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6 Isometries of Grassmann spaces ∗†

György Pál Gehér ‡, Peter Šemrl§

Abstract

Botelho, Jamison, and Molnár have recently described the general form

of surjective isometries of Grassmann spaces on complex Hilbert spaces

under certain dimensionality assumptions. In this paper we provide a new

approach to this problem which enables us first, to give a shorter proof

and second, to remove dimensionality constraints completely. In one of the

low dimensional cases, which was not covered by Botelho, Jamison, and

Molnár, an exceptional possibility occurs. As a byproduct, we are able to

handle the real case as well. Furthermore, in finite dimensions we remove

the surectivity assumption. A variety of tools is used in order to achieve

our goal, such as topological, geometrical and linear algebra techniques.

The famous two projections theorem for two finite rank projections will

be re-proven using linear algebraic methods. A theorem of Györy and the

second author on orthogonality preservers on Grassmann spaces will be

strengthened as well. This latter result will be obtained by using Chow’s

fundamental theorem of geometry of Grassmannians.

AMS classification: Primary: 47B49, Secondary: 54E40
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1 Introduction and statement of the main re-

sults

Describing the form of (surjective) isometries of linear normed spaces is a clas-
sical and important area of functional analysis. A theorem of Mazur and Ulam
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states that every surjective isometry between two real normed spaces is auto-
matically an affine map, i.e. a composition of a linear map and a translation by
a vector. Therefore if the spaces are isomorphic as metric spaces, then they are
also isomorphic as vector spaces. Another classical example of this is the famous
Banach–Stone theorem which describes surjective linear isometries between Ba-
nach spaces C(X) and C(Y ) of continuous functions over compact Hausdorff
spaces X and Y . An immediate consequence of this result is that the exis-
tence of a metric isomorphism between C(X) and C(Y ) implies the topological
equivalence of the underlying spaces X and Y . The non-commutative exten-
sion of this theorem was provided by Kadison, who in particular showed that
surjective linear isometries between C∗-algebras are closely related to algebra
isomorphisms. We refer to [5, 6] for more results in this direction.

Isometries of non-linear spaces are also very important in functional analysis.
The famous Wigner’s theorem, playing an important role in the probabilistic
aspects of quantum mechanics, can be interpreted as a structural result for
isometries of a certain non-linear space. Let H be a complex (or real) Hilbert
space. In quantum physics the Grassmann space P1(H) of all rank-one (or-
thogonal) projections is used to represent the set of pure states of the quantum
system, and the quantity tr (PQ) is the so-called transition probability between
two pure states. Wigner’s theorem describes those transformations of P1(H)
which preserve the transition probability. The conclusion is that these trans-
formations are induced by linear or conjugate-linear isometries of H . One can
easily obtain the following equation: ‖P − Q‖ =

√
1− trPQ (P,Q ∈ P1(H)),

where ‖ · ‖ denotes the operator norm. The metric on P1(H) (or on any other
subset of projections) which is induced by the operator norm is usually called
the gap metric. Therefore, Wigner’s theorem characterizes isometries of P1(H)
with respect to the gap metric, and in fact it states that these maps are induced
by isometries of the underlying space H . Let us note that in its original version,
Wigner’s theorem describes surjective mappings of this kind, but as was shown
later in several papers, the above conclusion holds for non-surjective transforma-
tions as well. The gap metric was introduced and investigated by Sz.-Nagy and
independently by Krein and Krasnoselski under the name ”aperture”. It has a
wide range of applications from pure mathematics to engineering. One can eas-
ily find several references demonstrating this broad applicability, among others,
we list the following fields: perturbation theory of linear operators, perturba-
tion analysis of invariant subspaces, optimization, robust control, multi-variable
control, system identification and signal processing.

Since Wigner’s theorem quite a lot of attention has been paid to the study
of isometries of non-linear spaces. Here, we are interested in the description of
surjective isometries on the Grassmann space Pn(H) of all rank n projections
with respect to the gap metric (n ∈ N). In [9], Molnár characterized (not neces-
sarily surjective) transformations of Pn(H) which preserve the complete system
of the so-called principal angles. These transformations are implemented by an
isometry of H . The notion of principal angles was first investigated by Jordan,
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and has a wide range of applications such as in mathematical statistics, geome-
try, etc. We recall that the sines of the non-zero principal angles are exactly the
non-zero singular values of the operator P −Q, each of them counted twice (see
e.g. (ii) of [7, Theorem 26]). This further implies that the quantity ‖P −Q‖ is
the sine of the largest principal angle. Recently, Botelho, Jamison, and Molnár
have obtained a characterization of surjective isometries of Pn(H) with respect
to the gap metric for complex Hilbert spaces H under the dimensionality con-
straint dimH ≥ 4n ([2]). Their approach was to apply a non-commutative
Mazur–Ulam type result on the local algebraic behaviour of surjective isome-
tries between substructures of metric groups. Then they proved that such a
mapping preserves orthogonality in both directions, and finally they applied
a theorem of Györy and Šemrl ([8, 10]), which contains some dimensionality
constraint, too.

In the present paper, our goal is to provide a completely different approach to
Botelho-Jamison-Molnár’s generalization of Wigner’s theorem. We will remove
the dimensionality assumption, and in finite dimensions we are able to drop the
surjectivity condition. As a byproduct, we are also able to handle the real case.
Furthermore, an additional possibility occurs in the case when dimH = 2n,
which was not covered in [2].

We are now ready to state our main result on isometries of the Grassman-
nians.

Theorem 1.1 Let H be a complex (real) Hilbert space and n a positive integer,
n < dimH. Assume that a surjective map φ : Pn(H) → Pn(H) is an isometry
with respect to the gap metric. If dimH 6= 2n, then there exists either a unitary
or an antiunitary operator (orthogonal operator) U on H such that φ is of the
following form:

φ(P ) = UPU∗ (P ∈ Pn(H)). (1)

In the case when dimH = 2n, we have either (1), or the following additional
possibility occurs:

φ(P ) = U(I − P )U∗ (P ∈ Pn(H)). (2)

Moreover, if dimH < ∞, then we have the above conclusion without assuming
surjectivity.

In this paper, whenever we say a projection we automatically mean an or-
thogonal projection. Let us briefly explain our approach. We will consider two
arbitrary projections P and Q, and we will investigate the set M(P,Q) which
consists of those projections whose distance to both P and Q is less than or
equal to 1√

2
. It will turn out that M(P,Q) is a compact manifold if and only

if P and Q are orthogonal. This will imply that orthogonality is preserved in
both directions by φ. In the case when dimH > 2n the proof is completed by a
straightforward application of our second main result stated below. In the case
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when dimH = 2n, the orthogonality preservers can behave badly. So, in this
special case another approach is needed. It is based on a theorem of Blunck and
Havlicek on complementarity preservers.

We note that throughout this paper whenever we consider a manifold, we
always mean a topological manifold without boundary.

Now, we state our improvement of the theorem of Györy and Šemrl.

Theorem 1.2 Let H be a complex (real) Hilbert space and n a positive integer
such that 2n < dimH is satisfied. Assume that a surjective map φ : Pn(H) →
Pn(H) preserves orthogonality in both directions. Then there exists either a
unitary or an antiunitary operator (orthogonal operator) U on H such that

φ(P ) = UPU∗ (P ∈ Pn(H)).

In order to prove this result, we will apply Chow’s fundamental theorem of
geometry of Grassmann spaces.

In the next section we will first prove several lemmas concerning the prop-
erties of the above mentioned set M(P,Q). We also include a proof of the
well-known two projections theorem in the case when the projections are both
from Pn(H). Then Section 3 is devoted to the proofs of Theorems 1.1 and 1.2.

2 Preliminary results

In the sequel we will often use matrix representation of operators. In all such
cases the matrices and the block-matrix forms are written with respect to an
orthonormal system or an orthogonal decomposition, respectively. By Diag (. . .)
we will denote a (block-)diagonal matrix. In our first lemma we consider the
operator norm of certain two by two matrices.

Lemma 2.1 We have
∥

∥

∥

∥

[

1

2

1

2
1

2
α

]
∥

∥

∥

∥

≥ 1√
2

and

∥

∥

∥

∥

[

1

2
− 1

2

− 1

2
α

]
∥

∥

∥

∥

≥ 1√
2

(

−1

2
≤ α ≤ 1

2

)

.

Furthermore, in both cases equality holds if and only if α = − 1

2
.

Proof. The proof of the two cases are almost identical, so we will only deal with

the first one. If we set Aα =

[

1

2

1

2
1

2
α

]

with − 1

2
≤ α ≤ 1

2
, then clearly,

1

2
+ α = trAα ≥ 0 and

α

2
− 1

4
= detAα ≤ 0. (3)

Since Aα is hermitian in the complex case and symmetric in the real case, we
have ‖Aα‖ = max{|t1|, |t2|}, where t1, t2 are the (possibly equal) eigenvalues of
Aα. Because of (3) we get

f(α) = 2‖Aα‖ = 2max{|t1|, |t2|} = t1 + t2 + |t1 − t2|
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= trAα +
√

(trAα)2 − 4 detAα = α+
1

2
+

√

α2 − α+
5

4
.

Since f(−1/2) =
√
2, and

f ′(α) = 1 +
−1 + 2α

2
√

5

4
− α+ α2

> 0

(

α ∈
[

−1

2
,
1

2

])

,

we easily complete the proof.

✷

The set of bounded linear operators acting on H is denoted by B(H). For
any two projections P,Q ∈ Pn(H) we define the following set:

M(P,Q) =

{

R ∈ Pn(H) : ‖R− P‖ ≤ 1√
2

and ‖R−Q‖ ≤ 1√
2

}

.

This set will play an important role. If A ⊂ H is a set, then A⊥ and spanA
denote the set of all vectors which are orthogonal to every element of A, and the
(not necessarily closed) linear manifold generated by A, respectively. In what
follows, we will give a useful description of the set M(P,Q) when ‖P −Q‖ = 1.

Lemma 2.2 Let H be a real or complex Hilbert space, n a positive integer,
and P,Q ∈ Pn(H) such that ‖P − Q‖ = 1. Then for every R ∈ M(P,Q)
there exist an orthogonal decomposition H = H1 ⊕H2 with dimH1 = 2 and an
orthonormal basis {e1, e2} in H1, such that with respect to this decomposition
and this orthonormal basis the projections P,Q,R have the following matrix
representations:

P =





[

1 0
0 0

]

0

0 P1



 , Q =





[

0 0
0 1

]

0

0 Q1



 , and R =





[

1

2

1

2
1

2

1

2

]

0

0 R1



 ,

where P1, Q1, R1 ∈ Pn−1(H2).

Proof. In both, the real and the complex case, we have 1 = ‖P − Q‖ =
max{|〈(P − Q)x, x〉| : x ∈ H, ‖x‖ = 1}. Since P and Q are projections we
know that

0 ≤ 〈Px, x〉, 〈Qx, x〉 ≤ 1

holds for every unit vector x ∈ H . Thus, after interchanging P and Q, if neces-
sary, we may assume that there exists e1 ∈ H such that ‖e1‖ = 1, 〈Pe1, e1〉 = 1
and 〈Qe1, e1〉 = 0. It follows that Pe1 = e1 and Qe1 = 0. Since P and Q are
projections, their matrix representations with respect to the orthogonal decom-
position H = span {e1} ⊕ e⊥

1
are

P =

[

1 0
0 P2

]

and Q =

[

0 0
0 Q2

]
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for some projections P2, Q2 acting on e⊥
1
. The corresponding matrix represen-

tation of the projection R is

R =

[

r1 x∗

x R2

]

,

where r1 is a real number, x a vector from e⊥1 , and R2 ∈ B(e⊥1 ). From R2 = R,

1√
2
≥ ‖R−Q‖ =

∥

∥

∥

∥

[

r1 x∗

x R2 −Q2

]
∥

∥

∥

∥

,

and
1√
2
≥ ‖R− P‖ =

∥

∥

∥

∥

[

r1 − 1 x∗

x R2 − P2

] ∥

∥

∥

∥

the following equalities and inequalities can be obtained:

r2
1
+ ‖x‖2 = r1,

√

r2
1
+ ‖x‖2 ≤ 1√

2
, and

√

(r1 − 1)2 + ‖x‖2 ≤ 1√
2
.

These readily imply r1 = 1

2
= ‖x‖. Setting e2 = 2x, the matrix representa-

tions of P,Q,R with respect to the orthogonal decomposition H = span {e1} ⊕
span {e2} ⊕ {e1, e2}⊥ are

P =





1 0 0
0 p2 y∗

0 y P1



 , Q =





0 0 0
0 q2 w∗

0 w Q1



 , and R =





1

2

1

2
0

1

2
r2 z∗

0 z R1



 ,

for some p2, q2, r2 ∈ [0, 1], y, w, z ∈ {e1, e2}⊥, and some P1, Q1, R1 ∈ B({e1, e2}⊥).
It follows from R2 = R that r2 = 1

2
and z = 0.

Let S ∈ B(H) be the projection onto the two-dimensional subspace {e1, e2}.
From

‖S(R−Q)S‖ ≤ 1√
2

we conclude that
∥

∥

∥

∥

[

1

2

1

2
1

2

1

2
− q2

]
∥

∥

∥

∥

≤ 1√
2
,

and hence, by Lemma 2.1, we have q2 = 1. But then Q ≤ I yields that w = 0.
Thus, Q is of the desired form, and in exactly the same way we see that also P
is of the form as described in the conclusion of the lemma.

✷

Let us note that so far we have not proven that M(P,Q) is non-empty. We
only showed that if ‖P −Q‖ = 1 and R ∈ M(P,Q), then we have the conclusion
of Lemma 2.2.

In what follows, Ur will denote either the unitary group on the r-dimensional
complex Hilbert space, or the orthogonal group on the r-dimensional real Hilbert
space. The symbols Ir and 0r will denote the r by r identity and zero matrices,
respectively.
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Corollary 2.3 Let P,Q ∈ Pn(H) such that ‖P −Q‖ = 1. Then there exists a
number 1 ≤ r ≤ n such that

P =





Ir 0 0
0 0 0
0 0 P1



 and Q =





0 0 0
0 Ir 0
0 0 Q1



 (4)

with respect to an orthogonal decomposition H = H1 ⊕ H2 ⊕ H3, dimH1 =
dimH2 = r, and P1, Q1 ∈ Pn−r(H3), ‖P1−Q1‖ < 1 (in the case when r = n we
have P1 = Q1 = 0). Moreover, in this case M(P,Q) is the set of all projections
of the form





1

2
Ir

1

2
U 0

1

2
U∗ 1

2
Ir 0

0 0 R1



 , (5)

where U ∈ Ur, R1 ∈ Pn−r(H3), ‖R1 − P1‖ ≤ 1√
2
, and ‖R1 −Q1‖ ≤ 1√

2
.

Proof. We begin with verifying (4). After interchanging P and Q if necessary,
we may use exactly the same arguments as at the beginning of the proof of
Lemma 2.2 to conclude that P and Q are unitary (orthogonal) similar to

[

1 0
0 P2

]

and

[

0 0
0 Q2

]

,

where P2 and Q2 are projections of rank n − 1 and n, respectively. It follows
that there exists a unit vector from the intersection ImQ2 ∩ KerP2. In other
words, P and Q are unitary (orthogonal) similar to





1 0 0
0 0 0
0 0 P3



 and





0 0 0
0 1 0
0 0 Q3



 ,

where P3 and Q3 are projections both of rank n−1. Now, we apply the inductive
approach to obtain (4).

Next, let R be of the form (5). An easy calculation shows that R ∈ Pn(H).
We observe that the upper-left two by two corners of P −R and Q−R are 1√

2
-

multiples of unitary (orthogonal) operators. Therefore R is indeed in M(P,Q).
We consider a projection R ∈ M(P,Q). Then, by Lemma 2.2 there exists a

unitary (orthogonal) operator U such that

P = U





[

1 0
0 0

]

0

0 P ′



 U∗, Q = U





[

0 0
0 1

]

0

0 Q′



 U∗,

and

R = U





[

1

2

1

2
1

2

1

2

]

0

0 R′



 U∗,
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where P ′, Q′, R′ are projections of rank n−1. We also have ‖R′−P ′‖ ≤ 1√
2
and

‖R′−Q′‖ ≤ 1√
2
. If ‖P ′−Q′‖ < 1 we stop here. Otherwise we apply Lemma 2.2

once again, this time for projections P ′, Q′, and R′ ∈ M(P ′, Q′). Inductively
we arrive at

P = V Diag

([

1 0
0 0

]

, . . . ,

[

1 0
0 0

]

, P ′′
)

V ∗,

Q = V Diag

([

0 0
0 1

]

, . . . ,

[

0 0
0 1

]

, Q′′
)

V ∗,

R = V Diag

([

1

2

1

2
1

2

1

2

]

, . . . ,

[

1

2

1

2
1

2

1

2

]

, R′′
)

V ∗,

for some unitary (orthogonal) operator V and some projections P ′′, Q′′, R′′ with
‖P ′′ −Q′′‖ < 1 and R′′ ∈ M(P ′′, Q′′). Let k denote the number of two by two
diagonal blocks appearing in the above matrix representations of P , Q, and R.

After rearranging the first 2k elements of the orthonormal basis of H we get

P =





Ir 0 0
0 0 0
0 0 P1



 = W





Ik 0 0
0 0 0
0 0 P ′′



 W ∗, (6)

Q =





0 0 0
0 Ir 0
0 0 Q1



 = W





0 0 0
0 Ik 0
0 0 Q′′



 W ∗, (7)

and

R = W





1

2
Ik

1

2
Ik 0

1

2
Ik

1

2
Ik 0

0 0 R′′



 W ∗ (8)

for some unitary (orthogonal) operator W . One has to be careful when reading
the above three equations. Namely, the block matrix representations of opera-
tors on the left sides of equations correspond to the direct sum decomposition
H = H1⊕H2⊕H3, while the block matrix representations of the same operators
on the right sides correspond to some possibly different direct sum decomposi-
tion of the underlying space. But already in the next step we will show that
k = r, and then (after changing W , if necessary) we may, and we will assume
that the two decompositions coincide.

From (6) and (7) we infer




Ir 0 0
0 −Ir 0
0 0 P1 −Q1



 = W





Ik 0 0
0 −Ik 0
0 0 P ′′ −Q′′



 W ∗.

Comparing the eigenspaces of the two sides and taking into account that the
right-bottom corners have norm less than 1, we conclude that k = r. Fur-
thermore, the representation of W with respect to the decomposition H =

8



H1 ⊕H2 ⊕H3 is

W =





W1 0 0
0 W2 0
0 0 W3



 .

Finally, from (8), an easy calculation gives us (5) with U = W1W
∗
2
∈ Ur and

R1 = W3R
′′W ∗

3
∈ Pn−r(H3). This completes the proof.

✷

It is important to point out that we still do not know whether the phenom-
ena M(P,Q) = ∅ can happen or not. Non-emptiness of M(P,Q), for arbitrary
P,Q ∈ Pn(H), is a consequence of the two projections theorem, which we will
prove after the following corollary. However, if P and Q are orthogonal projec-
tions, then we do know that M(P,Q) 6= ∅, which is stated below.

Let P,Q ∈ Pn(H) be orthogonal projections, that is, PQ = 0, or equiva-
lently, QP = 0, which is equivalent to ImP ⊥ ImQ. Then with respect to the
orthogonal decomposition H = ImP ⊕ ImQ⊕H0 the projections P,Q have the
following matrix representations:

P =





In 0 0
0 0 0
0 0 0



 and Q =





0 0 0
0 In 0
0 0 0



 . (9)

Corollary 2.4 Let H be a complex or real Hilbert space, n a positive integer,
and P,Q ∈ Pn(H) projections given by (9). Then

M(P,Q) =











1

2
In

1

2
U 0

1

2
U∗ 1

2
In 0

0 0 0



 : U ∈ Un







.

In particular, M(P,Q) is a compact manifold.

Proof. The first part is a direct consequence of the previous statement, while
the second part of the conclusion follows from the well-known facts that both
the orthogonal and unitary groups are compact manifolds.

✷

The following lemma is known as the two projections theorem (see [3, 7])
in the special case when P,Q ∈ Pn(H) and ‖P − Q‖ < 1. For the sake of
completeness we give a proof here. Of course, the case of the two projections
theorem in which the latter inequality is dropped can be obtained by combining
the following lemma and Corollary 2.3.

9



Lemma 2.5 Let P,Q be projections of rank n acting on a Hilbert space H.
Assume that ‖P −Q‖ < 1. Denote the dimension of ImP ∩ ImQ by p (0 ≤ p ≤
n). Then P and Q are unitary (orthogonal) similar to operators





Ip 0 0
0 E 0
0 0 0



 and





Ip 0 0
0 F 0
0 0 0



 ,

where E and F are 2(n− p)× 2(n− p) matrices given by

E = Diag

([

1 0
0 0

]

, . . . ,

[

1 0
0 0

])

and

F = Diag

([

dj
√

dj(1− dj)
√

dj(1− dj) 1− dj

]

: 1 ≤ j ≤ n− p

)

,

with 0 < d1, . . . , dn−p < 1.

Proof. We set H1 = ImP ∩ImQ and H2 = H⊥
1 . With respect to the orthogonal

decomposition H = H1 ⊕H2 we have

P =

[

Ip 0
0 P1

]

and Q =

[

Ip 0
0 Q1

]

,

where P1 andQ1 are projections of rank n−p. The subspaceH2 is the orthogonal
sum of H3 = ImP1 and H4 = KerP1. With respect to the decomposition H =
H1⊕H3⊕H4 the projections P and Q have the following matrix representations:

P =





Ip 0 0
0 In−p 0
0 0 0



 and Q =





Ip 0 0
0 D1 D2

0 D∗
2

D3



 .

After applying unitary (orthogonal) similarity, if necessary, we may assume with
no loss of generality that D1 is diagonal, D1 = Diag (d1, . . . , dn−p). Moreover,
the rank of the submatrix [D∗

2
D3] is at most n − p, and therefore, the sub-

space H4 can be decomposed into an orthogonal sum of two subspaces, the
first one being of dimension at most n− p, such that the corresponding matrix
representations of P and Q are

P =







Ip 0 0 0
0 In−p 0 0
0 0 0 0
0 0 0 0






and Q =







Ip 0 0 0
0 D1 E2 0
0 E∗

2 E3 0
0 0 0 0






.

Since Q is a projection, we have 0 ≤ D1 ≤ In−p, and because ‖In−p − D1‖ ≤
‖P − Q‖ < 1 we conclude that 0 < d1, . . . , dn−p ≤ 1. Actually, we have

10



0 < d1, . . . , dn−p < 1, since otherwise, one of d1, . . . , dn−p, say d1, would be equal
to 1, and then since Q is a projection, the first row of E2 and the first column
of E∗

2 would be zero yielding that dim(ImP ∩ ImQ) ≥ p+ 1, a contradiction.
The size of the matrix E2 is (n − p) × k with k ≤ n − p. We claim that

actually we have k = n−p. For if this was not true, it would follow from Q2 = Q
that

D2

1
+ E2E

∗
2
= D1, (10)

and consequently, the diagonal matrix D1−D2

1
would not be of full rank, which

is a contradiction.
We can now apply the polar decomposition E2 = PU , where U is unitary

(orthogonal) and P is positive semidefinite. Applying unitary (orthogonal) simi-
larity once more, we can assume that already E2 is positive. But then (10) yields
that E2 is the unique positive square root of the diagonal matrix D1 −D2

1. It
follows that

E2 = Diag

(

√

d1(1− d1), . . . ,
√

dn−p(1− dn−p)

)

,

and then trivially,

E3 = Diag (1− d1, . . . , 1− dn−p) .

We complete the proof by rearranging the orthonormal basis of H .

✷

The general case of the two projections theorem, i.e. when we have two finite
rank projections with possibly different ranks, could be obtained from the above
Lemma, Corollary 2.3, and some elementary facts concerning two projections.

Let us consider the rank one projections

S =

[

1 0
0 0

]

and T (d) =

[

d
√

d(1− d)
√

d(1− d) 1− d

]

(0 ≤ d ≤ 1).

Some easy computations give us the following equalities and inequalities:

‖S − T (1/2)‖ =
1√
2
, ‖T (d)− T (1/2)‖ =

√

1− 2
√

(1− d)d
√
2

≤ 1√
2
, (11)

∥

∥S − T
(

(1 +
√
d)/2

)
∥

∥ =
∥

∥T (d)− T
(

(1 +
√
d)/2

)
∥

∥ =

√

2− 2
√
d

2
≤ 1√

2
. (12)

If we combine (11) (or (12)) with the two projections theorem, then we obtain
that M(P,Q) is indeed non-empty for every two P,Q ∈ Pn(H). We point out
that if 0 ≤ d < 1, then there exists a positive number ε such that we have

‖S − T (1/2− ε̃)‖ >
1√
2

and ‖T (d)− T (1/2− ε̃)‖ <
1√
2

(0 < ε̃ < ε). (13)

11



This could be verified by straightforward calculations.
Next, as a counterpart to Corollary 2.4, we have the following statement.

Corollary 2.6 Let H be a complex or real Hilbert space, n a positive integer,
2n ≤ dimH, and P,Q ∈ Pn(H). Assume that ‖P −Q‖ = 1 and that P and Q
are not orthogonal. Then M(P,Q) is not a compact manifold. Moreover, when
H is of infinite dimension, then M(P,Q) is not even a compact set.

Proof. According to Corollary 2.3 we may, and we will assume that P and Q are
of the form (4). We need to prove that the set M(P,Q) in (5) is not a compact
manifold.

Using Lemma 2.5 and (12) it is straightforward to find

R =





1

2
Ir

1

2
U1 0

1

2
U∗
1

1

2
Ir 0

0 0 R1



 ∈ M(P,Q)

with ‖R1 − P1‖ < 1√
2
and ‖R1 −Q1‖ < 1√

2
.

Hence, there exists a positive real number ε such that the set Uε consisting
of all projections of the form





1

2
Ir

1

2
V 0

1

2
V ∗ 1

2
Ir 0

0 0 S



 ,

where V ∈ Ur with ‖V − U1‖ < ε and S ∈ Pn−r(H3) with ‖S − R1‖ < ε, is
an open subset of M(P,Q). In particular, if dimH = ∞, then M(P,Q) is not
compact at all.

We assume from now on that H is finite-dimensional. Assume also that
M(P,Q) is a compact manifold. Having these assumptions we need to arrive at
a contradiction.

In both the real and the complex cases, the topological spaces Ur and
Pn−r(H3) are compact manifolds. Denote their dimensions by q1 and q2, re-
spectively (the exact values of q1 and q2 are well-known, but not important
here). We set

S =











1

2
Ir

1

2
U 0

1

2
U∗ 1

2
Ir 0

0 0 L



 :U ∈ Ur, L ∈ Pn−r(H3)







. (14)

Then M(P,Q) ⊂ S and S is a compact manifold of dimension q1 + q2. Using
the fact that Uε is an open neighbourhood of R in M(P,Q) as well as in S we
conclude that the dimension of M(P,Q) is equal to q1 + q2.

Using Lemma 2.5 and (11), we can find

T =





1

2
Ir

1

2
W 0

1

2
W ∗ 1

2
Ir 0

0 0 T1



 ∈ M(P,Q)
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such that ‖T1 − P1‖ < 1√
2
and ‖T1 − Q1‖ = 1√

2
. Moreover, by (13), it is

possible to find in an arbitrary neighbourhood of T1 ∈ Pn−r(H3) a projection
T2 ∈ Pn−r(H3) such that ‖T2 −Q1‖ > 1√

2
and ‖T2 − P1‖ < 1√

2
.

Finally, the inclusion of M(P,Q) into S is a continuous injective map. The
invariance of domain theorem states that any injective and continuous map
between manifolds of the same dimensions is automatically an open map. Ap-
plying this theorem, we conclude that M(P,Q) must be an open subset of S,
contradicting the fact that T ∈ M(P,Q). Therefore M(P,Q) is not a compact
manifold.

✷

One of the main tools in the proof of our main results is Chow’s fundamental
theorem of geometry of Grassmann spaces [4]. In this paper we prefer to speak of
(orthogonal) projections rather than of subspaces. But if we apply the obvious
identification, where a subspace of dimension n is identified with a projection of
rank n whose image is this subspace, then we arrive at the following definition
of adjacency of two projections of rank n: projections P,Q ∈ Pn(H) are said
to be adjacent if and only if dim(ImP + ImQ) = n + 1 which is equivalent to
dim(ImP ∩ ImQ) = n− 1.

By the two projections theorem we easily conclude that P,Q ∈ Pn(H) are
adjacent if and only if they are unitary (orthogonal) similar to operators of the
following form:

P =







In−1 0 0

0

[

1 0
0 0

]

0

0 0 0






(15)

and

Q =







In−1 0 0

0

[

d
√

d(1 − d)
√

d(1 − d) 1− d

]

0

0 0 0






(16)

for some real d, 0 ≤ d < 1. Equivalently, we can say that P and Q are adjacent
if and only if rank (P −Q) = 2.

A semi-linear map is an additive map A:H → H such that there exists
a field automorphism σ:C → C (σ:R → R in the real case) which satisfies
A(λx) = σ(λ)x for every vector x ∈ H and every number λ. In the case of
real numbers, the only automorphism is the identity, therefore every semi-linear
map is linear. In the case of complex numbers, two trivial automorphisms are
the identity and the conjugation, but there are several other automorphisms.
The above mentioned Chow’s theorem states that if 2n+ 1 ≤ dimH < ∞, and
we have a bijective map φ:Pn(H) → Pn(H) which preserves adjacency in both
directions, i.e.

rank (P −Q) = 2 ⇐⇒ rank (φ(P ) − φ(Q)) = 2 (P,Q ∈ Pn(H)),
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then there exists a bijective semi-linear transformation A:H → H such that we
have

Imφ(P ) = A(ImP ) (P ∈ Pn(H)). (17)

If dimH = 2n, then either (17) holds, or we have

Imφ(P ) = (A(ImP ))⊥ (P ∈ Pn(H)). (18)

For a subset A ⊂ Pn(H) we define the following set

A⊤ = {Q ∈ Pn(H) : QP = 0 for all P ∈ A}.

The last lemma of this section characterizes adjacency of two n-rank projections
with the help of orthogonality.

Lemma 2.7 Let n ≥ 2 and dimH ≥ 2n + 1. For P,Q ∈ Pn(H), P 6= Q, the
following conditions are equivalent:

• P and Q are adjacent;

• for every R ∈ Pn(H)\{P,Q}⊤ the set ({R}∪{P,Q}⊤)⊤ contains at most
one projection.

Proof. Assume first that P and Q are adjacent. Then there is no loss of
generality in assuming that they are of the form (15) and (16) with respect to
some orthogonal decomposition H = H1 ⊕H2 ⊕H3. It follows that {P,Q}⊤ is
the set of all rank n projections of the form





0n−1 0 0
0 02 0
0 0 ∗



 .

Note that the size of the bottom-right corner is at least n × n, and therefore,
{P,Q}⊤ is not empty.

Hence, if T ∈ ({P,Q}⊤)⊤, then KerT contains H3. We fix an arbitrary R ∈
Pn(H) \ {P,Q}⊤ and assume that T ∈ ({R}∪{P,Q}⊤)⊤. Clearly, there exist a
non-zero vector x12 ∈ H1⊕H2 and another (possibly zero) one x3 ∈ H3 such that
x := x12 ⊕ x3 ∈ ImR ⊂ KerT . Therefore, we obtain KerT = span {x12} ⊕H3,
and conclude that either ({R} ∪ {P,Q}⊤)⊤ is empty, or it contains only one
projection, whose range is (span {x12} ⊕H3)

⊥.
We consider now the case when P and Q are not adjacent. Denote W =

ImP + ImQ. Then {P,Q}⊤ is either empty and in this case it is trivial to
complete the proof; or it is the set of all projections of rank n whose matrix
representation with respect to the orthogonal decomposition H = W ⊕W⊥ is
of the form

[

0 0
0 ∗

]

.
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Choose

R =

[

E1 0
0 R1

]

,

with E1 ∈ P1(W ) and R1 ∈ Pn−1(W
⊥). Using the fact that dimW ≥ n+2, we

easily conclude that the set ({R} ∪ {P,Q}⊤)⊤ contains infinitely many rank n
projections.

✷

3 Proofs of the main results

Now, we are in a position to verify our main results.

Proof of Theorem 1.2. The infinite dimensional case was covered in [8, 10].
So we may assume that 2n + 1 ≤ dimH < ∞ is satisfied. We would like to
show that φ (which is onto) is a bijective map which preserves adjacency in
both directions. Assume first that we have φ(P ) = φ(Q). Then R ∈ Pn(H)
is orthogonal to P if and only if φ(R) is orthogonal to φ(P ) = φ(Q) which is
equivalent to the orthogonality of R and Q. It follows easily that P = Q. Hence,
φ is injective, and hence bijective.

Now, by Lemma 2.7, we easily conclude that φ preserves adjacency in both
directions. Therefore it follows from Chow’s theorem that φ has the form of
(17) with some semi-linear mapping A:H → H . Let x and y be two non-zero
orthogonal vectors in H . We consider two projections P,Q ∈ Pn(H) such that
we have Px = x, Py = 0, Qx = 0, Qy = y and PQ = 0. Therefore Ax and Ay
are also orthogonal. Similarly, we can conclude that if Ax and Ay are orthogo-
nal, then x and y has to be orthogonal as well. An easy application of Uhlhorn’s
theorem [12] (or [11, Corollary 1.4] together with Wigner’s theorem) gives that
A is a non-zero scalar multiple of a unitary or an antiunitary transformation
(orthogonal in the real case). Clearly, we can choose A to be unitary or antiu-
nitary (or orthogonal in the real case). Finally, using the fact that P ∈ Pn(H)
implies UPU∗ ∈ Pn(H) with Im (UPU∗) = U(ImP ), our proof is done.

✷

If dimH = 2n, then we call two projections P,Q ∈ Pn(H) complementary
if ImP + ImQ = H is fulfilled.

Proof of Theorem 1.1. The case when n = 1 is the classical version of Wigner’s
theorem, so we will assume n ≥ 2 throughout the proof.

First, assume that dimH < ∞ is satisfied. On one hand, since Pn(H) is a
compact manifold, its image is also compact. On the other hand, the domain
invariance theorem ensures that Imφ is open as well. Since Pn(H) is connected,
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we conclude the bijectivity of φ. Therefore the surjectivity assumption is indeed
disposable in the finite dimensional cases.

Second, obviously φ is a homeomorphism with respect to the topology in-
duced by the gap metric. We also have

φ(M(P,Q)) = M(φ(P ), φ(Q)). (19)

If dimH = ∞, then by Corollaries 2.4 and 2.6, the projections P and Q are
orthogonal if and only if M(P,Q) is compact. Therefore the map φ preserves
orthogonality in both directions, and the Györy–Šemrl theorem completes the
proof of this case.

Next, we assume 2n ≤ dimH < ∞, and we show that φ preserves orthogo-
nality in both directions. Let us assume the contrary, i.e. we either have P,Q
with P ⊥ Q but their images are not orthogonal; or P,Q are not orthogonal
but φ(P ) ⊥ φ(Q). Since φ−1 is also a surjective isometry, it is enough to con-
sider the second possibility. Then M(φ(P ), φ(Q)) is a compact manifold, but
M(P,Q) is not, which contradicts (19) and the fact that both φ and φ−1 are
continuous.

Clearly, Theorem 1.2 completes the proof in the case when 2n < dimH <
∞. Next, let us suppose that dimH = 2n. By the two projections theorem
we conclude that any two elements P,Q ∈ Pn(H) are complementary if and
only if ‖(I − P ) − Q‖ < 1. But this is equivalent to ‖φ(I − P ) − φ(Q)‖ =
‖(I − φ(P )) − φ(Q)‖ < 1, which is satisfied if and only if φ(P ) and φ(Q) are
complementary. Hence φ preserves complementarity in both directions, and a
straightforward application of [1] completes the proof of this case.

It remains to consider the case when n < d := dimH < 2n case. Since
‖P − Q‖ = ‖(I − P ) − (I − Q)‖ (P,Q ∈ Pn(H)), the map φ̃:Pd−n(H) →
Pd−n(H), φ̃(I − P ) = I − φ(P ) (P ∈ Pn(H)) is also an isometry, but on the
Grassmann space Pd−n(H). Because of 1 ≤ 2(d − n) < d, we obtain that φ is
of the form (1).

✷
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