, s ∈ [0, T ]

)

= exp

{
iu1

∫ T
0

dWs√
Ys(∫ T

0
ds
Ys

)1/2 + iv1
1

T
YT + iv2

1

T 2

∫ T

0
Ys ds

}

× exp

{
−1

2

∫ T

0

(
u22∫ T
0

dt
Yt

1

Ys
+

u23∫ T
0 Yt dt

Ys +
2u2u3(∫ T

0
dt
Yt

∫ T
0 Yt dt

)1/2

)
ds

}

= exp

{
iu1

∫ T
0

dWs√
Ys(∫ T

0
ds
Ys

)1/2 + iv1
1

T
YT + iv2

1

T 2

∫ T

0
Ys ds

}
exp

{
−1

2
(u22 + u23)−

Tu2u3(∫ T
0

dt
Yt

∫ T
0 Yt dt

)1/2

}
,

where we used the independence of Y and B. Consequently, the joint characteristic function of the

random vector on the left hand side of (6.12) takes the form

E

(
exp

{
iu1

∫ T
0

dWs√
Ys(∫ T

0
ds
Ys

)1/2 + iu2

∫ T
0

dBs√
Ys(∫ T

0
ds
Ys

)1/2 + iu3

∫ T
0

√
Ys dBs

(∫ T
0 Ys ds

)1/2 + iv1
1

T
YT + iv2

1

T 2

∫ T

0
Ys ds

})

= e−(u2
2+u2

3)/2 E

(
exp

{
ξT (u1, v1, v2)−

Tu2u3(∫ T
0

dt
Yt

∫ T
0 Yt dt

)1/2

})
,

where

ξT (u1, v1, v2) := iu1

∫ T
0

dWs√
Ys(∫ T

0
ds
Ys

)1/2 + iv1
1

T
YT + iv2

1

T 2

∫ T

0
Ys ds.

Ben Alaya and Kebaier [11, proof of Theorem 6] proved

(6.17)

(
log YT − log y0 +

(σ2
1

2 − a
) ∫ T

0
ds
Ys√

log T
,
YT

T
,
1

T 2

∫ T

0
Ys ds

)
D−→


 σ1√

a− σ2
1

2

Z1,Y1,

∫ 1

0
Ys ds




as T → ∞, where Z1 is a 1-dimensional standard normally distributed random variable independent

of
(
Y1,
∫ 1
0 Yt dt

)
. Using (6.16) we have

∫ T
0

dWs√
Ys(∫ T

0
ds
Ys

)1/2 =

1√
log T

1
σ1

(
log YT − log y0 +

(
σ2
1

2 − a
) ∫ T

0
ds
Ys

)

(
1

logT

∫ T
0

ds
Ys

)1/2 , T ∈ R++,
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and, by (6.3) and (6.17), we conclude

(6.18)

( ∫ T
0

dWs√
Ys(∫ T

0
ds
Ys

)1/2 ,
YT

T
,
1

T 2

∫ T

0
Ys ds

)
D−→
(
Z1,Y1,

∫ 1

0
Ys ds

)
as T → ∞,

thus we derived joint convergence of three coordinates of the left hand side of (6.12). Hence

(6.19) E(exp{ξT (u1, v1, v2)}) → E

(
exp

{
iu1Z1 + iv1Y1 + iv2

∫ 1

0
Ys ds

})
as T → ∞

for all (u1, v1, v2) ∈ R
3. Using | exp{ξT (u1, v1, v2)}| = 1, we have

∣∣∣∣∣E
(
exp

{
ξT (u1, v1, v2)−

Tu2u3(∫ T
0

dt
Yt

∫ T
0 Yt dt

)1/2

})
− E(exp{ξT (u1, v1, v2)})

∣∣∣∣∣

6 E

(
| exp{ξT (u1, v1, v2)}|

∣∣∣∣∣exp
{
− Tu2u3(∫ T

0
dt
Yt

∫ T
0 Yt dt

)1/2

}
− 1

∣∣∣∣∣

)

= E

(∣∣∣∣∣exp
{
− Tu2u3(∫ T

0
dt
Yt

∫ T
0 Yt dt

)1/2

}
− 1

∣∣∣∣∣

)
→ 0 as T → ∞,

by the moment convergence theorem (see, e.g., Stroock [39, Lemma 2.2.1]). Indeed, by (6.4), (6.18),

continuous mapping theorem and Slutsky’s lemma,
∣∣∣∣∣∣
exp

{
− Tu2u3(∫ T

0
dt
Yt

∫ T
0 Yt dt

)1/2

}
− 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
exp

{
− u2u3(∫ T

0
dt
Yt

· 1
T 2

∫ T
0 Yt dt

)1/2

}
− 1

∣∣∣∣∣∣
P−→ 0 as T → ∞,

and the family 



∣∣∣∣∣∣
exp

{
− Tu2u3(∫ T

0
dt
Yt

∫ T
0 Yt dt

)1/2

}
− 1

∣∣∣∣∣∣
, T ∈ R++





is uniformly integrable, since, by Cauchy–Schwarz inequality,

∣∣∣∣∣exp
{
− Tu2u3(∫ T

0
dt
Yt

∫ T
0 Yt dt

)1/2

}
− 1

∣∣∣∣∣

2

6


exp

{
T |u2u3|(∫ T

0
dt
Yt

∫ T
0 Yt dt

)1/2

}
+ 1




2

6 (exp{|u2u3|}+ 1)2

for all T ∈ R++. Using (6.19), we conclude

E

(
exp

{
iu1

∫ T
0

dWs√
Ys(∫ T

0
ds
Ys

)1/2 + iu2

∫ T
0

dBs√
Ys(∫ T

0
ds
Ys

)1/2 + iu3

∫ T
0

√
Ys dBs

(∫ T
0 Ys ds

)1/2 + iv1
1

T
YT + iv2

1

T 2

∫ T

0
Ys ds

})

→ e−(u2
2+u2

3)/2 E

(
exp

{
iu1Z1 + iv1Y1 + iv2

∫ 1

0
Ys ds

})
as T → ∞.

Note that, since Z1 is independent of
(
Y1,
∫ 1
0 Ys ds

)
, we have

e−(u2
2+u2

3)/2 E

(
exp

{
iu1Z1 + iv1Y1 + iv2

∫ 1

0
Ys ds

})

= E(eiu1Z1)E(eiu2Z2)E(eiu3Z3)E

(
exp

{
iv1Y1 + iv2

∫ 1

0
Ys ds

})
,
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where (Z2, Z3) is a 2-dimensional standard normally distributed random vector, independent of(
Z1,Y1,

∫ 1
0 Ys ds

)
, hence we obtain (6.12) with Z2 := (Z1, Z2). ✷

6.3 Remark. (i) As a consequence of Theorem 6.2 we get back the description of the asymptotic

behavior of the MLE of (a, b) for the CIR process (Yt)t∈R+
in the critical case whenever a ∈

(σ2
1

2 ,∞
)

proved by Ben Alaya and Kebaier [11, Theorem 6, part 2]. We note that Ben Alaya and Kebaier [11,

Theorem 6, part 1] described the asymptotic behavior of the MLE of (a, b) in the critical case for

the CIR process (Yt)t∈R+
with a =

σ2
1

2 as well.

(ii) Theorem 6.2 does not cover the case a =
σ2
1

2 , we renounce to consider it.

(iii) Ben Alaya and Kebaier’s proof of part 2 of their Theorem 6 relies on an explicit form of the

moment generating-Laplace transform of the quadruplet

(
log Yt, Yt,

∫ t

0
Ys ds,

∫ t

0

ds

Ys

)
, t ∈ R+.

Using this explicit form, they derived convergence (6.17), which is a corner stone of the proof of our

Theorem 6.2. ✷

The next theorem can be considered as a counterpart of Theorem 6.2 by incorporating random

scaling.

6.4 Theorem. If a ∈
(σ2

1

2 ,∞
)
, b = 0, α, β ∈ R, σ1, σ2 ∈ R++, ̺ ∈ (−1, 1) and (Y0,X0) =

(y0, x0) ∈ R++ × R, then




(∫ T
0

ds
Ys

)1/2
(âT − a)

(∫ T
0

ds
Ys

)1/2
(α̂T − α)

(∫ T
0 Ys ds

)1/2
b̂T

(∫ T
0 Ys ds

)1/2
(β̂T − β)




D−→




S1/2Z2

a−Y1(∫ 1

0
Ys ds

)1/2
α−X1(∫ 1

0
Ys ds

)1/2




as T → ∞,(6.20)

where (Yt,Xt)t∈R+
is the unique strong solution of the SDE (6.2) with initial value (Y0,X0) = (0, 0),

Z2 is a 2-dimensional standard normally distributed random vector independent of
(
Y1,
∫ 1
0 Yt dt,X1

)
,

and S is defined in (2.4).

Proof. By Lemma 3.3, there exists a unique MLE
(
âT , b̂T , α̂T , β̂T

)
of (a, b, α, β) for all T ∈ R++,

which has the form given in (3.4). By (3.6), we have

(∫ T

0

ds

Ys

)1/2
(âT − a) =

σ1

∫ T
0

dWs√
Ys(∫ T

0
ds
Ys

)1/2 − 1(∫ T
0

ds
Ys

)1/2

Tσ1

∫ T
0

√
Ys dWs∫ T

0
Ys ds

1− 1
1

T2

∫ T
0

Ys ds

1∫ T
0

ds
Ys

,

(∫ T

0
Ys ds

)1/2
b̂T =

1(
1

T2

∫ T
0

Ys ds
)1/2

1(∫ T
0

ds
Ys

)1/2

σ1

∫ T
0

dWs√
Ys(∫ T

0
ds
Ys

)1/2 − σ1

∫ T
0

√
Ys dWs

(
∫ T
0

Ys ds)
1/2

1− 1
1

T2

∫ T
0

Ys ds

1∫ T
0

ds
Ys

,
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(∫ T

0

ds

Ys

)1/2
(α̂T − α) =

σ2

∫ T
0

dW̃s√
Ys(∫ T

0
ds
Ys

)1/2 − 1(∫ T
0

ds
Ys

)1/2

Tσ2

∫ T
0

√
Ys dW̃s∫ T

0
Ys ds

1− 1
1

T2

∫ T
0

Ys ds

1∫ T
0

ds
Ys

,

and

(∫ T

0
Ys ds

)1/2
(β̂T − β) =

1(
1

T2

∫ T
0

Ys ds
)1/2

1(∫ T
0

ds
Ys

)1/2

σ2

∫ T
0

dW̃s√
Ys(∫ T

0
ds
Ys

)1/2 − σ2

∫ T
0

√
Ys dW̃s

(
∫ T
0

Ys ds)
1/2

1− 1
1

T2

∫ T
0

Ys ds

1∫ T
0

ds
Ys

,

provided that
∫ T
0 Ys ds

∫ T
0

1
Ys

ds > T 2 which holds a.s. We have

σ1
∫ T
0

√
Ys dWs

(∫ T
0 Ys ds

)1/2 =
YT − y0 − aT
(∫ T

0 Ys ds
)1/2 =

1
T (YT − y0)− a
(

1
T 2

∫ T
0 Ys ds

)1/2 , T ∈ R++,(6.21)

σ2
∫ T
0

√
Ys dW̃s

(∫ T
0 Ys ds

)1/2 =
σ2̺

σ1

σ1
∫ T
0

√
Ys dWs

(∫ T
0 Ys ds

)1/2 + σ2
√

1− ̺2

∫ T
0

√
Ys dBs

(∫ T
0 Ys ds

)1/2 , T ∈ R++,(6.22)

hence (6.20) follows from (6.3), (6.4), (6.5), (6.6), (6.7), (6.8), (6.10), Slutsky’s lemma, continuous

mapping theorem, and P(
∫ 1
0 Ys ds ∈ R++) = 1 (which has been shown in the proof of Theorem 3.1

in Barczy et al. [5]). Indeed,




(∫ T
0

ds
Ys

)1/2
(âT − a)

(∫ T
0

ds
Ys

)1/2
(α̂T − α)

(∫ T
0 Ys ds

)1/2
b̂T(∫ T

0 Ys ds
)1/2

(β̂T − β)




D−→ 1

1− 1∫ 1

0
Ys ds

· 0




(S1/2Z2)1 − 0 · Y1−a∫ 1

0
Ys ds

(S1/2Z2)2 − 0 · X1−α∫ 1

0
Ys ds

1

(
∫ 1

0
Ys ds)

1/2 · 0 · (S1/2Z2)1 − Y1−a

(
∫ 1

0
Ys ds)

1/2

1

(
∫ 1

0
Ys ds)

1/2 · 0 · (S1/2Z2)2 − X1−α

(
∫ 1

0
Ys ds)

1/2




as T → ∞, where S1/2Z2 =
(
(S1/2Z2)1, (S

1/2Z2)2
)⊤

, since

(
Z2,Y1,

∫ 1

0
Ys ds,

σ2̺

σ1

Y1 − a
(∫ 1

0 Ys ds
)1/2 + σ2

√
1− ̺2Z3

)
D
=

(
Z2,Y1,

∫ 1

0
Ys ds,

X1 − α
(∫ 1

0 Ys ds
)1/2

)
,

which can be shown in the same way as (6.8). ✷

6.5 Remark. For a critical (i.e., b = 0) CIR models with a ∈
(σ2

1

2 ,∞
)
, using random scaling,

Overbeck [35, Theorem 3, part (ii)] has already described the asymptotic behaviour of âT and b̂T
separately, but he did not consider their joint asymptotic behaviour. ✷

7 Asymptotic behaviour of MLE: supercritical case

We consider supercritical Heston models, i.e., when b ∈ R−−.
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7.1 Theorem. If a ∈
[
σ2
1

2 ,∞
)
, b ∈ R−−, α, β ∈ R, σ1, σ2 ∈ R++, ̺ ∈ (−1, 1), and (Y0,X0) =

(y0, x0) ∈ R++ × R, then




âT − a

α̂T − α

e−bT/2(̂bT − b)

e−bT/2(β̂T − β)




D−→




Ṽ
̺σ2

σ1
Ṽ + σ2

√
1− ̺2

(∫ −1/b
0 Ỹu du

)−1/2
Z1

(
− Ỹ−1/b

b

)−1/2

S1/2Z2




(7.1)

as T → ∞, where (Ỹt)t∈R+
is a CIR process given by the SDE

dỸt = adt+ σ1

√
Ỹt dWt, t ∈ R+,

with initial value Ỹ0 = y0, where (Wt)t∈R+
is a standard Wiener process,

Ṽ :=
log Ỹ−1/b − log y0
∫ −1/b
0 Ỹu du

+
σ2
1

2
− a,

Z1 is a 1-dimensional standard normally distributed random variable, Z2 is a 2-dimensional stan-

dard normally distributed random vector such that (Ỹ−1/b,
∫ −1/b
0 Ỹu du), Z1 and Z2 are independent,

and S is defined in (2.4).

With a random scaling, we have




âT − a

α̂T − α
(∫ T

0 Ys ds
)1/2

(̂bT − b)
(∫ T

0 Ys ds
)1/2

(β̂T − β)




D−→




Ṽ
̺σ2

σ1
Ṽ + σ2

√
1− ̺2

(∫ −1/b
0 Ỹu du

)−1/2
Z1

S1/2Z2


(7.2)

as T → ∞.

Proof. By Lemma 3.3, there exists a unique MLE
(
âT , b̂T , α̂T , β̂T

)
of (a, b, α, β) for all T ∈ R++,

which has the form given in (3.4). By (3.6) and

σ2

∫ T

0

dW̃s√
Ys

= σ2̺

∫ T

0

dWs√
Ys

+ σ2
√

1− ̺2
∫ T

0

dBs√
Ys

,

we obtain

âT − a =

σ1

∫ T
0

dWs√
Ys∫ T

0
ds
Ys

− T ebT/2
∫ T
0

ds
Ys

1

(ebT
∫ T
0

Ys ds)
1/2

σ1

∫ T
0

√
Ys dWs

(
∫ T
0

Ys ds)
1/2

1− T 2ebT

ebT
∫ T
0

Ys ds
∫ T
0

ds
Ys

,

α̂T − α =

σ2̺
∫ T
0

dWs√
Ys∫ T

0
ds
Ys

+
σ2

√
1−̺2

(∫ T
0

ds
Ys

)1/2

∫ T
0

dBs√
Ys(∫ T

0
ds
Ys

)1/2 − T ebT/2
∫ T
0

ds
Ys

1

(ebT
∫ T
0

Ys ds)
1/2

σ2

∫ T
0

√
Ys dW̃s

(
∫ T
0

Ys ds)
1/2

1− T 2ebT

ebT
∫ T
0

Ys ds
∫ T
0

ds
Ys

,

34



e−bT/2(̂bT − b) =

T ebT/2

ebT
∫ T
0

Ys ds

σ1

∫ T
0

dWs√
Ys∫ T

0
ds
Ys

− 1

(ebT
∫ T
0

Ys ds)
1/2

σ1

∫ T
0

√
Ys dWs

(
∫ T
0

Ys ds)
1/2

1− T 2ebT

ebT
∫ T
0

Ys ds
∫ T
0

ds
Ys

,

and

e−bT/2(β̂T − β) =

T ebT/2

ebT
∫ T
0

Ys ds

(
σ2̺

∫ T
0

dWs√
Ys∫ T

0
ds
Ys

+
σ2

√
1−̺2

(∫ T
0

ds
Ys

)1/2

∫ T
0

dBs√
Ys(∫ T

0
ds
Ys

)1/2

)
− 1

(ebT
∫ T
0

Ys ds)
1/2

σ2

∫ T
0

√
Ys dW̃s

(
∫ T
0

Ys ds)
1/2

1− T 2ebT

ebT
∫ T
0

Ys ds
∫ T
0

ds
Ys

,

provided that
∫ T
0 Ys ds

∫ T
0

1
Ys

ds > T 2 which holds a.s. Applying (4.10), one can write

σ1

∫ T

0

dWs√
Ys

= log YT − log y0 +

(
σ2
1

2
− a

)∫ T

0

ds

Ys
+ bT, T ∈ R++,

thus, by (4.7) and (4.9),

(7.3)
σ1
∫ T
0

dWs√
Ys∫ T

0
ds
Ys

=
log(ebTYT )− log y0∫ T

0
ds
Ys

+
σ2
1

2
− a

a.s.−→ log V − log y0∫∞
0

ds
Ys

+
σ2
1

2
− a

as T → ∞. By Theorem 4 in Ben Alaya and Kebaier [11],

log V − log y0∫∞
0

ds
Ys

+
σ2
1

2
− a

D
=

log Ỹ−1/b − log y0
∫ −1/b
0 Ỹu du

+
σ2
1

2
− a =: Ṽ.

Moreover, (4.8) and (4.9) yield

T 2ebT

ebT
∫ T
0 Ys ds

∫ T
0

ds
Ys

a.s.−→ 0(
−V

b

) ∫∞
0

ds
Ys

= 0 as T → ∞,(7.4)

T ebT/2

ebT
∫ T
0 Ys ds

a.s.−→ 0

−V
b

= 0 as T → ∞.(7.5)

Consequently, (7.1) will follow from

(7.6)




∫ T
0

dBs√
Ys(∫ T

0
ds
Ys

)1/2 ,
σ1
∫ T
0

√
Ys dWs

(∫ T
0 Ys ds

)1/2 ,
σ2
∫ T
0

√
Ys dW̃s

(∫ T
0 Ys ds

)1/2 , ebTYT , e
bT

∫ T

0
Ys ds,

∫ T

0

ds

Ys




D−→
(
Z1,S

1/2Z2, Ỹ−1/b,−
Ỹ−1/b

b
,

∫ −1/b

0
Ỹu du

)
as T → ∞,

from (4.8), (7.3), (7.4), (7.5), Slutsky’s lemma, continuous mapping theorem and P(Ỹ−1/b ∈ R++) = 1,

P(
∫ −1/b
0 Ỹu du ∈ R++) = 1 (due to P(Ỹt ∈ R++, ∀ t ∈ R+) = 1). Indeed,




âT − a

α̂T − α

e−bT/2 (̂bT − b)

e−bT/2(β̂T − β)




D−→
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D−→ 1

1− 0

−
Ỹ−1/b

b

∫−1/b
0

Ỹu du




Ṽ − 0∫−1/b
0

Ỹu du

1(
−

Ỹ−1/b
b

)1/2 (S
1/2Z2)1

̺σ2

σ1
Ṽ +

σ2

√
1−̺2

(∫−1/b
0

Ỹu du
)1/2Z1 − 0∫−1/b

0
Ỹu du

1(
−

Ỹ−1/b
b

)1/2 (S
1/2Z2)2

0

−
Ỹ−1/b

b

Ṽ − 1(
−

Ỹ−1/b
b

)1/2 (S
1/2Z2)1

0

−
Ỹ−1/b

b

(
̺σ2

σ1
Ṽ +

σ2

√
1−̺2

(∫−1/b
0

Ỹu du
)1/2Z1

)
− 1(

−
Ỹ−1/b

b

)1/2 (S
1/2Z2)2




as T → ∞, where S1/2Z2 =
(
(S1/2Z2)1, (S

1/2Z2)2
)⊤

.

Using that

σ2

∫ T

0

√
Ys dW̃s = σ2̺

∫ T

0

√
Ys dWs + σ2

√
1− ̺2

∫ T

0

√
Ys dBs, T ∈ R+,

and (6.11), by continuous mapping theorem, to prove (7.6), it is sufficient to verify

(7.7)




∫ T
0

dBs√
Ys(∫ T

0
ds
Ys

)1/2 ,
∫ T
0

√
Ys dWs

(∫ T
0 Ys ds

)1/2 ,
∫ T
0

√
Ys dBs

(∫ T
0 Ys ds

)1/2 , e
bTYT , e

bT

∫ T

0
Ys ds,

∫ T

0

ds

Ys




D−→
(
Z1,Z2, Ỹ−1/b,−

Ỹ−1/b

b
,

∫ −1/b

0
Ỹu du

)
as T → ∞,

Applying Theorem A.2 for the continuous local martingale Mt :=
∫ t
0

√
Ys dWs, t ∈ R+, with

quadratic variation process 〈M〉t =
∫ t
0 Ys ds, t ∈ R+, for Q(t) := ebt/2, t ∈ R++, and for

v :=
(
V,−V

b ,
∫∞
0

ds
Ys

)
(defined also on (Ω,F ,P)), we obtain

(
ebt/2

∫ t

0

√
Ys dWs, V,−

V

b
,

∫ ∞

0

ds

Ys

)
D−→
((

−V

b

)1/2

ξ2, V,−
V

b
,

∫ ∞

0

ds

Ys

)

as t → ∞, where ξ2 is a standard normally distributed random variable independent of V and∫∞
0

ds
Ys
. Indeed, by (4.8), we have ebt〈M〉t = ebt

∫ t
0 Ys ds

a.s.−→ −V
b as t → ∞. Here, by Ben Alaya

and Kebaier [11, Theorem 4],

((
−V

b

)1/2

ξ2, V,−
V

b
,

∫ ∞

0

ds

Ys

)
D
=



(
−
Ỹ−1/b

b

)1/2

Z2, Ỹ−1/b,−
Ỹ−1/b

b
,

∫ −1/b

0
Ỹu du


 ,

where Z2 is a standard normally distributed random variable independent of Ỹ−1/b and
∫ −1/b
0 Ỹu du.

By (4.7), (4.8), (4.9) and Lemma A.3, we obtain
(
ebt/2

∫ t

0

√
Ys dWs, e

btYt, e
bt

∫ t

0
Ys ds,

∫ t

0

ds

Ys

)
−
(
ebt/2

∫ t

0

√
Ys dWs, V,−

V

b
,

∫ ∞

0

ds

Ys

)
P−→ 0

as t → ∞, hence
(
ebT/2

∫ T

0

√
Ys dWs, e

bTYT , e
bT

∫ T

0
Ys ds,

∫ T

0

ds

Ys

)
D−→
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D−→



(
−Ỹ−1/b

b

)1/2

Z2, Ỹ−1/b,−
Ỹ−1/b

b
,

∫ −1/b

0
Ỹu du


 as T → ∞.

Applying continuous mapping theorem, since P(Ỹ−1/b ∈ R++) = 1, we obtain

(7.8)



∫ T
0

√
Ys dWs

(∫ T
0 Ys ds

)1/2 , e
bTYT , e

bT

∫ T

0
Ys ds,

∫ T

0

ds

Ys


 D−→

(
Z2, Ỹ−1/b,−

Ỹ−1/b

b
,

∫ −1/b

0
Ỹu du

)

as T → ∞, hence we derived joint convergence of four coordinates of the left hand side of (7.7).

We will prove (7.7) using continuity theorem. Applying (1.1), one can write

σ1

∫ T

0

√
Ys dWs = YT − y0 −

∫ T

0
(a− bYs) ds, T ∈ R++,

hence
∫ T
0

√
Ys dWs is measurable with respect to the σ-algebra σ(Ys, s ∈ [0, T ]). For all

(u1, u2, u3, v1, v2, v3) ∈ R
6 and T ∈ R++, we have

E

(
exp

{
iu1

∫ T
0

dBs√
Ys(∫ T

0
ds
Ys

)1/2 + iu2

∫ T
0

√
Ys dWs

(∫ T
0 Ys ds

)1/2 + iu3

∫ T
0

√
Ys dBs

(∫ T
0 Ys ds

)1/2

+ iv1e
bTYT + iv2e

bT

∫ T

0
Ys ds+ iv3

∫ T

0

ds

Ys

}∣∣∣∣∣Ys, s ∈ [0, T ]

)

= exp

{
iu2

∫ T
0

√
Ys dWs

(∫ T
0 Ys ds

)1/2 + iv1e
bTYT + iv2e

bT

∫ T

0
Ys ds+ iv3

∫ T

0

ds

Ys

}

× E

(
exp

{
i

∫ T

0

(
u1(∫ T

0
dt
Yt

)1/2
1√
Ys

+
u3(∫ T

0 Yt dt
)1/2

√
Ys

)
dBs

}∣∣∣∣∣Ys, s ∈ [0, T ]

)

= exp

{
iu2

∫ T
0

√
Ys dWs

(∫ T
0 Ys ds

)1/2 + iv1e
bTYT + iv2e

bT

∫ T

0
Ys ds+ iv3

∫ T

0

ds

Ys

}

× exp

{
−1

2

∫ T

0

(
u1(∫ T

0
dt
Yt

)1/2 · 1√
Ys

+
u3(∫ T

0 Yt dt
)1/2

√
Ys

)2

ds

}

= exp

{
iu2

∫ T
0

√
Ys dWs

(∫ T
0 Ys ds

)1/2 + iv1e
bTYT + iv2e

bT

∫ T

0
Ys ds+ iv3

∫ T

0

ds

Ys

}

× exp

{
−1

2
(u21 + u23)−

Tu1u3(∫ T
0 Yt dt

∫ T
0

dt
Yt

)1/2

}
,
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where we used the independence of Y and B. Consequently, the characteristic function of the

random vector on the left hand side of (7.7) takes the form

E

(
exp

{
iu1

∫ T
0

dBs√
Ys(∫ T

0
ds
Ys

)1/2 + iu2

∫ T
0

√
Ys dWs

(∫ T
0 Ys ds

)1/2 + iu3

∫ T
0

√
Ys dBs

(∫ T
0 Ys ds

)1/2

+ iv1e
bTYT + iv2e

bT

∫ T

0
Ys ds+ iv3

∫ T

0

ds

Ys

})

= e−(u2
1+u2

3)/2 E

(
exp

{
ξT (u2, v1, v2, v3)−

Tu1u3(∫ T
0 Yt dt

∫ T
0

dt
Yt

)1/2

})
,

where

ξT (u2, v1, v2, v3) := iu2

∫ T
0

√
Ys dWs

(∫ T
0 Ys ds

)1/2 + iv1e
bTYT + iv2e

bT

∫ T

0
Ys ds+ iv3

∫ T

0

ds

Ys
.

By (7.8), for all (u2, v1, v2, v3) ∈ R
4,

E(exp{ξT (u2, v1, v2, v3)})

→ E

(
exp

{
iu2Z2 + iv1Ỹ−1/b + iv2

(
−
Ỹ−1/b

b

)
+ iv3

∫ −1/b

0
Ỹu du

})
(7.9)

as T → ∞. Using | exp{ξT (u2, v1, v2, v3)}| = 1, we have

∣∣∣∣∣E
(
exp

{
ξT (u2, v1, v2, v3)−

Tu1u3(∫ T
0 Yt dt

∫ T
0

dt
Yt

)1/2

})
− E(exp{ξT (u2, v1, v2, v3)})

∣∣∣∣∣

6 E

(
| exp{ξT (u2, v1, v2, v3)}|

∣∣∣∣∣exp
{
− Tu1u3(∫ T

0 Yt dt
∫ T
0

dt
Yt

)1/2

}
− 1

∣∣∣∣∣

)

= E

(∣∣∣∣∣exp
{
− Tu1u3(∫ T

0 Yt dt
∫ T
0

dt
Yt

)1/2

}
− 1

∣∣∣∣∣

)
→ 0 as T → ∞,

by dominated convergence theorem, since, by (4.8) and (4.9),

exp

{
− Tu1u3(∫ T

0 Yt dt
∫ T
0

dt
Yt

)1/2

}
− 1 = exp

{
− T ebT/2u1u3(

ebT
∫ T
0 Yt dt

∫ T
0

dt
Yt

)1/2

}
− 1

a.s.−→ 0 as T → ∞,

and, by Cauchy–Schwarz inequality,

∣∣∣∣∣exp
{
− Tu1u3(∫ T

0 Yt dt
∫ T
0

dt
Yt

)1/2

}
− 1

∣∣∣∣∣ 6 exp

{
T |u1u3|(∫ T

0 Yt dt
∫ T
0

dt
Yt

)1/2

}
+ 1 6 exp{|u1u3|}+ 1
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for all T ∈ R++. Using (7.9), we conclude

E

(
exp

{
iu1

∫ T
0

dBs√
Ys(∫ T

0
ds
Ys

)1/2 + iu2

∫ T
0

√
Ys dWs

(∫ T
0 Ys ds

)1/2 + iu3

∫ T
0

√
Ys dBs

(∫ T
0 Ys ds

)1/2

+ iv1e
bTYT + iv2e

bT

∫ T

0
Ys ds+ iv3

∫ T

0

ds

Ys

})

→ e−(u2
1+u2

3)/2 E

(
exp

{
iu2Z2 + iv1Ỹ−1/b + iv2

(
−Ỹ−1/b

b

)
+ iv3

∫ −1/b

0
Ỹu du

})

as T → ∞. Note that, since Z2 is independent of Ỹ−1/b and
∫ −1/b
0 Ỹu du, we have

e−(u2
1+u2

3)/2 E

(
exp

{
iu2Z2 + iv1Ỹ−1/b + iv2

(
−
Ỹ−1/b

b

)
+ iv3

∫ −1/b

0
Ỹu du

})

= E(eiu1Z1)E(eiu2Z2)E(eiu3Z3)E

(
exp

{
iv1Ỹ−1/b + iv2

(
−
Ỹ−1/b

b

)
+ iv3

∫ −1/b

0
Ỹu du

}
,

where (Z1, Z3) is a 2-dimensional standard normally distributed random vector, independent of

(Z2, Ỹ−1/b,
∫ −1/b
0 Ỹu du), hence we obtain (7.7) with Z2 := (Z2, Z3).

Finally, we prove (7.2). In a similar way, by (3.6), we have

(∫ T

0
Ys ds

)1/2

(̂bT − b) =

T ebT/2

(ebT
∫ T
0

Ys ds)
1/2

σ1

∫ T
0

dWs√
Ys∫ T

0
ds
Ys

− σ1

∫ T
0

√
Ys dWs

(
∫ T
0

Ys ds)
1/2

1− T 2ebT

ebT
∫ T
0

Ys ds
∫ T
0

ds
Ys

,

and

(∫ T

0
Ys ds

)1/2

(β̂T − β) =

T ebT/2

(ebT
∫ T
0

Ys ds)
1/2

(
σ2̺

∫ T
0

dWs√
Ys∫ T

0
ds
Ys

+
σ2

√
1−̺2

(∫ T
0

ds
Ys

)1/2

∫ T
0

dBs√
Ys(∫ T

0
ds
Ys

)1/2

)
− σ2

∫ T
0

√
Ys dW̃s

(
∫ T
0

Ys ds)
1/2

1− T 2ebT

ebT
∫ T
0

Ys ds
∫ T
0

ds
Ys

,

provided that
∫ T
0 Ys ds

∫ T
0

1
Ys

ds > T 2 which holds a.s. By (4.8), we get

T ebT/2
(
ebT
∫ T
0 Ys ds

)1/2
a.s.−→ 0

(
−V

b

)1/2 = 0 as T → ∞,

hence (4.8), (7.3), (7.4), (7.5), (7.6), (7.7), Slutsky’s lemma, continuous mapping theorem and

P(Ỹ−1/b ∈ R++) = 1, P(
∫ −1/b
0 Ỹu du ∈ R++) = 1 (due to P(Ỹt ∈ R++, ∀ t ∈ R+) = 1) yield

the second statement. Indeed,



âT − a

α̂T − α
(∫ T

0 Ys ds
)1/2

(̂bT − b)
(∫ T

0 Ys ds
)1/2

(β̂T − β)




D−→
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D−→ 1

1− 0

−
Ỹ−1/b

b

∫−1/b
0

Ỹu du




Ṽ − 0∫−1/b
0

Ỹu du

1(
−

Ỹ−1/b
b

)1/2 (S
1/2Z2)1

̺σ2

σ1
Ṽ +

σ2

√
1−̺2

(∫−1/b
0

Ỹu du
)1/2Z1 − 0∫ −1/b

0
Ỹu du

1(
−

Ỹ−1/b
b

)1/2 (S
1/2Z2)2

0(
−

Ỹ−1/b
b

)1/2 Ṽ − (S1/2Z2)1

0(
−

Ỹ−1/b
b

)1/2

[
̺σ2

σ1
Ṽ +

σ2

√
1−̺2

(∫−1/b
0

Ỹu du
)1/2Z1

]
− (S1/2Z2)2




as T → ∞, where S1/2Z2 =
(
(S1/2Z2)1, (S

1/2Z2)2
)⊤

. ✷

7.2 Remark. Overbeck [35, Theorem 3] has already derived the asymptotic behaviour of b̂T with

non-random and random scaling for supercritical CIR processes. We also note that Ben Alaya and

Kebaier [10, Theorem 1, Case 3] described the asymptotic behavior of the MLE of b for supercritical

CIR processes supposing that a ∈ R++ is known. It turns out that in this case the limit distribution

is different from that we have in (7.1). ✷

7.3 Corollary. Under the conditions of Theorem 7.1, the MLEs of b and β are weakly consistent,

however, the MLEs of a and α are not weakly consistent. (Recall also that earlier it turned out

that the MLE of b is in fact strongly consistent, see Theorem 4.4.)

Proof. In order to show that the MLEs of a and α are not weakly consistent, it suffices to

show P(Ṽ 6= 0) > 0, since Z1 is independent of the random vector (Ỹ−1/b,
∫ −1/b
0 Ỹu du), and

P
(∫ −1/b

0 Ỹu du > 0
)
= 1 (see the end of Remark 2.6). We have

P(Ṽ = 0) = P

(
log Ỹ−1/b − log y0 =

(
a− σ2

1

2

)∫ −1/b

0
Ỹu du

)
6 P

(
Ỹ−1/b > y0

)
< 1,

where y0 ∈ R++. Indeed, by Ikeda and Watanabe [24, page 222],

E(e−λỸ−1/b) =

(
1 +

σ2
1

(−2b)
λ

)−2a/σ2
1

, λ ∈ R+,

hence Ỹ−1/b has Gamma distribution with parameters 2a/σ2
1 and −2b/σ2

1 . ✷

Appendix

A Limit theorems for continuous local martingales

In what follows we recall some limit theorems for continuous local martingales. We use these limit

theorems for studying the asymptotic behaviour of the MLE of (a, b, α, β). First we recall a strong

law of large numbers for continuous local martingales.
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A.1 Theorem. (Liptser and Shiryaev [33, Lemma 17.4]) Let
(
Ω,F , (Ft)t∈R+

,P
)

be a filtered

probability space satisfying the usual conditions. Let (Mt)t∈R+
be a square-integrable continuous local

martingale with respect to the filtration (Ft)t∈R+
such that P(M0 = 0) = 1. Let (ξt)t∈R+

be a

progressively measurable process such that

P

(∫ t

0
ξ2u d〈M〉u < ∞

)
= 1, t ∈ R+,

and

∫ t

0
ξ2u d〈M〉u a.s.−→ ∞ as t → ∞,(A.1)

where (〈M〉t)t∈R+
denotes the quadratic variation process of M . Then

∫ t
0 ξu dMu∫ t

0 ξ
2
u d〈M〉u

a.s.−→ 0 as t → ∞.(A.2)

If (Mt)t∈R+
is a standard Wiener process, the progressive measurability of (ξt)t∈R+

can be relaxed

to measurability and adaptedness to the filtration (Ft)t∈R+
.

The next theorem is about the asymptotic behaviour of continuous multivariate local martingales,

see van Zanten [42, Theorem 4.1].

A.2 Theorem. (van Zanten [42, Theorem 4.1]) Let
(
Ω,F , (Ft)t∈R+

,P
)

be a filtered probability

space satisfying the usual conditions. Let (M t)t∈R+
be a d-dimensional square-integrable continuous

local martingale with respect to the filtration (Ft)t∈R+
such that P(M 0 = 0) = 1. Suppose that

there exists a function Q : R+ → R
d×d such that Q(t) is an invertible (non-random) matrix for all

t ∈ R+, limt→∞ ‖Q(t)‖ = 0 and

Q(t)〈M 〉tQ(t)⊤
P−→ ηη⊤ as t → ∞,

where η is a d×d random matrix. Then, for each R
k-valued random vector v defined on (Ω,F ,P),

we have

(Q(t)M t,v)
D−→ (ηZ,v) as t → ∞,

where Z is a d-dimensional standard normally distributed random vector independent of (η,v).

We note that Theorem A.2 remains true if the function Q is defined only on an interval [t0,∞)

with some t0 ∈ R++.

To derive consequences of Theorem A.2 one can use the following lemma which is a multidimen-

sional version of Lemma 3 due to Kátai and Mogyoródi [28], see Barczy and Pap [8, Lemma 3].

A.3 Lemma. Let (U t)t∈R+
be a k-dimensional stochastic process such that U t converges in

distribution as t → ∞. Let (V t)t∈R+
be an ℓ-dimensional stochastic process such that V t

P−→ V

as t → ∞, where V is an ℓ-dimensional random vector. If g : Rk × R
ℓ → R

d is a continuous

function, then

g(U t,V t)− g(U t,V )
P−→ 0 as t → ∞.
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