
ar
X

iv
:1

41
2.

02
19

v1
  [

m
at

h.
A

P]
  3

0 
N

ov
 2

01
4

Parabolic partial differential equations with
discrete state-dependent delay: classical solutions

and solution manifold

Tibor Krisztina and Alexander Rezounenkob,c,1

aMTA-SZTE Analysis and Stochastic Research Group, Bolyai Institute,
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Abstract

Classical solutions to PDEs with discrete state-dependent delay are studied. We

prove the well-posedness in a set XF which is analogous to the solution manifold

used for ordinary differential equations with state-dependent delay. We prove that

the evolution operators are C1-smooth on the solution manifold.
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1 Introduction

Differential equations play an important role in describing mathematical models of many

real-world processes. For many years the models are successfully used to study a number

of physical, biological, chemical, control and other problems. A particular interest is in

differential equations with many variables such as partial differential equations (PDE)

and/or integral differential equations (IDE) in the case when one of the variables is time.

Such equations are frequently called evolution equations. They received much attention

from researchers from different fields since such equations could (in one way or another)

discover future states of a model. It is generally known that taking into account the

past states of the model, in addition to the present one, makes the model more realistic.

This leads to the so-called delay differential equations (DDE). Historically, the theory of

DDE was first initiated for the simplest case of ordinary differential equations (ODE) with
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(A.Rezounenko)
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constant delay (see the monographs [2, 7, 4, 11] and references therein). Recently many

important results have been extended to the case of delay PDEs with constant delay (see

e.g., [24, 6, 23, 27]).

Investigating the models described by DDEs it is clear that the constancy of delays is

an extra assumption which significantly simplifies the study mathematically but is rarely

met in the underlying real-world processes. The value of the delays can be time or state-

dependent. Recent results showed that the theory of state-dependent delay equations

(SDDE) essentially differs from the ones of constant and time-dependent delays. The

basic results on ODEs with state-dependent delay can be found in [5, 12, 15, 10, 14, 25]

and the review [8]. The starting point of many mathematical studies is the well-posedness

of an initial-value problem for a differential equation. It is directly connected with the

choice of the space of initial functions (phase space). For DDEs with constant delay the

natural phase space is the space of continuous functions. However, SDDEs non-uniqueness

of solutions with continuous initial function has been observed in [5] for ODE case. The

example in [5] was designed by choosing a non-Lipschitz initial function ϕ ∈ C[−h, 0] and

a state-dependent delay such that the value −r(ϕ) ∈ [−h, 0] (at the initial function) is a

non-Lipschitz point of ϕ. In order to overcome this difficulty, i.e., to guarantee unuique

solvability of initial value problems it was necessary to restrict the set of initial functions

(and solutions) to a set of smoother functions. This approach includes the restrictions to

layers in the space of Lipschitz functions, C1 functions or the so-called solution manifold

(a subset of C1[−h, 0]). As noted in [8, p.465] ”...typically, the IVP is uniquely solved for

initial and other data which satisfy suitable Lipschitz conditions.” The idea to investigate

ODEs with state-dependent delays in the space of Lipschitz continuous functions is very

fruitful, see e.g [15, 25]. In the present work we rely on the study of solution manifold for

ODEs [12, 14, 25]

The study of PDEs with state-dependent delay are naturally more difficult and was ini-

tiated only recently [17, 18, 19, 20, 21, 22]. In contrast to the ODEs with state-dependent

delays, the possibility to exploit the space of Lipschitz continuous functions in the case

of PDEs with state-dependent delays meets additional difficulties. One difficulty is that

the solutions of PDEs usually do not belong to the space of Lipchitz continuous functions.

Another difficulty is that the time-derivative of a solution belongs to a wider space com-

paring to the space to which the solution itself belongs. This fact makes the choice of the

appropriate Lipschitz property more involved, and it depends on a particular model un-

der consideration. It was already found (see [20] and [22]) that non-local operators could

be very useful in such models and bring additional smoothness to the solutions. Further

studies also show that approaches using C1-spaces and solution manifolds (see [25] and [8]
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for ODE case) could also be used for PDE models, see [20, 22]. In this work we combine

the results for ODEs [12, 14, 25] and PDEs [20, 22].

We also mention that a simple and natural additional property concerning the state-

dependent delay which guarantees the uniqueness of solutions in the whole space of con-

tinuous functions was proposed in [19] and generalized in [21]. We will not develop this

approach here.

Our goal in this paper is to investigate classical solutions to parabolic PDEs with

discrete state-dependent delay. We find conditions for the well-posedness and prove the

existence of a solution manifold. We prove that the evolution operators Gt : XF → XF are

C1-smooth for all t ≥ 0. Our considerations rely on the result [25] and we try to be as close

as possible to the line of the proof in [25] to clarify which parts of the proof need additional

care in the PDE case. As in [20, 22] it is shown that non-local (in space coordinates)

operators are useful in our case. We notice that in [20, 22] neither classical solutions nor

C1-smoothness of the evolution operators were discussed. In the final section we consider

an example of a state-dependent delay which is defined by a threshold condition.

2 Preliminaries and the well-posedness

We are interested in the following parabolic partial differential equation with discrete

state-dependent delay (SDD)

du(t)

dt
+Au(t) = F (ut), t > 0 (1)

with the initial condition

u0 = u|[−h,0] = ϕ ∈ C ≡ C([−h, 0];L2(Ω)). (2)

As usual for delay equations [7], for any real a ≤ b, t ∈ [a, b] and any continuous function

u : [a − r, b] → L2(Ω), we denote by ut the element of C defined by the formula ut =

ut(θ) ≡ u(t+ θ) for θ ∈ [−r, 0].

We assume

(H1) Operator A is the infinitesimal generator of a compact C0-semigroup in L2(Ω).

(H2) Nonlinear map F has the form

F (ϕ) ≡ B(ϕ(−r(ϕ))), F : C → L2(Ω), (3)

where B : L2(Ω) → L2(Ω) is a bounded and Lipschitz operator. Here the state-dependent

delay r : C([−h, 0];L2(Ω)) → [0, h] is a Lipschitz mapping.

In our study we use the standard (c.f. [16, def. 2.3, p.106] and [16, def. 2.1, p.105])

3



Definition 1. A function u ∈ C([−r, T ];L2(Ω)) is called a mild solution on [−r, T )

of the initial value problem (1),(2) if it satisfies (2) and

u(t) = e−Atϕ(0) +

∫ t

0
e−A(t−s)F (us) ds, t ∈ [0, T ). (4)

A function u ∈ C([−r, T );L2(Ω))
⋂
C1((0, T );L2(Ω)) is called a classical solution on

[−r, T ) of the initial value problem (1),(2) if it satisfies (2), u(t) ∈ D(A) for 0 < t < T

and (1) is satisfied on (0, T ).

Theorem 1. Assume (H1)-(H2) are satisfied. Then for any ϕ ∈ C there is tϕ > 0

such that initial-value problem (1), (2) has a mild solution for t ∈ [0, tϕ).

The proof is standard since F is continuous (see [6]).

We notice that F is not a Lipschitz mapping from C to [0, h], so we cannot, in general,

guarantee the uniqueness of mild solutions (for ODE case see [5]).

Let us fix u any mild solution of (1), (2) and consider

g(t) ≡ F (ut), t ≥ 0. (5)

Mapping g is continuous (from [0, tϕ) to L
2(Ω)) since B,u and r are continuous. Choose

T ∈ (0, tϕ). We have g ∈ C([0, T ];L2(Ω)), hence g ∈ L2(0, T ;L2(Ω)). The initial value

problem
dv(t)

dt
+Av(t) = g(t), v(0) = x ∈ L2(Ω) (6)

has a unique mild solution, which is v = u if we choose x = u(0).

Now we assume that

(H3) operator A is the infinitesimal generator of an analytic (compact) semigroup in

L2(Ω).

Below we always assume that (H1)-(H3) are satisfied.

As usual, we denote the family of all Hölder continuous functions with exponent α ∈

(0, 1) in I ⊂ R by Cα(I;L2(Ω)). By [16, theorem 3.1, p.110] the solution v (= u) of

(6) is Hölder continuous with exponent 1/2 on [ε, T ] for every ε ∈ (0, T ). If additionally

x ∈ D(A) then v ∈ C
1

2 ([0, T ];L2(Ω)).

Now we show that g ∈ C
1

4 ([0, T ];L2(Ω)) if ϕ ∈ C
1

2 ([−h, 0];L2(Ω)) ⊂ C. Since for

u ∈ C
1

2 ([−h, T ];L2(Ω)) and t ∈ [0, T ] one has ||ut − us||C ≤ Hu|t− s|
1

2 and

||g(t) − g(s)|| ≤ LB||u(t− r(ut))− u(s− r(us))|| ≤ LBHu|t− s+ r(ut)− r(us)|
1

2

≤ LBHu (|t− s|+ Lr||ut − us||C)
1

2 . (7)
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Here Hu is the Hölder constant of u on [−h, T ], LB and Lr are Lipschitz constants.

We get from (7) that

||g(t)− g(s)|| ≤ LBHu

(
(T

1

2 + LrHu)|t− s|
1

2

) 1

2

≤ LBHu

(
T

1

2 + LrHu

) 1

2

|t− s|
1

4 .

Here we used |t − s| ≤ T
1

2 |t − s|
1

2 . We have shown that g ∈ C
1

4 ([0, T ];L2(Ω)). It gives,

by [16, corollary 3.3, p.113], that our mild solution u is classical (under assumptions

ϕ ∈ C
1

2 ([−h, 0];L2(Ω)) ⊂ C and u(0) ∈ D(A)).

Set

X ≡
{
ϕ ∈ C1([−h, 0];L2(Ω)), ϕ(0) ∈ D(A)

}
, (8)

||ϕ||X ≡ max
θ∈[−h,0]

||ϕ(θ)|| + max
θ∈[−h,0]

||ϕ̇(θ)||+ ||Aϕ(0)||. (9)

Clearly, X is a Banach space since A is closed. We show that problem (1), (2) has a unique

solution for any ϕ ∈ X.

As mentioned before, F is not Lipschitz on C, but if ϕ is Lipschitz (with Lipschitz

constant Lϕ), then one easily gets the following estimate (see (3))

||F (ϕ) − F (ψ)|| ≤ LB||ϕ(−r(ϕ)) − ψ(−r(ψ))||

≤ LB(Lϕ|r(ϕ)− r(ψ)|+ ||ϕ− ψ||C) ≤ LB(LϕLr + 1)||ϕ − ψ||C . (10)

Here LB and Lr are Lipschitz constants of maps B and r.

By [16, theorem 3.5, p.114] (item (ii)), Au and du/dt are continuous on [0, T ], so u is

Lipschitz from [−h, T ] to L2(Ω). This property together with (10) imply the uniqueness

of solution to (1),(2).

The above proves the following

Theorem 2. Assume (H1)-(H3) are satisfied. Then for any ϕ ∈ X there is tϕ > 0

such that initial value problem (1), (2) has a unique classical solution for t ∈ [0, tϕ).

3 Solution manifold

Let U ⊂ be an open subset of X. We need the following assumption.

(S) The map F : U → L2(Ω) is continuously differentiable, and for every ϕ ∈ U the

derivative DF (φ) ∈ Lc(X;L2(Ω)) has an extension DeF (φ) which is an element of the

space of bounded linear operators Lc(X0;L
2(Ω)), where X0 = {ϕ ∈ C([−h, 0];L2(Ω)), ϕ(0) ∈

D(A)} is a Banach space with the norm ||ϕ||X0
= maxθ∈[−h,0] ||ϕ(θ)|| + ||Aϕ(0)||.

Condition (S) is analogous to that of [8, p.467].
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Let us consider the subset

XF = {ϕ ∈ C1([−h, 0];L2(Ω)), ϕ(0) ∈ D(A), ϕ̇(0) +Aϕ(0) = F (ϕ)} (11)

of X. XF will be called solution manifold according to the terminology of [25]. The

equation in (11) is understood as equation in L2(Ω). We have the following analogue to

[25, proposition 1].

Lemma 1. If condition (S) holds and XF 6= ∅ then XF is a C1 submanifold of X.

Proof of lemma 1. Consider any ϕ̄ ∈ XF ⊂ X (see (11) and also (8)). Choose b > 0 so

large that

||DeF (ϕ̄)||Lc(X0;L2(Ω)) < b.

Define a : [−h, 0] ∋ s 7→ sebs ∈ R. Then

a(0) = 0, a′(0) = 1, |a(s)| ≤
1

eb
(−h ≤ s ≤ 0).

Define the closed subspaces Y and Z of X as follows:

Y = {a(·)y0 : y0 ∈ L2(Ω)} ⊂ X

and

Z = {ϕ ∈ X : ϕ̇(0) = 0} ⊂ X.

Clearly Y ∩ Z = {0}, and X = Y ⊕ Z.

We can define the projections

PY φ = a(·)φ̇(0), PZφ = φ− a(·)φ̇(0).

Use φ = y + z = PY φ+ PZφ.

We define

G : X = Y ⊕ Z ∋ φ 7→ φ̇(0) +Aφ(0) − F (φ) ∈ L2(Ω).

Clearly φ ∈ XF ⇐⇒ G(φ) = 0. For the bounded linear map DYG(ϕ̄) ∈ Lc(Y ;L2(Ω))

we have

DYG(ϕ̄)y = ẏ(0) +Ay(0)−DF (ϕ̄)y = y0 −DF (ϕ̄)a(·)y0 = y0 −DeF (ϕ̄)a(·)y
0

since y = a(·)y0 for some y0 ∈ L2(Ω), ẏ(0) = y0, y(0) = 0.

Using the choices of a and b ∈ R we obtain

||DYG(ϕ̄)y||L2(Ω) ≥ ||y0||L2(Ω)

(
1−

||DeF (ϕ̄)||

eb

)
≥

1

2
||y0||L2(Ω).
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Then DYG(ϕ̄) : Y → L2(Ω) is a linear isomorphism. The Implicit function theorem can

be applied to complete the proof of lemma.�

For the convenience of the reader we remind some properties of the semigroup {e−At}t≥0.

Lemma 2 [9, theorem 1.4.3, p.26] or [16, theorem 2.6.13, p.74]. Let A be a sectorial

operator in the Banach space Y and Reσ(A) > δ > 0. Then

(i) for α ≥ 0 there exists Cα <∞ such that

||Aαe−At|| ≤ Cαt
−αe−δt for t > 0; (12)

(ii) if 0 < α ≤ 1, x ∈ D(Aα),

||(e−At − I)x|| ≤
1

α
C1−αt

α||Aαx|| for t > 0. (13)

Also Cα is bounded for α in any compact interval of (0,∞) and also bounded as α→ 0+.

Remark 1. It is important to notice that we can write ||(e−At − I)Aϕ(0)|| ≤ ||e−At −

I|| · ||Aϕ(0)||, but ||e−At − I|| 6→ 0 as t→ 0+ because e−At is not a uniformly continuous

semigroup since A is unbounded (see [16, theorem 1.2, p.2]).

Remark 2. We also notice that the (linear) mapping D(A) ∋ ξ 7−→ (e−At − I)ξ ∈

C1([0, T ];L2(Ω)) is continuous, while L2(Ω) ∋ ξ 7−→ (e−At − I)ξ ∈ C1((0, T ];L2(Ω)) is

not.

We need the following

Lemma 3 . Let A be a sectorial operator in the Banach space Y and f : (0, T ) → Y

be locally Hölder continuous with
∫ ρ
0 ||f(s)|| ds < ∞ for some ρ > 0. For 0 ≤ t < T ,

define

IT (f)(t) = F(t) ≡

∫ t

0
e−A(t−s)f(s) ds. (14)

Then

(i) F(·) is continuous on [0, T );

(ii) F(·) continuously differentiable on (0, T ), with F(t) ∈ D(A) for 0 < t < T, and

dF(t)/dt +AF(t) = f(t) on 0 < t < T, F(t) → 0 in X as t→ 0+.

(iii) If additionally f : (0, T ) → Y satisfies

||f(t)− f(s)|| ≤ K(s)(t− s)γ for 0 < s < t < T <∞,

where K : (0, T ) → R is continuous with
∫ T
0 K(s) ds < ∞. Then for every β ∈ [0, γ) the

function F(t) is continuously differentiable F : (0, T ) → Y β ≡ D(Aβ) with

∥∥∥∥
dF(t)

dt

∥∥∥∥
β

≤Mt−β||f(t)||+M

∫ t

0
(t− s)γ−β−1K(s) ds (15)
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for 0 < t < T . Here M is a constant independent of γ, β, f(·).

Further, if
∫ h
0 K(s) ds = O(hδ) as h → 0+, for some δ > 0, then t → dF(t)/dt is

locally Hölder continuous from (0, T ) into Y β.

(iv) If f : [0, T ] → Y is Hölder continuous (on the compact [0, T ] the local and global

Hölder properties coincide), then F ∈ C1([0, T ];Y ).

Proof of lemma 3. Items (i) and (ii) are proved in [9, lemma 3.2.1,p.50]. Item (iii)

is proved in [9, lemma 3.5.1, p.70]. The proof of (iv) is contained in the proof of [16,

theorem 3.5, item (ii), p.114]. We briefly outline the main steps. Using properties (ii) (i.e.

dF(t)/dt+AF(t) = f(t) on 0 < t < T ) and f ∈ C([0, T ];Y ) it is enough to show that AF

is continuous at t = 0. We write F(t) =
∫ t
0 e

−A(t−s)[f(s)− f(t)] ds +
∫ t
0 e

−A(t−s)f(t) ds =

v1(t) + v2(t). The property Av1 ∈ Cγ([0, T ];Y ) is proved in [16, lemma 3.4, p.113]. To

show that Av2 ∈ C([0, T ];Y ) one uses

Av2(t) =

∫ t

0
Ae−A(t−s)f(t) ds =

∫ t

0
Ae−Aτf(t) dτ =

∫ t

0

{
−
d

dτ
e−Aτf(t)

}
dτ

= f(0)− e−Atf(t) = f(0)− e−Atf(0) + e−At(f(0)− f(t)).

Hence ||Av2(t)|| ≤ ||f(0) − e−Atf(0)|| + ||e−At||||f(0) − f(t)|| ≤ ||f(0) − e−Atf(0)|| +

M ||f(0) − f(t)|| → 0 as t → 0+ due to the continuity of e−At and f(t). It completes the

proof of lemma 3. �

To simplify the calculations we assume the following Lipschitz property holds

∃α ∈ (0, 1),∃LB,α ≥ 0 : ∀u, v ∈ L2(Ω) ⇒ ||Aα(B(u)−B(v))|| ≤ LB,α||u− v||. (16)

Remark 3. It is easy to see that (16) implies similar property with α = 0 i.e.

∃LB,0 ≥ 0 : ∀u, v ∈ L2(Ω) ⇒ ||B(u)−B(v)|| ≤ LB,0||u− v||. (17)

Example 1. Let us consider B(u) =
∫
Ω f(x − y)b(u(y)) dy which is a convolution

of a function f ∈ H1(Ω) and composition b ◦ u with b : R → R Lipschitz. We use

the properties of a convolution (see e.g. [3, p.104,108]) (f ⋆ g)(x) =
∫
Ω f(x − y)g(y) dy,

namely ||f ⋆ g||Lp ≤ ||f ||L1 ||g||Lp for any f ∈ L1 and g ∈ Lp, 1 ≤ p ≤ ∞ and also

Dβ(f ⋆g) = (Dβf)⋆g, particularly, ∇(f ⋆g) = (∇f)⋆g (for details see e.g. [3, proposition

4.20, p.107]).

If we consider Laplace operator with Dirichlet boundary conditions A ∼ (−∆)D,

then ||A1/2 · || is equivalent to || · ||H1 , so ||A1/2(B(u) − B(v))|| ≤ C2
1 ||B(u) − B(v)||2 +

8



C2
1 ||∇(B(u) − B(v))||2 ≤ C2

1 ||f ||
2
L1 ||b(u) − b(v)||2 + C2

1 ||∇f ||
2
L1 ||b(u) − b(v)||2. Using the

Lipschitz property of b, we get (16) with α = 1/2 and LB,α = C1Lb(||f ||
2
L1 + ||∇f ||2L1)

1/2.

Using (16) and (3) one easily gets the Lipschitz property for F . Namely, for Lipschitz

ψ and Lipschitz SDD r

||Aα(F (ψ) − F (χ))|| ≤ ||Aα(B(ψ(−r(ψ))) −B(χ(−r(χ))))||

≤ LB,α||ψ(−r(ψ))) − χ(−r(χ)))||

≤ LB,αLψLr||ψ−χ||C+LB,α||ψ−χ||C = LF,α||ψ−χ||C , LF,α = LB,α(LψLr+1). (18)

Using (17), similar to (18) one gets

||F (ψ) − F (χ)|| ≤ LF,0||ψ − χ||C , LF,0 = LB,0(LψLr + 1). (19)

We use all notations of [25], changing Rn for L2(Ω) when necessary. For example, we

use the notation ET (see [25, p.50])

ET : C1([−h, 0]) → C1([−h, T ]), (ETϕ)(t) ≡


 ϕ(t), for t ∈ [−h, 0),

ϕ(0) + tϕ̇(0) for t ∈ [0, T ].

(20)

On the other hand, some notations should be changed. For example, for any ψ ∈ XF

and r > 0 we set (remind that || · ||X is not just C1-norm, see (8), (9), (11))

Xψ,r ≡ XF

⋂{
ψ + (C1([−h, 0];L2(Ω)))X,r

}
= {ψ ∈ XF : ||ϕ − ψ||X < r} . (21)

For T > 0 (to be chosen below), we split a map x ∈ C1([−h, T ]) ≡ C1([−h, T ];L2(Ω))

with x0 = ϕ ∈ XF given, as x = y+ ϕ̂, where for short ϕ̂(t) = (ETϕ)(t) is defined in (20).

We look for a fixed point of the following map (ϕ is the parameter)

RTr(ϕ, y) ≡


 e−Atϕ(0) − ϕ(0) − tϕ̇(0) +

∫ t
0 e

−A(t−τ)F (yτ + ϕ̂τ ) dτ, t ∈ [0, T ],

0 t ∈ [−h, 0),
(22)

where RTr : Xψ,r × (C1
0 ([−h, T ];L

2(Ω)))ε → C1
0 ([−h, T ];L

2(Ω)), and Xψ,r defined in (21).

Proposition 1. RTr : Xψ,r × (C1
0 ([−h, T ];L

2(Ω))) → C1
0 ([−h, T ];L

2(Ω)).

To prove that the image of RTr(ϕ, y) = z belongs to C1
0 ([−h, T ];L

2(Ω)), we notice

that y ∈ C1([−h, T ];L2(Ω)) implies y+ ϕ̂ ∈ Lip([−h, T ];L2(Ω)), which together with (10)

give that F (yτ + ϕ̂τ ), τ ∈ [0, T ] is Lipschitz, so [9, lemma 3.2.1, p.50] can be applied to

the integral term in RTr (see (22)). This gives z ∈ C1(0, T ;L2(Ω)).
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The property ||z(t)|| → 0 as t→ 0+ is simple. The last step is to show that ||ż(t)|| → 0

as t→ 0+. Using [9, lemma 3.2.1, p.50] and property ϕ ∈ XF , we have

ż(t) = −Ae−Atϕ(0) − ϕ̇(0) −A

∫ t

0
e−A(t−τ)F (yτ + ϕ̂τ ) dτ + F (yt + ϕ̂t)

= −Ae−Atϕ(0) +Aϕ(0) − F (ϕ) −A

∫ t

0
e−A(t−τ)F (yτ + ϕ̂τ ) dτ + F (yt + ϕ̂t).

Hence

||ż(t)|| ≤ ||(e−At−I)Aϕ(0)||+||F (yt+ϕ̂t)−F (ϕ)||+

∥∥∥∥A
∫ t

0
e−A(t−τ)F (yτ + ϕ̂τ ) dτ

∥∥∥∥ . (23)

The first two terms in (23) tend to zero as t→ 0+ since ϕ(0) ∈ D(A), e−At is strongly

continuous, F is continuous and ||yt+ ϕ̂t−ϕ||C → 0 as t→ 0+. To estimate the last term

in (23) we use (18) for ψ = 0 and the property ||Aαe−At|| ≤ Cαt
−αe−δt, α ≥ 0 (remind

that e−At is analytic and see lemma 2 and [9, theorem 1.4.3, p.26], [16, theorem 2.6.13,

p.74]). So
∥∥∥∥A

∫ t

0
e−A(t−τ)F (yτ + ϕ̂τ ) dτ

∥∥∥∥ =

∥∥∥∥
∫ t

0
A1−αe−A(t−τ)AαF (yτ + ϕ̂τ ) dτ

∥∥∥∥

≤

∫ t

0
C1−α(t− τ)α−1e−δ(t−τ)LB,α||yτ + ϕ̂τ ||C dτ

≤ LB,αC1−α · max
s∈[0,T ]

||ys + ϕ̂s||C

∫ t

0
(t− τ)α−1e−δ(t−τ) dτ → 0

as t → 0+ since the last integral is convergent for α > 0. It completes the proof of

Proposition 1. �

Remark 4. It is important in the proof of Proposition 1 to have the property (16)

with α > 0 for the convergence of the last integral.

As in [25, p.56] we will use local charts of the manifold XF and a version of Banach’s

fixed point theorem with parameters (see e.g., Proposition 1.1 of Appendix VI in [4,

p.497]).

Remark 5. More precisely, we look for a fixed point of RTr(ϕ, y) as a function of

y where parameter is the image of ϕ under a local chart map instead of ϕ ∈ Xψ,r. The

reason is that the parameter should belong to an open subset of a Banach space, but Xψ,r

is not even linear (it is a subset of the manifold XF ).

We remind that for short we denoted by ϕ̂ ≡ ETϕ, where ETϕ is defined in (20).

Proposition 2. [25, prop. 2]. For every ε > 0 there exist T = T (ε) > 0 and r = r(ε)

such that for all ϕ ∈ ψ + (C1([−h, 0];L2(Ω)))r and all t ∈ [0, T ],

ϕ̂t ∈ ψ + (C1([−h, 0];L2(Ω)))ε

10



The proof is unchanged as in [25, proposition 2], so we omit it here.

Let us denote MT > 0 a constant satisfying ||e−As|| ≤ MT for all s ∈ [0, T ]. Now we

prove an analogue to [25, proposition 3].

Proposition 3. For all ϕ ∈ Xψ,r and y,w ∈ (C1
0 ([−h, T ];L

2(Ω)))ε one has

||RTr(ϕ, y)−RTr(ϕ,w)||C1([−h,T ];L2(Ω)) ≤ LRTr
||y − w||C1([−h,T ];L2(Ω)), (24)

where we denoted for short the Lipschitz constant

LRTr
≡ TLF,0,ε(MT + 1) + TαC1−αMTα

−1LF,α,ε (25)

with LF,α,ε = LB,α(εLr + 1) and LF,0,ε = LB,0(εLr + 1) (c.f. (18), (19)).

Proof of proposition 3. Using (19), we have for all ||ψ||C1 ≤ ε

||F (ψ) − F (χ)|| ≤ LF,0,ε||ψ − χ||C , LF,0,ε = LB,0(εLr + 1).

Let z = RTr(ϕ, y), v = RTr(ϕ,w) for y,w ∈ (C1
0 ([−h, T ];L

2(Ω)))ε. For all t ∈ [0, T ], one

gets

||z(t)−v(t)|| ≤ ||

∫ t

0
e−A(t−τ)(F (yτ+ϕ̂τ )−F (wτ+ϕ̂τ )) dτ || ≤ TMTLF,0,ε||y−w||−h,T . (26)

Next ||ż(t)− v̇(t)|| ≤ ||F (yt+ ϕ̂t)−F (wt+ ϕ̂t)||+ ||A
∫ t
0 e

−A(t−τ)(F (yτ + ϕ̂τ )−F (wτ +

ϕ̂τ )) dτ || ≤ LF,0,ε||yt −wt||C +
∫ t
0 ||A

1−αe−A(t−τ)||||Aα(F (yτ + ϕ̂τ )− F (wτ + ϕ̂τ ))|| dτ . To

estimate the first term we write

||yt −wt||C = max
s∈[−h,0]

||

∫ t+s

0
(ẏ(τ)− ẇ(τ)) dτ || ≤

∫ T

0
||ẏ(τ)− ẇ(τ)|| dτ

≤ T ||y − w||C1([−h,T ];L2(Ω)).

For the second term, as in proposition 1, we use the property ||Aαe−At|| ≤ Cαt
−αe−δt, α ≥

0 (see [9, theorem 1.4.3, p.26] or [16, theorem 2.6.13, p.74]), the Lipschitz property (18)

and calculations
∫ t
0 (t− τ)α−1 dτ = tα/α to get

∫ t

0
||A1−αe−A(t−τ)||||Aα(F (yτ + ϕ̂τ )− F (wτ + ϕ̂τ ))|| dτ

≤ C1−αT
αα−1MTLF,α,ε||y − w||−h,T .

Hence

||ż(t)− v̇(t)|| ≤
{
TLF,0,ε + TαC1−αMTα

−1LF,α,ε
}
||y − w||C1([−h,T ];L2(Ω)).

11



The last estimate and (26) combined give (24). �

The following statement is an analogue to [25, proposition 4 and corollary 1].

Proposition 4. Let δ > 0 there exist T = T (δ) > 0, r = r(δ) > 0, such that for all

ϕ ∈ Xψ,r (||ψ − ϕ||X ≤ r) one has

||RTr(ϕ, 0)||C1([−h,T ];L2(Ω)) < δ.

Moreover, for a positive ε there exist δ > 0 (and T = T (δ) > 0, r = r(δ) > 0 as above) and

λ ∈ (0, 1), such that RTr (defined in (22)) maps the subset Xψ,r × (C1
0 ([−h, T ];L

2(Ω)))ε

into the closed ball Cl (C1
0 ([−h, T ];L

2(Ω)))λε ⊂ (C1
0 ([−h, T ];L

2(Ω)))ε.

Proof of proposition 4. Consider z ≡ RTr(ϕ, 0). We write for t ∈ [0, T ]

z(t) = e−Atϕ(0) − ϕ(0) − tϕ̇(0) +

∫ t

0
e−A(t−τ)F (ϕ̂τ ) dτ

= (e−At − I)(ϕ(0) − ψ(0)) + (e−At − I)ψ(0) − t · (ϕ̇(0)− ψ̇(0))− tψ̇(0)

+

∫ t

0
e−A(t−τ)

{
F (ϕ̂τ )− F (ψ̂τ )

}
dτ +

∫ t

0
e−A(t−τ)F (ψ̂τ ) dτ. (27)

We estimiate different parts of (27) in the following ten steps.

1. Using the property ||(e−At − I)x|| ≤ 1
αC1−αt

α||Aαx|| (see [9, thm 1.4.3]) one gets

||(e−At − I)(ϕ(0) − ψ(0))|| ≤ C 1

2

t
1

2 ||A
1

2 (ϕ(0) − ψ(0))|| ≤ Ĉt
1

2 ||A(ϕ(0) − ψ(0))||

≤ Ĉt
1

2 ||ϕ− ψ||X .

2. ||t · (ϕ̇(0)− ψ̇(0))|| ≤ t · ||ϕ− ψ||X .

3. ||
∫ t
0 e

−A(t−τ)
{
F (ϕ̂τ )− F (ψ̂τ )

}
dτ || ≤MT tLF,0maxτ∈[0,t] ||ϕ̂τ−ψ̂τ ||C ≤MT tLF,0(1+

T )||ϕ − ψ||X .

4. ||
∫ t
0 e

−A(t−τ)F (ψ̂τ ) dτ || ≤MT tLB,0maxτ∈[0,t] ||ψ̂τ ||C ≤MT tLB,0(1 + T )||ψ||X .

Now we proceed to estimate the time derivative of z(t)

ż(t) = −Ae−Atϕ(0) − ϕ̇(0) + F (ϕ̂t)−A

∫ t

0
e−A(t−τ)F (ϕ̂τ ) dτ

= −Ae−Atϕ(0) +Aϕ(0) + F (ϕ) + F (ϕ̂t)−A

∫ t

0
e−A(t−τ)F (ϕ̂τ ) dτ

= (e−At − I)A(ψ(0) − ϕ(0)) − (e−At − I)Aψ(0)

+[F (ϕ̂t)− F (ψ̂t)] + [F (ψ̂t)− F (ψ)] + [F (ψ) − F (ϕ)]

−

∫ t

0
Ae−A(t−τ){F (ϕ̂τ )− F (ψ̂τ )} dτ −

∫ t

0
Ae−A(t−τ)F (ψ̂τ ) dτ. (28)

12



We use the following

5. ||(e−At − I)A(ψ(0) − ϕ(0))|| ≤ (MT + 1)||ϕ − ψ||X .

6. ||F (ϕ̂t)− F (ψ̂t)|| ≤ LF,0maxτ∈[0,t] ||ϕ̂τ − ψ̂τ ||C ≤ LF,0(1 + T )||ϕ − ψ||X .

7. ||F (ϕ) − F (ψ)|| ≤ LF,0||ϕ− ψ||X .

8. ||F (ψ̂t)− F (ψ)|| → 0 as t→ 0+ since ψ̂ is continuous from [−h, T ] to L2(Ω).

9. ||
∫ t
0 Ae

−A(t−τ){F (ϕ̂τ )− F (ψ̂τ )} dτ || = ||
∫ t
0 A

1−αe−A(t−τ)Aα{F (ϕ̂τ )− F (ψ̂τ )} dτ ||

≤

∫ t

0
C1−α(t− τ)α−1e−δ(t−τ)LF,α||ϕ̂τ − ψ̂τ ||C dτ ≤ C1−αLF,αDα,T ||ϕ− ψ||X ,

where Dα,T ≡
∫ T
0 (T − τ)α−1e−δ(T−τ) dτ, α > 0.

10. Similar to the previous case (LB,α instead of LF,α)

||

∫ t

0
Ae−A(t−τ)F (ψ̂τ ) dτ || ≤ C1−αLB,αDα,T ||ψ||X .

Now we can apply estimates 1.-10. (combined) to (27), (28). It gives the possibility to

choose small enough T = T (δ) > 0, r = r(δ) > 0 such that

||z||C1([−h,T ];L2(Ω)) ≡ ||RTr(ϕ, 0)||C1([−h,T ];L2(Ω)) < δ. (29)

Remark 6. Small r is used in 5.-7. only. For all the other terms it is enough (to be

small) to have a small T .

Now we prove the second part of proposition 4. We have

||RTr(ϕ, y)||C1([−h,T ];L2(Ω)) ≤ ||RTr(ϕ, y)−RTr(ϕ, 0)||C1([−h,T ];L2(Ω))

+||RTr(ϕ, 0)||C1([−h,T ];L2(Ω)). (30)

The first term in (30) is controlled by proposition 3 (see (24)), while the second one

by (29).

More precisely, we proceed as follows. First choose ε > 0, then choose small T (ε) > 0 to

have the Lipschitz constant LRTr
< 1 (see (24), (25)). Next we set δ ≡ ε

2(1−LRTr
) > 0 and

the corresponding T = T (δ) ∈ (0, T (ε)], r = r(δ) > 0 as in the first part of proposition 4,

see (29). Finally, we set λ ≡ 1
2(1+LRTr

) ∈ (0, 1). Now estimates (30), (24) and (29) show

that for any y ∈ (C1
0 ([−h, T ];L

2(Ω)))ε we have

||RTr(ϕ, y)||C1([−h,T ];L2(Ω)) ≤ LRTr
||y||C1([−h,T ];L2(Ω)) + δ ≤ LRTr

ε+ δ

= LRTr
ε+

ε

2
(1− LRTr

) = ε
1

2
(1 + LRTr

) = ελ < ε.

It completes the proof of proposition 4.�
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We assume

(H4) Nonlinear operators B : L2(Ω) → D(Aα) for some α > 0 and r : C([−h, 0];L2(Ω)) →

[0, h] are C1-smooth.

Remark 7. Assumption (H4) implies that the restriction

r : C1([−h, 0];L2(Ω)) → [0, h] is also C1-smooth. In addition, it is easy to see that (H4)

implies condition (S).

Proposition 5. Assume (H1)-(H4) are satisfied. Then RTr is C1-smooth.

The proof of proposition 5 follows the one of [25, prop.5]. The main essential difference

is the following. The C1-smoothness of B : L2(Ω) → D(Aα) implies the C1-smoothness of

F̃ : Xψ,r ×C1([−h, 0];L2(Ω)) → D(Aα) defined as F̃ (ϕ, y) ≡ B(ϕ(−r(ϕ+ y)) + y(−r(ϕ+

y))).

We also use evident additional property of the C1-smoothness of the map X ∋ ϕ 7→

e−Atϕ(0) ∈ C([0, T ];L2(Ω)) (remind the definition of X in (8)). Here we use IT :

C1([0, T ];L2(Ω)) → C1([0, T ];L2(Ω)) given by IT (y)(t) ≡
∫ t
0 e

−A(t−τ)y(τ) dτ instead of

IT used in [25, p.50]. We rely on [9, lemma 3.2.1, p.50] (see lemma 3, item (iv) above). �

As in [25, p.56] we are ready to use local charts of the submanifold XF and a version

of Banach’s fixed point theorem with parameters (see e.g, [4, proposition 1.1 of Appendix

VI]). Namely, propositions 3-5 allow us to apply the Banach’s fixed point theorem to get for

any ϕ ∈ Xψ,r the unique fixed point y = yϕ ∈ (C1
0 ([−h, T ];L

2(Ω)))ε of the map RTr. We

denote this correspondence by YTr : Xψ,r → (C1
0 ([−h, T ];L

2(Ω)))ε and it is C1-smooth.

It also gives that the map

STr : Xψ,r → C1([−h, T ];L2(Ω)), (31)

defined by STrϕ = xϕ ≡ yϕ + ϕ̂ ≡ YTr(ϕ) + ETϕ is C1-smooth. Here ETϕ is defined in

(20).

The local semiflow

FTr : [0, T ]×Xψ,r → XF ⊂ X

is given by

FTr(t, ϕ) = xϕt = evt(STr(ϕ)). (32)

Here we denoted the evaluation map

evt : C
1([−h, T ];L2(Ω)) → C1([−h, 0];L2(Ω)), evtx ≡ xt for all t ∈ [0, T ]. (33)

14



Proposition 6. Assume (H1)-(H4) are satisfied. Then FTr is continuous, and each

solution map FTr(t, ·) : Xψ,r � φ 7→ x
(φ)
t ∈ XF , t ∈ [0, T ], is C1-smooth. For all t ∈ [0, T ],

all φ ∈ Xψ,r, and all χ ∈ TφXF , one has TFTr(t,φ) � D2FTr(t, φ)χ = v
(φ,χ)
t , where the

function v ≡ v(φ,χ) ∈ C1([−h, T ];L2(Ω)) ∩ C([0, T ];D(A)) is the solution of the initial

value problem

v̇(t) = Av(t) +DF (x
(φ)
t )vt for all t ∈ [0, T ], v0 = χ. (34)

Here TφXF is the tangent space to the manifold XF at point φ ∈ XF .

Proof of proposition 6. We denote for short G ≡ FTr and S ≡ STr. Now we discuss

the continuity of F (remind the definition of X in (8) and the norm || · ||X in (9)).

||G(s, χ) −G(t, ϕ)||X = ||xχs − xϕt ||C1[−h,0] + ||A(xχ(s)− xϕ(t))||

≤ ||xχs − xϕs ||C1[−h,0] + ||xϕs − xϕt ||C1[−h,0] + ||A(xχ(s)− xϕ(s))||+ ||A(xϕ(s)− xϕ(t))||

≤ ||S(χ)− S(ϕ)||C1[−h,T ] + ||xϕs − xϕt ||C1[−h,0] + ||A(xχ(s)− xϕ(s))||

+||A(xϕ(s)− xϕ(t))||. (35)

Consider the third term in (35).

||A(xχ(s)− xϕ(s))|| ≤ ||e−AsA(χ(0)− ϕ(0))||

+

∫ s

0
||e−A(s−τ)A1−αAα(F (xχτ )− F (xϕτ ))|| dτ

≤ ||χ− ϕ||X + C1−αT
αα−1MTLB,α(LxϕLr + 1)||xχ − xϕ||C[−h,T ]

≤ ||χ− ϕ||X +C1−αT
αα−1MTLB,α(LxϕLr + 1)||S(χ) − S(ϕ)||C[−h,T ].

We see that due to the continuity of S ≡ STr (see (31)) the first and the third terms

in (35) tend to zero when ||χ − ϕ||X → 0. The second term in (35) tends to zero as

|s − t| → 0 since x ∈ C1([−h, T ];L2(Ω)). The last term in (35) vanishes due to [16,

Theorem 3.5, item (ii), p.114] (remind that xϕ(0) ≡ ϕ(0) ∈ D(A)). We proved the

continuity of F . To verify the differential equation for v (see (34)), we follow the line of

arguments presented in [25, p.58]. More precisely, we first verify the integral equation

(4) i.e. show that v is a mild solution to (34). The only difference in our case is the

presence of the operator A which is linear. Hence it does not add any difficulties in

the differentiability of S ≡ STr when we define for fixed φ ∈ Xψ,r, and χ ∈ TφXF the

function v ≡ DS(φ)χ ∈ C1([−h, T ];L2(Ω)). Here DS is understood as the differential

of a map between manifolds (see (31) for the definition of S and [1] for basic theory of

manifolds). One can see [25, p.58] that v0 = ev0DS(φ)χ = D(ev0 ◦ S)(φ)χ = χ. Here
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the evaluation map evt is defined in (33). Also for t ∈ [0, T ] and all ϕ ∈ Xψ,r one has

evt(S(ϕ)) = evtx
(ϕ) = x

(ϕ)
t = F (t, ϕ), which implies (see (32))

vt = evtDS(φ)χ = D(evt ◦ S)(φ)χ = D2F (t, χ).

To show that v satisfies the integral variant of equation (34) i.e., it is a mild solution to

(34), we first remind (31) and notation ϕ̂(t) = (ETϕ)(t) (20). It gives for t > 0

S(ϕ)(t) = x(ϕ)(t) = y(ϕ) + ETϕ ≡ YTr(ϕ) + ETϕ

= e−Atϕ(0) − ϕ(0) − tϕ̇(0) +

∫ t

0
e−A(t−τ)F (yτ + ϕ̂τ ) dτ + ϕ(0) + tϕ̇(0)

= e−Atϕ(0) +

∫ t

0
e−A(t−τ)F (yτ + ϕ̂τ ) dτ.

Hence

S(φ)(t) = e−Atφ(0) +

∫ t

0
e−A(t−τ)F (x(φ)τ ) dτ, t > 0, (36)

and the definition v ≡ DS(φ)χ ∈ C1([−h, T ];L2(Ω)) gives for t > 0

v(t) = (DS(φ)χ)(t) = χ(0) +

∫ t

0
e−A(t−τ)DF (x(φ)τ ) vτ dτ.

For more details see [25, p.58]. So v is a mild solution to (34).

Remark 8. To differentiate the nonlinear term in (36) we apply the same result on

the smoothness of the substitution operator as in [25, p.51]. More precisely, we consider

an open set U ⊂ C1([−h, 0];L2(Ω)) and the open set

UT ≡ {η ∈ C([0, T ];C1([−h, 0];L2(Ω))) : η(t) ∈ U for all t ∈ [0, T ]}.

It is proved in [4, Appendix IV, p.490] that the substitution operator FT : UT � η 7→ F ◦η ∈

C([−h, 0];L2(Ω)) is C1-smooth, with (DFT (η)χ)(t) = DF (η(t))χ(t) for all η ∈ UT , χ ∈

C([0, T ];C1([−h, 0];L2(Ω))), t ∈ [0, T ].

To show that v is classical solution we remind first that assumption (H4) gives the

(local) Lipschitz property for the Frechet derivative DF : X ⊃ U → L2(Ω) here U ⊂ X is

an open set. We remind (see e.g. [8, p.466]) the form of DF using the restricted evaluation

map (not to be confused with the evaluation map evt defined in (33))

Ev : C1([−h, 0];L2(Ω))× [−h, 0] � (φ, s) 7→ φ(s) ∈ L2(Ω)

which is continuously differentiable, with D1Ev(φ, s)χ = Ev(χ, s) and

D2Ev(φ, s)1 = ϕ′(s). Hence we write our delay term F as the composition F ≡ B ◦ Ev ◦

(id × (−r)) (see (3)) which is continuously differentiable from U to L2(Ω), with

DF (φ)χ = DB(φ(−r(φ)))[D1Ev(φ,−r(φ))χ −D2Ev(φ,−r(φ))Dr(φ)χ]
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= DB(φ(−r(φ)))[χ(−r(φ)) − φ′(−r(φ))Dr(φ)χ] (37)

for φ ∈ U and χ ∈ C1([−h, 0];L2(Ω)).

Mappings B and r satisfy (H4) and we remind (see remark 7) that our F satisfies the

condition similar to (S) in [8, p.467]. For an example of a delay term see below.

The (local) Lipschitz property for the Frechet derivative DF : X → L2(Ω) and the

additional smoothness of the initial function χ ∈ TφXF ⊂ X gives the possibility to apply

theorem 2 to show that v is a classical solution to (34). �

Define the set Υ =
⋃
φ∈X [0, t(φ)) × {φ} ⊂ [0,∞) ×X and the map G : Υ → X given

by the formula G(t, φ) = xφt . Propositions 1-6 combined lead to the following

Theorem 3. Assume (H1)-(H4) are satisfied. Then G is continuous, and for every

t ≥ 0 such that Υt 6= ∅ the map Gt is C1-smooth. For every (t, φ) ∈ Υ and for all

χ ∈ TφX, one has DGt(φ)χ = vt with v : [−h, t(φ)) → L2(Ω) is C1-smooth and satisfies

v̇(t) = Av(t) +DF (G(t, φ))vt, for t ∈ [0, t(φ)), v0 = χ.

4 Example of a state-dependent delay

Consider the following example of the delay term used, for example, in population dynam-

ics [13, p.191]. It is the so-called, threshold condition.

The state-dependent delay r : C([−h, 0];L2(Ω)) → [0, h] is given implicitly by the

following equation

R(r;ϕ) = 1, (38)

where

R(r;ϕ) ≡

∫ 0

−r

(
C1

C2 +
∫
Ω ϕ

2(s, x) dx
+ C3

)
ds, Ci > 0. (39)

Since

DrR(r(ϕ);ϕ) ·Dr(ϕ)ψ +DϕR(r(ϕ);ϕ)ψ = 0

and

DrR(r(ϕ);ϕ) · 1 =

(
C1

C2 +
∫
Ω ϕ

2(−r, x) dx
+ C3

)
· 1 6= 0, Ci > 0,

DϕR(r(ϕ);ϕ)ψ = −

∫ 0

−r

{
C1

[C2 +
∫
Ω ϕ

2(s, x) dx]2
· 2 ·

∫

Ω
ϕ(s, x)ψ(s, x) dx

}
ds,

we have

Dr(ϕ)ψ =

(
C1

C2 +
∫
Ω ϕ

2(−r, x) dx
+ C3

)−1

×

∫ 0

−r(ϕ)

{
C1

[C2 +
∫
Ω ϕ

2(s, x) dx]2
· 2 ·

∫

Ω
ϕ(s, x)ψ(s, x) dx

}
ds. (40)
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Now, we substitute the above form of Dr(ϕ)ψ into (37) and arrive to

DF (ϕ)ψ = DB(ϕ(−r(ϕ)))
[
ψ(−r(ϕ)) − ϕ′(−r(ϕ))×

(
C1

C2 +
∫
Ω ϕ

2(−r, x) dx
+C3

)−1

×

∫ 0

−r(ϕ)

{
C1

[C2 +
∫
Ω ϕ

2(s, x) dx]2
· 2 ·

∫

Ω
ϕ(s, x)ψ(s, x) dx

}
ds

]
. (41)

We see that mapping r satisfies (H4). We also remind (see remark 7) that in this ex-

ample F satisfies the condition similar to (S) in [8, p.467], provided operator B : L2(Ω) →

D(Aα) (for some α > 0) is C1-smooth.
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