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Abstract The possible integration of different sexual oreats into a composite system, and
especially the information content of such ornanoemplexes, is poorly investigated. Many
bird species display complex plumage coloration vihether this represents one integrated
or several independent sexual traits can be uncBedliared flycatcherdSicedula albicollis)
display melanised and depigmented plumage aredsharspectral features (brightness and
UV chroma) of these are correlated with each oélcenss the plumage. In a five-year dataset
of male and female plumage reflectance, we exansonete of the potential information
content of integrated, plumage-level colour atti@suby estimating their relationships to
previous and current year body condition, layintedgad clutch size. Females were in better
condition the year before they became darker pigateand males in better current year

condition were also darker pigmented. Female pidfbased brightness was positively, while
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male structurally based brightness was negativedfted to current laying date. Finally, the
overall UV chroma of white plumage areas in malas positively associated with current
clutch size. Our results show that higher degrggigrhentation is related to better condition,
while the structural colour component is associatgd some aspects of reproductive
investment. These results highlight the possibihityt correlated aspects of a multiple
plumage ornamentation system may reflect togethmesaspects of individual quality,

thereby functioning as a composite signal.

Keywords Ficedula albicollis - Reflectance - Colour integration - Sexual sgnal
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Introduction

In numerous bird species, plumage ornamentatidiotif sexes includes differently coloured
pigment-based and structurally based ornamentehesat Due to their production and
wearing costs, these colour patches are frequadijlisted to the physical condition,
physiological state, genetic quality or other htites of their bearer, thereby providing useful
information to the receiver (Andersson 1994; McGetval. 2002). In case of ornaments of
different developmental origin, their exaggeratedression is usually associated with
different costs, and there can be different gersstgociations with other phenotypic
attributes. As a consequence, such simultaneoishjagted ornaments can advertise different
aspects of the bearer’s quality, as suggestedefaral species (Hill and McGraw 2006). For
example, food deprivation treatment had a negatifext on colour properties of structural
blue feathers in the brown-headed cowbbblothrus ater) and eastern bluebir@glia

sialis), but melanin-based coloration did not change (KweGet al. 2002; Siefferman and

Hill 2005a). In house finche£arpodacus mexicanus), coccidial infection affected the
development of carotenoid-based ornaments, bubhabof melanin-based ones (Hill and
Brawner 1998). A cross-fostering study of great {arus major) revealed a predominately
quantitative genetic dependence in melanin and-@mviental dependence in carotenoid
coloration (Quesada and Senar 2009). Furthermiogeeven possible that different
components of the same colour may relate to pdiffigrent aspects of the individual state. In
one study of great tits, the chromatic componeryetibw feathers was heritable and
depended on environmental conditions, while theauohtic component was not heritable
(Evans and Sheldon 2012). Another study of thisnalge area showed that feather
microstructure was under genetic and environmeatadrol, while the carotenoid-based

colour component was mainly related to environmdatdors (Matrkovd and Remes 2012).
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Even though multiple ornamental traits often hawkeieknt proximate origins, it is
possible that they advertise partly overlappinginfation (particularly if they are related to
each other), in addition to different aspects dliqjy. For example, in black-capped
chickadee maledbecile atricapillus), spectral properties of white and also black @gm
areas predicted the proportion of extra-pair offgp(Doucet et al. 2004), and in the great tit,
the short-wavelength part of the reflectance ded#ntly coloured patches uniformly
reflected individual condition (Galvan 2010). Irestingly, it is possible that multiple traits
convey redundant information, but in opposite ditets, as found in the barn owllyto alba)
where more pheomelanic birds are less resistamiitiative stress, and more eumelanic ones
are more resistant (Roulin et al. 2011). In additm describing the covariation of multiple
traits, it is an interesting question how the comrfmr integrated) variation of traits is related
to life-history components, with implications teethinformation content. Until now, there
are only very few investigations of the relatioqpshbetween life-history components and
composite ornamentation (Siefferman and Hill 2003).

The plumage ornamentation of the collared flycat¢hicedula albicollis) is usually
quantified by the size of ornamental white patdiEst and Qvarnstrom 1997; Hegyi et al.
2008a). Nevertheless, a recent study revealegthaiage reflectance also varied among
individuals, with the brightness and UV chroma tfedently coloured plumage areas
changing in parallel, thereby forming an integrag&phal system which seemed to
specifically predict social mating patterns (Laetzal. 2011). Here we wanted to explore the
plumage-level colour variation of female and maildaced flycatchers in relation to body
condition and patterns of reproduction. We measthredrightness and UV chroma of
melanised and depigmented plumage areas, and |dokeges of common variation among
these colour measures. We then interpreted thesgrated colour axes based on what is

known about the mechanisms of colour productiom&tanised and depigmented areas.
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Finally, we correlated integrated colour expressiuith primary reproductive investment
(clutch size) and body condition in the previouarye

Associations of ornamentation with reproduction meflect genetic or hormonally based
links, for example, different reproductive tactimsdifferently ornamented individuals
(Duckworth et al. 2003) or differential investmdaytthe partner (Horvathova et al. 2012).
Similarly, a simple correlation between ornamentaind body condition does not constitute
evidence for condition-dependence. This is paridylrue for melanin-based traits which
are controlled by pleiotropic genes affecting mather traits as well (Ducrest et al. 2008;
Roulin and Ducrest 2013), which can lead to a between condition and ornaments even
under strong genetic control (Almasi et al. 20M\2)reover, non-random habitat occupation
in relation to colour also has to be consideredyfiiet al. 2008b). Nevertheless, specific
associations of current ornamentation with previowtsnot current year condition and
reproduction are less likely to arise from genst@sons or non-random habitat occupation.
We therefore compared the observed relationshiggsose with current year condition and
clutch size. We had different predictions for twaigntial causal backgrounds. In case of
pleiotropy or non-random habitat occupation, weeeted similar relationships of colour with
previous and current condition and reproductionyeaker effects of previous than current
year predictors. In case of condition-dependeneegxpected significant effects of life
history traits in the previous year, but no or eliéint relationships with traits in the current
year. Possible genotype-environment interactioreu(Pet al. 2009) do not alter these
predictions in the absence of strict environmepéalodicity. Additionally, we also
considered relationships of ornamentation with past current laying date, as a well known
determinant of reproductive effort and costs (Detal. 1990; Torok et al. 2004), and as a
potential measure of sexual selection on ornamentat our population (Hegyi et al. 2006,

2007a).
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When considering the condition-dependence of orméatien, the degree of exaggeration
of feather ornaments can be influenced primarilyhgyactual conditions experienced before
and during moult. Various direct effects of moudsts on display traits can be conceived. For
example, coloration is negatively influenced byt fasulting (Serra et al. 2007; Griggio et al.
2009). Furthermore, it is widely recognized thateyal nutritional condition during moult
may affect colour displays, which show reduced eggion in individuals under nutritional
stress (McGraw et al. 2002; McGlothlin et al. 20Qi)addition, due to the limited resources
which are also needed for self-maintenance, trdidentay arise between the investments into
current reproduction versus future colour adventiset, through the effects of reproductive
effort on subsequent moulting condition (GriffitBdD; Siefferman and Hill 2005b).

In our study species, body condition and reprodeatifort during the previous breeding
attempt have been shown to predict the sizes devghimage patches (Gustafsson et al.
1995; Torok et al. 2003; Hegyi et al. 2008b), whiciggests that reproductive effort is
relevant to nutritional or physiological state dagyithe subsequent moult (including the winter
moult), thereby potentially also affecting the phope colour traits we measured here. Based
on previous studies of the sister species pieaftyer Ficedula hypoleuca) and other
species, we expect birds with lower previous repctide effort to have lower melanin-based
brightness, (i.e. darker melanic areas, SlagsvaddLafjeld 1992; brighter structurally based
intensity, Siefferman and Hill 2005b), and birddbetter condition to have higher UV chroma
(Siitari and Huhta 2002; Hegyi et al. 2007a). Doa¢eimporal proximity, we expect stronger
effects of reproduction and condition during theyious spring on areas moulted in the

summer as opposed to the winter moult.

M aterials and methods
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The collared flycatcher is an insectivorous, lomgtahce migratory passerine. Birds moult
twice in a year. The first moult period is in sunmpadter breeding and before migration, and
it is complete in mature individuals and partiabiifspring. The second, partial moult
happens in Africa, in winter, during which birds ot replace their primaries and part of the
secondaries (Svensson 1992).

Data were collected in our long-term study plotthia Pilis Mountains, near Szentendre,
Hungary (47°43'N, 19°01’E), between 2008 and 20N&sts were checked regularly to
determine the laying date of the first egg (hee¥détying date) and clutch size. Birds were
captured in the nest-box during the nestling feggeriod. We measured tarsus length using
a calliper (to the nearest 0.1 mm), and body weigitg a Pesola spring balance (to the
nearest 0.1 g). With respect to age, birds werssiflad as yearlings or adults (>1 year) based
on the darkness of primaries and wing patch sizedles (Svensson 1992), and ringing data
in females (unknown first breeders classified alyggs; Hegyi et al. 2008b). We took
reflectance spectra of a subset of the birds wghtaand we could use data of 102 females
and 80 males in the analyses presented here.ie@asured an individual in more than one
year, we used only one, randomly chosen data palatrecorded the reflectance of the
pigmented crown and wing coverts, the depigmented watch, the breast (brownish white
in females, white in males), and the forehead (mséal in most females, depigmented in
males). Among these, the wing patch and the wivgrte are moulted in summer, while the
other three areas in winter (Cramp et al. 1993)iriguthe period of our data collection, the
birds had not started their summer moult yet.

We used a DH-2000 deuterium-halogen light sourceaanUSB-2000 spectrophotometer
(Ocean Optics Europe) fitted with a bifurcated mircfibre-optic probe (R400-7; Ocean
Optics Europe). The probe was oriented at a 90e#egngle to the feather surface, and the

diameter of the measured plumage area was 6 mistandardize measuring distance (3 mm)
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and keep out ambient light, the tip of the probe ¥iseed in a black plastic sheath.
Reflectance data were computed relative to a WNige1 diffuse reflectance standard (Ocean
Optics Europe) and a dark reference (taken whitduebing incoming light from the detector).
The OOIBase32 software (Ocean Optics Europe) redattae reflectance spectra in 0.37 nm
steps. We recorded two consecutive spectral readargeach plumage region in every bird,
removing the probe between the two, and remeashesstandards every 15-20 minutes to
calibrate the system. From the reflectance spewsgaalculated two spectral variables,
namely brightness (average intensity) from 32000 @m (R20-709, and UV chroma (Bo-400

/ Ra20-700. Measurement repeatabilities were high for bettes in all area-specific colour
traits {>0.52,P<0.001). We used the average of the measuremargadt area of each
individual.

We measured the white patch sizes of birds buhdidise them in the present analyses
for two reasons. First, as most females do not baeeehead patch, the inclusion of white
patch sizes would make the results incomparabledsat the sexes. Second, presumably due
to differential abrasion and soiling, white patetes correlate with the spectral attributes of
the respective patch, but not with those of otlhempge areas (Laczi et al. 2011, our
unpublished data), so they do not take part irptheage-level colour integration examined
in this paper.

Analyses were performed in Statistica 8.0 (Stat3oft). We used an alpha level of 0.05
and two-tailed tests. Before the analyses, thetsge@riables were standardized (to a mean
of zero and SD of one) for year in both sexes,iaritle case of males, for age too, because
coloration differs between yearling and older males not females (Laczi et al. 2011). Both
in females and males, we performed separate pahcgpmponent (PC) analyses for the
standardized brightness and the standardized Udh@nof different body areas. The PC axes

were rotated using varimax rotation, which did da&nge the patterns of loadings, but
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adjusted the axes to explain more variance. Iregipus paper (Laczi et al. 2011), we
conducted a pooled colour PCA for the two sexeaurse their trait interrelation patterns
were similar regarding both brightness and UV chaoAlthough this similarity persisted in
the present dataset, we nevertheless decideddemiwate PCAs here because the variances
of nearly all brightness and UV chroma traits dif& markedly between the sexes (Levene
tests: wing covert UV chrom=0.983, breast brightneBs0.138, all otheP<0.003;

variance higher in males: wing patch brightnessldavichroma, forehead brightness and UV
chroma, crown UV chroma and breast UV chroma; waegahigher in females: wing covert
brightness and crown brightness). As we mentiomedipusly, measurement repeatabilities
were high ( ranging from0.52 to 0.94), so the different variance implieat the ratio of

signal and noise in the measurements is differetvtden males and females, and therefore
the information content of the measurements maydiféer. Moreover, higher phenotypic
variance may also increase the information coraéttie detected signal for the receiver.

In the analyses, we used deviations of the onseggflaying from the median laying date
of the respective year that were then convertgubsitive by adding to each value the overall
minimum value + 0.5 (to avoid zeros), and then sguaot transformed. As clutch size, we
used the number of eggs corrected for transformgdd date (because of the effect of laying
date on clutch size=-0.36,P<0.001,n=473). This correction was done by the introduction
of laying date into the model where clutch size Wasdependent variable, and by the
calculation of regression residuals where clutek gias the independent variable.

We tested the relationships of coloration to peptaductive investment by using general
linear models (GLMs) with one colour PC as the deleat variable, and laying date and
residual clutch size as continuous predictors. W&e&amining relationships of colour axes to
past body condition, we used one PC as dependeable and past residual body mass and

tarsus length as continuous predictors. Residu#y baass refers to the residuals of a
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regression of body mass on tarsus length (as gymfaxody size). Tarsus length was put into
the model as an additional predictor because opdtential relationships between colour and
body size.

When analysing the relationships of colorationugoent laying date, clutch size and body
mass, we also conducted GLMs. In each case, theédour PCs were continuous predictors.
In one model, laying date was the dependent varidiblthe other model, clutch size was the
dependent variable, while year was added as aaratafpredictor because the mean clutch
size of 2012 was significantly lower than thatlod bther years (Tukey HSD test, all
P<0.004). In addition, clutch size was controlledlfying date by including the latter into
the model as an additional continuous predictordeethe colour PCs. Finally, in the analyses
of current condition, body mass was used as depeéndeable and tarsus length and the
colour PCs as continuous predictors, so body masscarrected for body size. All analyses

were done separately for the sexes.

Results

The results of the PCAs are summarized in Table females, the first brightness PC loaded
positively with the brightness of the forehead wanand breast. Here, a lower PC value
means lower brightness which may result from moeéamin. Brightness PC2 loaded
positively with the pigmented wing coverts (suggestower melanin deposition in the case
of higher PC value) and negatively with the whitagwatch. These two PCs explained 31.8
and 21.8% of total variance, respectively. UV chadAC1 loaded positively with the UV

chroma of forehead and crown, and less strongly thit of the wing patch. UV chroma PC2

10
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loaded negatively with the wing coverts and posliiwith the breast. These two colour axes
explained 28.4 and 21.4% of total variance, respegt

In males, brightness PC1 loaded positively withwireg patch (white), forehead (white in
males), crown (dark) and breast (white). This #ikedy represents structurally based
brightness variation, i.e. the higher the amourdaaitterers, the higher the brightness and the
PC value. Brightness PC2 loaded only with the vaogerts (dark), so here a higher PC value
may refer to lower melanin deposition. These twe B&plained 28.7 and 20.3% of total
variance, respectively. UV chroma PC1 loaded paditiwith the wing coverts and crown
(dark areas), while UV chroma PC2 with the wingchaforehead and breast (white areas).
These two PCs explained 28.4 and 23.0% of totaénee, respectively.

In females, we found a marginally positive relasibip between past residual clutch size
and brightness PCF{ ¢g=3.61,P=0.060, effect size=0.19, Cl lower=-0.008, Cl upper=0.38)
which implies that females laying larger clutchebsequently tended to grow less contrasting
wings. Past residual body mass was negativelyetat brightness PCE{ ¢+=5.32,P=0.02,
effect sizer=-0.23, CI lower=-0.40, Cl upper=-0.03; Fig. 1&.ifemales with high body
condition developed darker plumage after the bregdeason. Present laying date correlated
positively with brightness PCF{ 10~4.28,P=0.04, effect size=0.20, Cl lower=0.01, ClI
upper=0.38; Fig. 2), which means that darker femhted earlier.

In males, present laying date was negatively rélaaérightness PCEF( 76=4.49,

P=0.04, effect size=-0.24, Cl lower=-0.44, Cl upper=-0.014; Fig. )dashowed a negative
tendency with UV chroma PCE{;5=3.03,P=0.09, effect size=-0.19, CI lower=-0.40, CI
upper=0.03), implying that structurally brighter lesg and possibly also those with higher
UV chroma in their dark plumage areas, bred eaflezsent clutch size was positively
related to UV chroma PCE{7=4.12,P=0.04, effect size=0.22, Cl lower=0.002, CI

upper=0.43), which means that females mated toswald higher UV chroma in dark

11
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plumage areas laid larger clutches relative ta tlaging date. Present body mass (corrected
for body size) correlated negatively with brighth&C2 F; 75=7.23,P=0.009, effect size=-
0.29, Cl lower=-0.48, Cl upper=-0.07; Fig. 4), timtmore pigmented males were in better

body condition. None of the other relationships wsigsificant £>0.11).

Discussion

The patterns of PC loadings we obtained here ®twlo sexes separately were very similar
to the pooled patterns of the previous paper (Latal. 2011) for brightness, while the
differences for UV chroma presumably stem fromdéparation of two PC axes instead of
one. Brightness PC1 in females may indicate themelcontent of the plumage, with birds
of lower PC values being more melanised and thezafarker (note that the breast is
brownish white in this sex). Brightness PCL1 in radlghite areas and crown), may represent
the structurally based brightness component ofdaather (i.e. the thickness of the cortex, the
number of scattering elements in the keratin ma#i®.). Black crown feathers may have
entered this PC as they are in the same regidmeastiite forehead feathers and their melanin
content seems to vary relatively little in our ptgtion (as judged from brightness variation;
coefficient of variation, forehead: 9.00, crowr6@. wing patch: 7.60, wing coverts: 1.20,
breast: 7.32). Brightness PC2 may contain simiiiormation in the two sexes (melanin-
based brightness), but with the addition that festanised, duller (and presumably poorer
guality, see below) females may have more abradddherefore duller white wing patches
as well, thereby showing lower brightness contiragite wing. White patch brightness
variation has been suggested to act as a sexuahent in several species, including females
(Hanssen et al. 2006). It is worth to note heré i outer wing coverts bordering the wing

patch may have appeared in a separate PC fromaaheyur feathers because they are not
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replaced in the partial winter moult (see the desion of non-breeding plumages in Cramp
et al. 1993). In both sexes, UV chroma PC1 largefgrred to some (albeit different)
melanised plumage areas. UV chroma PC2 in makssidy interpreted as the purely
structural colour of white areas. In females, thms PC is more interesting because it
suggests an axis of positive correlation betweaengassible determinants of feather quality:
melanisation (less UV in wing coverts) and microsture (more UV in breast feathers). This
correlation can be adaptive if it also appearsiwithe same feather because melanin
increases while the structure promoting high U\teince likely reduces the structural
strength of the feather (Bonser 1995; Prum 2006).

Costs of reproduction imply trade-offs between oépictive investment and other life-
history traits (Harshman and Zera 2007). In bitdese costs may include, for example,
reductions in future survival probability and pai@sesistance (e.g. Stjernman et al. 2004),
flight ability (Kullberg et al. 2002), or immuneriation and future fecundity (Hanssen et al.
2006). Trade-offs related to offspring productioaynalso involve sexual ornaments
(Ho6glund and Sheldon 1998). However, this poss$yhbisi as yet poorly explored in birds (for
experiments see Griffith 2000; Siefferman and BID5b). In a Swedish population of our
study species, the white forehead patch size oésriacame smaller in the year after caring
for an experimentally enlarged clutch (Gustafsdom.€1995), while in our population, the
white wing patch size change of females was negjgtnorrelated with their previous clutch
size (Hegyi et al. 2008b). In the present studmdie brightness PC2 was marginally
positively related to previous clutch size, i.enédes that laid a larger clutch tended to
develop less melanised feathers and a lower witchgantrast after breeding. Interestingly,
it was the colour of the wing feathers which maudty in summer, right after the breeding
effort (Cramp et al. 1993) that showed an indicatbreproductive costs. Female brightness

PC1, on the other hand, was negatively correlatéddprevious residual body mass, i.e.
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females with more melanised plumage were in betigsical condition during the past
breeding season. Therefore, poor body conditiovestling rearing seems to indicate not only
costs of reproduction but also a physiologicalestaat persists up to the winter moult in
Africa and thereby affects the melanisation of ottantour feather tracts (brightness PC1).
These results together suggest that multiple iatedgrsignals of physiological condition may
coexist in the same species, which underscoresip@tance of properly identifying signal
traits in a complex ornamentation system (Cornwaliid Uller 2010). Relationships between
female ornamentation and previous year conditi@hchumtch size were not reproduced for
current year predictors (effect sizes were twdoed times smaller for the current year,
details not shown here). Specific effects of pastiot current condition and clutch size make
general female attributes (pleiotropy, early makgifects, non-random habitat use etc.) a
less likely explanation for the detected pattehamtcondition-dependence. However,
causality needs experimental verification.

In males, brightness PC2 was negatively relateaitient body mass, that is, more
melanised individuals were in better condition.sTtglationship was weaker but similar in
magnitude for the previous year, so it may easiflect a genetic correlation or general
environmental effects such as territory qualitycémclusion, the darkness of melanised
plumage areas may be a long-term signal of comdéid therefore individual quality in both
sexes, but possibly for different reasons. Meldrased plumage ornaments usually appear to
be under strong genetic control (e.g. Slagsvoldlafjeld 1992; Roulin and Dijkstra 2003;
Roulin 2004; Saino et al. 2013). Furthermore, sstudies revealed no condition-dependence
in melanic ornaments (McGraw and Hill 2000; McGratal. 2002; Senar et al. 2003;
Siefferman and Hill 2005a). However, findings ivesal bird species suggest that these traits
can change with parasite infection, physical coodiand environmental constraints (Veiga

and Puerta 1996; Griffith et al. 1999; Fitze andRier 2002; Jawor et al. 2004; Vergara et al.
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335 2009; Piault et al. 2012). Potential productionts@ssociated with melanin-based plumage
336 ornaments may partly mediate such plasticity (®egsitivity to dietary metal element

337 content, Niecke et al. 2003; McGraw 2006; and phiggiical stress, Galvan and Alonso-
338 Alvarez 2008; Roulin et al. 2008), although weartogts of melanin-based traits such as
339 intrasexual aggression may also play a role (Setalr 1993; Hoi and Griggio 2008).

340 In addition, we found that females with low brigaés PC1 (i.e. more melanised

341 individuals) in a given year bred earlier in thaty. This could result from their consistently
342 good condition, but brightness PC1 showed littlatr@nship with current condition. It is

343 therefore possible that the pattern with layingedaftlects inter- or intrasexual selection

344 favouring darker melanised plumage areas. Suchts®iecould easily be explained by the
345 apparent indicator value of dark plumage in terfm®aulting condition and therefore

346 individual quality (see above). Indeed, size ofittiete wing patch of females has been

347 suggested to play a role in female competitiortdatitories and mates (Hegyi et al. 2007b,
348 2008a, b), so it would not be surprising to finchigar relationships for another ornamental
349 attribute of this sex.

350 In contrast to brightness variation, none of the éivoma PCs in either sex showed
351 any indication of dependence on body conditionreeling investment in the previous year.
352 Nevertheless, males with higher UV chroma in dduknage areas (high PC1), tended to
353 breed earlier and had higher clutch sizes in thiergyear, indicating a possible role of UV
354 chroma in sexual selection and differential repotiche investment, although differential
355 arrival and territory quality effects cannot beediout. Interestingly, in males, brightness
356 PC1, which also reflected the structural based aapt of colour variation, was similarly
357 negatively related to current laying date. In tlesely related pied flycatcher, males with
358 more pronounced UV chroma on their melanised plenpegts arrived earlier to the breeding

359 site (Siitari and Huhta 2002). In our populatioredding date of a male has been shown to be
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not only a possible indicator of arrival date framgration, but also a reliable signal of
female mate preference (see Hegyi et al. 2007®@)2&egarding clutch size, several studies
in our population were unable to detect any refeip between the white plumage patch
sizes of males and the primary reproductive investrof their mate (Hargitai et al. 2005;
Michl et al. 2005; Torok et al. 2007), so the pesitelationship between UV chroma PC1
and residual clutch size is interesting. Howess,dlternative explanation of differential
territory quality cannot be ruled out without fuethexperimental work. Even in the absence
of condition-dependence (see Results), UV chrondettaa structurally-based component of
brightness may reflect differences in the reguasftfeather microstructure (Shawkey et al.
2003, 2005; Prum 2006), possibly indicating anvrthial-specific, stable aspect of quality
such as developmental stability (Kemp et al. 206m 2006; Galvan 2011).

The apparent lack of condition-dependence and $erlection was especially
striking for the UV chroma of the conspicuous whitemage areas of males (comprising UV
chroma PC2 in this sex), since the sizes of whatehges are sexually selected (Michl et al.
2002; Hegyi et al. 2010) while their UV chroma igtter than in females (Laczi et al. 2011).
However, phenotypic variation in the UV chroma dfite plumage areas is lower in males
than in females (see Materials and methods). Mabskeep relative UV reflectance at a
possible maximum to further increase the conspisness of the ornamental white patches,
with coloration functioning as a signal amplifier fwhite patch size (Hasson 1990, 1991). In
this case, the variance and information contemttofe patch UV chroma may be reduced in
males. It is interesting that quality indicatiorclsaracteristic to the UV chroma of dark but
not white plumage areas in the sister speciesfpiedtcher (Siitari and Huhta 2002) and
guality-related information in dark feather UV exftance is also present in some other

species (Doucet et al. 2004; Hegyi et al. 2007a).
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To summarize, we found robust parallel variatiothi@ spectral properties of different
plumage areas of collared flycatchers. The mairs akeariation linked plumage areas in a
meaningful way, when considering patterns of dgualent (i.e. spatial proximity within the
plumage), moult, and visible colour differencesnmn the sexes. Our results further suggest
the possible presence of multiple sexually selectedposite colour axes of different
information content in the same plumage, even thdhg colour of our study species has
only two proximate origins (melanin-based and dtradly based). Our results illustrate the
information potentially gained by treating correldicolour variation in multiple plumage
areas together. If such meaningful correlated tianas detected in a system, it is also
important to conduct experimental manipulationshdividual condition to confirm the
causality of the observed parallel changes, amaoiofor mechanistic explanations for the

observed clustering of ornamental traits.
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581 Table 1 Summary of loadings of the principal componenthhe individual spectral

582 variables
brightness UV chroma

PC1 PC2 PC1 PC2
Female
wing patch 0.37 -0.67 0.47 -0.11
wing coverts  0.22 0.80 0.29 -0.69
forehead 0.76 0.07 0.77 -0.11
crown 0.74 0.00 0.69 0.21
breast 0.54 -0.01 0.24 0.73
Male
wing patch 0.70 0.01 0.08 0.65
wing coverts  0.03 0.95 0.85 0.05
forehead 0.51 -0.26 -0.12 0.67
crown 0.52 0.17 0.82 -0.06
breast 0.64 0.15 0.06 0.52

583 The principal component analyses were performedraggly for sexes, and also for
584 brightness and UV chroma variables. Spectral vhasalere standardized for year in females,
585 and for year and age in males. Values approachiegaeeding the lower threshold of large

586 effect size (0.5) are shown in bold.
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Fig. 1 Relationship between female brightness PC1 andquswear residual body mass in
collared flycatchers (residual body mass comes famgression of body mass on tarsus
length)

Fig. 2 Relationship between female brightness PC1 an@wulaying date in collared
flycatchers (laying date was adjusted to the yemdygian and square-root transformed)
Fig. 3 Relationship between male brightness PC1 and duaging date in collared
flycatchers (laying date was adjusted to the yeadygian and square-root transformed)
Fig. 4 Relationship between male brightness PC2 and dursidual body mass in collared

flycatchers
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