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1 INTRODUCTION

ABSTRACT

We analyse the correlations between continuum properties and emission line equiv-
alent widths of star-forming and active galaxies from the Sloan Digital Sky Survey.
Since upcoming large sky surveys will make broad-band observations only, including
strong emission lines into theoretical modelling of spectra will be essential to estimate
physical properties of photometric galaxies. We show that emission line equivalent
widths can be fairly well reconstructed from the stellar continuum using local mul-
tiple linear regression in the continuum principal component analysis (PCA) space.
Line reconstruction is good for star-forming galaxies and reasonable for galaxies with
active nuclei. We propose a practical method to combine stellar population synthesis
models with empirical modelling of emission lines. The technique will help generate
more accurate model spectra and mock catalogues of galaxies to fit observations of
the new surveys. More accurate modelling of emission lines is also expected to im-
prove template-based photometric redshift estimation methods. We also show that,
by combining PCA coefficients from the pure continuum and the emission lines, auto-
matic distinction between hosts of weak active galactic nuclei (AGNs) and quiescent
star-forming galaxies can be made. The classification method is based on a training
set consisting of high-confidence starburst galaxies and AGNs, and allows for the sim-
ilar separation of active and star-forming galaxies as the empirical curve found by
Kauffmann et al. We demonstrate the use of three important machine learning al-
gorithms in the paper: k-nearest neighbour finding, k-means clustering and support
vector machines

Key words: methods: data analysis — galaxies: active — galaxies: starburst — galaxies:
stellar content.

not enough to account for observations made with broad-
band photometric filters. Since future large sky surveys will

Stellar population synthesis models are very successful in
explaining the spectral energy distribution of galaxies in the
optical (Fioc & Rocca-Volmerange||1997; [Bruzual & Charlot|
[2003} Maraston & Stromback|2011}; [Vazdekis et al.[2012) but
they do not account for the characteristic emission lines orig-
inating from the excited interstellar gas. Starburst galaxies
and galaxies with an active nucleus can produce emission
lines so strong that can reach 60 per cent of the contin-

uum flux in certain bands, or as much as 1 mag (Atek et al.

2011). As a result, pure population synthesis models are
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make photometric observations only, accurate modelling of
the emission lines will be essential to estimate physical prop-
erties (including photometric redshifts) of galaxies precisely.

The purpose of this paper is to empirically quantify
correlations between properties of the stellar continuum of
galaxy spectra, and the strengths of emission lines. We also
propose a recipe for generating realistic emission lines in
the optical regime for stellar continua taken from popula-
tion synthesis models. Moreover, we present a novel classifi-
cation method to differentiate between starburst and active
galaxies.

Results presented in the paper are obtained with the
help of three important, widely used machine learning tech-
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niques that have just started to gain popularity in astro-
nomical data analysis. Local linear regression using nearest
neighbours (Csabai et al 2007} [Kerekes et al.[2013) has been
used for physical parameter estimation based on broad-band
photometry. k-means clustering, an automatic, unsupervised
classification algorithm has been applied successfully, for in-
stance, to classify gamma-ray bursts (Chattopadhyay et al.
[2007} [Veres et al.||2010). Support vector machines (SVM), a
supervised classification algorithm has been used for star—
galaxy separation (Kovacs & Szapudi|[2015) and transient
detection (Wright et al||2015). We will briefly introduce
these methods later in the paper. For a detailed introduction
to the field, refer to [Ivezié et al|(2014).

As with all training set-based empirical methods, the
validity of our results is limited to the training set’s coverage
of the parameter space (in our case the redshift, metallic-
ity, luminosity, continuum and line properties). Extrapola-
tion capabilities of empirical techniques to parameter ranges
outside the coverage is usually poor compared to theoreti-
cal models. While this certainly constrains the applicability
of our results to strong emission line galaxies of the Sloan
Digital Sky Survey (SDSS), the method itself can be eas-
ily extended to galaxies outside the investigated sample by
augmenting the training set.

The structure of the paper is as follows. In Sec. [2| we
explain the sample selection and data reduction methods.
Sec. [3] describes the line reconstruction methods we investi-
gated. An empirical method for star-forming—active galactic
nucleus (AGN) separation is given in Sec. [4] We present a
stochastic procedure to generate realistic emission lines for
continuum models in Sec. |5} We summarize our findings and
outline future work in Sec.

Wavelengths are generally quoted in vacuum. More in-
formation on the data used for this study, additional figures
and program source code are available on the web site of
the papexﬂ Colour versions of the figures are available in
the online version of the paper.

1.1 Earlier work

Thanks to the large amount of flux-calibrated optical galaxy
spectra accumulated by the SDSS, precision of galaxy spec-
trum modelling has been improved significantly during the
last decade. Many software tools and libraries exist to gen-
erate realistic stellar continua from a prescribed star forma-
tion history and various libraries of single stellar population
spectra with a wide range of metallicities and initial mass
function choices (Fioc & Rocca-Volmerange||[1997; [Bruzual
& Charlot][2003} [Maraston & Stromback|2011} [Bressan et al.
2012; [Vazdekis et al.|2012). Models have also been extended
with descriptions of interstellar extinction, the UV-IR bal-
ance (Silva et al.|[[1998} [Charlot & Fall|[2000} [da Cunha et al.|
and the chemical evolution of the gas from which stars
can form (Davé, Finlator & Oppenheimer|[2011)).

Emission lines of galaxy spectra carry a large amount
of information about the abundance and ionization states of
elements in the interstellar gas. Based on ionization ratios
of the various elements, the source of primary radiation re-
sponsible for the excitation of the interstellar medium (ISM)

L http://wuw.vo.elte.hu/papers/2015/emissionlines

can be characterized (Baldwin, Phillips & Terlevich| [1981}
[Kewley et al|[2001} [Kauffmann et al.|[2003b) The two pri-
mary radiation sources are young, hot, massive stars and
active galactic nuclei (AGNs). Their different spectra (ther-
mal and power law, respectively) cause different ionization
states and ratios of the most common elements which, in
turn, produce well measurable, strong, often broad emis-
sion lines: the Balmer series of hydrogen, [O11], [O111], [N11],
[Su], etc. Population synthesis models do not account for
the emission of the ISM.

Photoionization models (Stasiriskal/1984; [Ferland et al.|
yield accurate line ratios for any primary radiation
spectrum and gas composition. To couple stellar population
synthesis with models of photoionization, shock-heating of
the interstellar gas, emission of the dust etc., the star for-
mation history, several interactions between the stellar pop-
ulations, the active nucleus, the dust and gas content need
to be accounted for. For instance, AGNs are very likely to
be responsible for quenching rapid star formation following
starburst periods in the galaxy but they also emit ioniz-
ing radiation that excites gas, evaporates dust and produces
shock waves that heat the ISM. Also, starburst periods are
followed by high supernova activity that enriches the ISM
with metals, leading to significant chemical evolution which
must be reflected in the models of emission lines. Addition-
ally, a recent advancement in stellar population synthesis is
the inclusion of stellar rotation and binary evolution effects
which have been shown to noticeably influence the strengths
of some emission lines (Eldridge & Stanway||2012} [Stanway
let al|[2014} [Leitherer et al.|[2014}; [Topping & Shull[2015).
Taking everything into account is not possible without de-
tailed hydrodynamic simulation of the galaxies
|Groves & Cox|[2010} [Kewley et al|[2013)) or without making
significant simplifications to the models. Various software
notably PEGASE and BPASS (]Fioc & Rocca—Volmerangel
[1997}; [Eldridge & Stanway|[2012)), can be used to generate
emission lines on top of stellar continua computed from stel-
lar population synthesis. The photoionization part of these
softwares, however, introduces a large set of free parame-
ters that describe the distribution and composition of the
ISM. A frequently used way of reducing the number of free
parameters is to make theoretical or empirical assumptions.
Typical theoretical simplifications include the assumption
of spherical symmetry or the use of a common ionization
spectrum for all gas clouds (Stasiriskal[1984; [Fioc & Rocca-|
[Volmerange|[1997; |[Ferland et al|2013). If no strict physical
considerations can be made, to generate realistic emission
lines on top of modelled continua using any photoionization
code, one has to estimate the a priori distribution of model
parameters by comparing large ensembles of models with
observations. For instance, the code Le Phare (Ilbert et al.

2006) uses the relations of (1998) to parametrize

emission lines.

Another route to take to generate realistic emission lines
is to work on an entirely empirical basis.
demonstrated that stellar continua of SDSS galaxies form
a 1D sequence and thus, can be characterized by a single
numerical value, the eclass. The value of eclass for each
galaxy spectrum is obtained by expressing the continuum on
a basis derived from principal component analysis (PCA).
|Gyéry et al. (2011) showed that strong correlations between
the eclass (i.e. the stellar continua) of starburst and AGN
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galaxies exist. They applied PCA to expand emission line
equivalent widths (EWs) of SDSS galaxies on a 3D basis
and correlate the principal components with the eclass of
the continua. We take their approach a step further: based
on the correlations, we give a recipe to automatically gener-
ate emission lines with realistic distribution and refine star-
forming—AGN separation using the principal components
and SVM.

2 DATA REDUCTION

We started with the entire spectroscopic galaxy sample of
the Sloan Digital Sky Survey Data Release 7 (?7) which we
later filtered by signal-to-noise ratio and line strength. As
one of our goals was to accurately fit broad AGN lines, we
measured line parameters ourselves.

2.1 Continuum fitting and line measurements

PCA is widely used to derive a representative basis from
optical spectra of galaxies. When performing PCA on emis-
sion line galaxies, the eigenspectra are primarily sensitive
to the variations in emission line strengths and only sec-
ondly to continuum features (Connolly et al.[1995; Yip et al.
2004)). Obviously, the slope of the continuum is correlated
with emission lines but the variance of the lines is bigger.
To run PCA on the pure continua, one has to mask the
regions of emission lines, or eliminate the lines completely
by subtracting line models from the measured spectra. Line
fits have to be precise enough so that the line-subtracted
continua contain minimal residuals. We reprocessed the en-
tire set of SDSS DR7 galaxy spectra according to these re-
quirements with our own implementation of the algorithm
detailed in this section.

One frequent method of fitting continua in the opti-
cal band is to express the spectrum as a non-negative lin-
ear combination of template spectra (Tremonti et al.|2004)
while also accounting for the intrinsic attenuation and ve-
locity dispersion. Although more advanced, Bayesian and
PCA-based methods exist (Kauffmann et al.||2003a; |(Chen
et al.[/2012) to derive physical properties from the contin-
uum, as we were mainly interested in the emission lines, we
retained the former technique for continuum subtraction.
First, we corrected for galactic extinction, masked emission
lines and fitted the continuum using the templates from
Bruzual & Charlot| (2003) by also fitting the velocity disper-
sion and intrinsic extinction in parallel. Intrinsic extinction
was modelled following |Charlot & Fall (2000). Metallicity
was taken into account by fitting four sets of templates of
differing metallicities and choosing the one with minimal re-
duced x2. Thus, the fitted metallicity can take one of four
values: Z = 0.004, 0.008, 0.02 or 0.05. We did not take the
nebular continuum emission into account, which, in the case
of young starburst galaxies, can contribute a non-negligible
flux to the near-infrared part of the spectrum (Leitherer &
Heckman|[1995)). Since the entire continuum was fitted with
stellar templates only, we expect a slight overestimation of
absorption lines, and therefore the overestimation of emis-
sion lines for starburst galaxies. On the other hand, within
the wavelength coverage of SDSS spectroscopy, nebular con-
tinuum emission is significant only in the case of stellar pop-
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ulations younger than 10 Myr or at very low metallicities of
Z ~ 0.0001 (Molld, Garcia-Vargas & Bressan| 2009), and
only about 0.5 per cent of our sample potentially fall into
this parameter range.

Due to discrepancies between continuum models and
SDSS spectra (Maraston et al| |2009), the continuum-
subtracted spectrum consists of three components: the emis-
sion lines, the noise and a slowly changing background that
originates from the imperfect models. Since the emission
lines and noise are high-frequency components, one can eas-
ily eliminate the background by a high-pass filter. For this
purpose, we used a 50 A wide rolling median filter. This was
wide enough to leave broad AGN lines almost intact, yet re-
move any residuals of the incorrect background subtraction.
Fig. [[] illustrates this procedure.

Once the low-frequency background has been removed,
lines are fitted using a technique we call noise-limited fitting.
To precisely fit all strong emission lines, including those of
active galaxies, we use three increasingly complex line mod-
els.

e A single Gaussian:

_(x=2p)?

FA)=A-e o2

e Two Gaussians centred on the same wavelength but
with different variance
_ (=22

+B-e 3

_(=a)?

FA\)=A-e -

e Two Gaussians allowing for a small offset AN < 5 A
between the centres, different variance

_(=ay)?

+B-e 73

_(=2a)?

FN=A-e 2

While the first model is enough to fit emission lines with
typical velocity dispersion, the second model is necessary for
lines with broad wings and the third model for asymmetric
lines. Our objective is to find the simplest, yet well-fitting
model. Overlapping emission lines are — obviously — fitted
together, but we do not enforce any correlation on the EWs
of lines from the same ion. Also, the velocity dispersions of
the lines, even of those from the same ion, are fitted inde-
pendently. First, we fit the lines with the simplest model,
subtract it from the measurement and compare the resid-
ual within the region of the emission line with the noise in
wavelength ranges without lines. If rms of the residual inside
the region of the line is at least two times than elsewhere,
we reject the model and attempt to fit the line with a more
complex one. Fig [2| illustrates how this technique works on
asymmetric broad AGN lines.

Tab. Bl summarizes the fitted and subtracted emission
lines. Line model fit parameters are available online. In panel
(a) of Fig. 3} we plot the Baldwin—Phillips—Terlevich (BPT)
diagram of the sample using a colour coding we are going to
use throughout the paper.

2.2 Comparison with other work

It is interesting to compare our line fits to those of |Brinch-
mann et al.| (2004). In the cited work, the authors used a
simpler technique of fitting nebular emission lines of SDSS
galaxies with the primary focus on the signal-to-noise ratio
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Figure 1. Illustration of fitting the stellar continuum. In the top left panel the best non-negative least square fit from 10 Bruzual—
Charlot templates is plotted, the residual is visible in the bottom left panel. The effect of the low-pass filter on the residual is drawn
with a red curve in the bottom left panel; we subtract this curve from the noisy residual prior to fitting emission lines. The top right
panel illustrates the best-fitting continuum model, corrected for discrepancies by adding back the low-pass-filtered residual to the stellar
population synthesis spectrum. The top right panel shows the high-pass-filtered residual used for fitting the lines.
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Figure 2. Illustration of noise-limited fitting of asymmetric emission lines with increasingly complex models. The top panels show
the original continuum-subtracted spectrum in grey and the best-fitting models in black. The bottom panels show the residuals.
The left-hand panel corresponds to a single Gaussian fit, the middle panel to two Gaussians centred on the same mean wavelength
but with different variance while the right-hand panel shows the results from fitting two Gaussians with slightly different centre
wavelengths. In this case, the most complex model is accepted as the line residuals are higher than the average noise for both
simpler models, whereas the line residual is comparable to the average noise in the third case.

of line measurements and not on the minimization of the
residuals after line subtraction. As a result, their line mod-
els cannot directly be used to get a pure continuum due to
the high residuals of the fitting.

In Fig. @, we compare the EWs of the most promi-
nent emission lines as derived with our technique and with
the method of Brinchmann et al| (2004). In the case of
strong emission lines, our measurements of line strengths are
very similar to the results of [Brinchmann et al.| (2004), but

we estimate weak emission lines significantly higher. This
is very likely due to the high-pass filtering applied to the
continuum-subtracted spectrum, cf. Sec. Yet, between
97.9% and 99.1% of our line, EWs are within 30 of [Brinch-
[mann et al.| (2004)), with the exception of Ha and HS where
only 93.9% and 87.7%, respectively, of the measurements are
within 3c. Also, [Brinchmann et al.| (2004) measured weak
lines by fitting them together with stronger lines of the same
ion, imposing a constraint on line ratios, whereas we fitted

© 2015 RAS, MNRAS 000, [[}{T4]



Line  Avac (A) | Line  Avac (A) | Line  Avac (A)
Oon 3727.09 H~y 4341.68 O1 6365.54
Oon 3729.88 O11t 4364.44 N1 6529.03
Ho 3798.98 HB 4862.68 N 6549.86
Hn 3836.47 Omr  4932.60 Ha 6564.61
H¢ 3890.16 O 4960.30 N 6585.27
He 3971.20 o1t 5008.24 St 6718.29
Sit 4072.30 Hel 5877.65 St 6732.67
HS 4102.89 O1 6302.05

Table 1. List of the fitted nebular emission lines.

logso([OII)/HB)

logso([OIII)/HB)

1-1.2

9 R

1.2 08 04 00 04 -12 -08 -04 00 04
log1o([NIT]/Ha) logso([NIT]/Ha)

Figure 3. Original and reconstructed BPT diagrams of strong
emission line galaxies sampled from SDSS DR?7. In each panel,
the dashed curved shows the empirical segregation line between
star-forming galaxies and AGN as defined by
(2003b)). Panel (a) is plotted from directly measured line EWs.
Galaxies are colour coded based on their loci in the BPT plane:
blue galaxies are star-forming, green ones are AGNs and red ones
are the intermediate weak AGNs in the bottom corner of the dis-
tribution. This colour coding based on directly measured emission
lines is used in all BPTs throughout the paper. Panel (b) displays
the BPT of line log EWs reconstructed from continuum princi-
pal components using the local linear regression method with the
30 nearest neighbours in PCA space. Panels (c) and (d) show
galaxies only that were originally classified as (c) AGNs, (d) star-
forming using directly measured line EWs. While lines of strong
AGNs and extreme starburst galaxies can be reconstructed well,
there is significant ‘cross-talk’ in the quiescent region.

these lines independently. Weaker lines can easily become
undetectable in noisy regions, hence our fitting method in-
troduces some selection bias.

2.3 Galaxy sample selection

We selected a smaller sample of N = 13788 galaxies from
the entire set of continuum and line-fitted spectra that met
the following criteria:

e observed at a signal-to-noise ratio S/N > 5,
e all 11 emission lines listed in Tab. 2] are measured and
non-zero. These lines are the same as in |Gy6ry et al|(2011)).

© 2015 RAS, MNRAS 000,
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The sample size was further limited to an easily man-
ageable number by choosing a section of the sky (right as-
cension between 220° and 230°).

The requirement that all 11 emission lines should be
measurable results in a sample containing galaxies with on-
going star formation or possessing an active nucleus only.
Fig. [5| shows the selection effects on the distribution of the
apparent and absolute r-band magnitudes, the redshift and
the metallicity. While the cut in signal-to-noise ratio did pro-
duce a cutoff around r = 19 apparent magnitude and a rel-
ative increase of objects towards smaller redshifts, the abso-
lute magnitude distribution shows that our selection method
prefers fainter, smaller and younger galaxies. Galaxies with
lower metallicities are also selected with higher probability,
presumably due to correlations between ongoing strong star
formation, metallicity and age. Nevertheless, galaxies with
solar and above solar metallicities are still present in the
sample.

The SDSS DR7 main galaxy sample, which makes up
the majority of our training set, was not selected for mor-
phological type or colour, and thus includes a wide variety
of galaxies (Strauss et al.|[2002). At larger redshifts, how-
ever, different environments, e.g. harder radiation fields and
higher ionization parameters (Steidel et al.2014)), can lead
to significantly different emission line characteristics. Cer-
tainly, the validity of our results is constrained by parameter
ranges covered by the sample. By using a data set that goes
beyond the types of galaxies observed by the SDSS, one can
easily apply our method to a broader range of galaxies.

2.4 Continuum principal components

Principal components of the stellar continuum were derived
from the fitted model spectra instead of the measurements
directly. Although the precise line modelling would make it
possible to subtract emission lines from the original spectra
or run PCA directly on the measurements by masking out
emission lines, due to the limited size of the sample which
would make eigenspectra noisy, we choose to use the models
instead. Fitted continuum models were taken at rest frame,
convolved with the best-fitting velocity dispersion kernel and
normalized to have equal flux in the following featureless
rest-frame wavelength ranges: 4250-4300 A, 4600-4800 A,
54005500 A, 5600-5800 A. PCA was done in the 3722—
6761 A range with 0.6 A binning. The average continuum
was subtracted from the individual spectra prior to calcu-
lating the covariance matrix.

Eigenspectra were determined using the Lanczos singu-
lar value decomposition (SVD) algorithm from PROPACK
. The algorithm calculates only a given number
of singular vectors with the largest corresponding singular
values. This was very useful in our case as the spectra con-
sisted of 5065 data points, whereas we were interested in the
first five principal components only.

The average spectrum and the resulting eigenspectra
are plotted in Fig. [f] As the average was subtracted, the
first eigenspectrum corresponds to the colour of the galaxy.
The following two basis vectors are rather similar at first
sight but the third one shows more prominent absorption
lines. They are together very likely to determine the age
and metallicity of the galaxy as the 4000 A-break is very
strong in both of them. The fourth vector probably corre-
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Figure 4. Comparison of emission line equivalent width of [Brinchmann et al.| (2004) (y-axis) with ours (z-axis). EWs are expressed in

angstroms; scales on both axes are the same. Density plots are normalized for EW bins in such a way that stronger lines are also visible.
Our estimate on weak lines is systematically higher, which appears more pronounced due to the log scale, but is not that significant

compared to errors.
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Figure 5. Normalized histograms of galaxy properties. Our sam-
ple is plotted in blue, the grey lines correspond to the entire DR7
spectroscopic galaxy sample, while the black lines show the DR7
sample excluding the deeper LRG sub-sample. The latter provides
a better comparison to our data set, since we selected predomi-
nantly from the main galaxy sample.

sponds to the width of absorption lines thus correlates with
velocity dispersion. The magnitude of the fourth and fifth
eigenvalues is similar, and they already mark the start of
the plateau in the distribution of eigenvalues, therefore tak-
ing more eigenspectra into account does not significantly
increase the variance explained by them.

2.5 Emission line principal components

In contrast to what was done by |Gy&ry et al.| (2011)), we
calculate principal components of the logarithm of emission
line EWs. Fig. m shows the resulting singular vectors. Tak-
ing the logarithm is more useful when one is interested in

)
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Figure 6. The average and the first five eigenvectors of the prin-
cipal component analysis of galaxy continua, ordered by the cor-
responding singular values (as displayed in each panel). See the
text for the physical interpretation of the eigenspectra.

line ratios instead of absolute line strengths and uses lin-
ear methods for the analysis. We have to mention, however,
that using the logarithm of the EWs also means that the
results presented in the rest of the paper will be valid in the
logarithmic sense only.

3 RECONSTRUCTING EMISSION LINES

Our goal was to empirically estimate emission line EWs from
continuum principal components. If there exists any corre-
lation between the continuum and emission lines of galaxy

© 2015 RAS, MNRAS 000, [[}{T4]
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Figure 7. The first four singular vectors of the correlation ma-
trix of the logarithm of emission line equivalent widths, ordered
decreasingly by the corresponding singular values (as displayed
in each panel). The fourth vector is very likely to be just noise as
[O11] lines should not have different signs.

spectra, it is clearly non-linear. Global linear methods to
analyse the correlations are not useful in this case, yet lo-
cally linear methods still can be used.

3.1 Local linear regression

Let us consider an ensemble of measurements where mea-
sured values are split into two sets D = {d;} and R = {r;},
1 indexing the individual measurements. For the sake of sim-
plicity, r; are taken to be scalars whereas d; are vectors, thus
D forms a metric space of dimension N. The Euclidean met-
ric is often used to measure distances among data vectors
of D even though it might lack any physical interpretation.
Our objective is to characterize known, or predict unknown
r; from the always known d; vectors. To estimate r; from
d;, first we find the k-nearest neighbours of d; in D. Let us
denote the set of indices of these nearest neighbours with
NN(d;, D, k), where i ¢ NN by definition. Then we express
r; in the following form

T, X c; + azdl (1)

Note, that both a; and d; are vectors and their dot prod-
uct is taken in the formula above. The ¢; constants and
the a; coefficients need to be determined individually for
every (d;, ;) measurement using standard linear regression
by minimizing

$ (rj — ci — aid;)?

i 2)

2 _
Xi =
JENN

where i is still the index of the measurement, j runs on the
nearest neighbours and w; is a weight. The expression of x>
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is similar if r; are vectors instead of scalars but the a coef-
ficients become matrices. Errors in 7; and the components
of d; can be incorporated into the value of w;. Similarly,
neighbours in NN can be ordered by distance from d; and
the inverse of (the square of) the distance can be used as a
weight in Eq.

Local linear regression has many advantages over global
non-linear modelling. First of all, global models are usually
either too simple to describe the data or prone to overfit-
ting. Local linear models, on the other hand, are simple and
can be used to characterize the local estimation errors. For
instance, one can measure the goodness of the estimation of
r; by the x? of the local linear fit. The challenge in local
linear fitting is to find the k-nearest neighbours quickly in
large data sets. Spatial indexing, most often a kD-tree index
is used for this purpose (Csabai et al.||2007)).

3.2 Emission line reconstruction from the
continuum

We applied the local linear regression technique to estimate
emission line EWs from the stellar continuum principal com-
ponents. To test whether continuum PCs carry more infor-
mation regarding the emission lines than broad-band SDSS
magnitudes, we will also perform the regression analysis di-
rectly on the photometric magnitudes in Sec. Further
tests are done with randomized samples (Sec. to get a
picture of the performance of our method.

By using the notation of Sec. d; became the first
five continuum principal components and r; became the
log EWs. Emission line log EWs were fitted individually
based on the log EWs of the k£ = 30 nearest neighbour galax-
ies in the continuum PCA space. The x? of the fitting was
weighted by the inverse-square distance of the neighbours
from the query point. The value of £ = 30 was chosen as a
rule of thumb: we are fitting 5+ 1 parameters and the num-
ber of data points must be large enough to adequately de-
termine that many parameters but small enough to preserve
locality. Modifying this parameter within reasonable limits
(e.g. 25 — 40) does not significantly impact the results.

Fig. |8 shows the reconstructed log EWs of emission
lines as functions of the directly measured EWs. EWs recon-
structed from the continuum are in reasonably good agree-
ment with directly measured log EWs. The relative flux er-
ror o, of the line reconstruction is Gaussian but a system-
atic shift § is visible in the case of [Or1], [Om1] and [Nii]
(6 =~ 0.1,0.15,0.15, respectively). The typical value of the
relative error is o, ~ 0.3 for hydrogen and sulfur, o, ~ 35%
for [On] and [N11], and o, =~ 45% for [Ormi]. Col. 3-4 of
Tab. [2]list the outcome of the correlation analysis for the 11
investigated lines using the local linear regression technique.
Pearson’s product-moment correlation coefficient p and the
rms error o were calculated for each line. These numbers
also show that fits are most accurate for the hydrogen and
sulfur lines (p > 0.8) whereas oxygen and nitrogen lines are
significantly less correlated with direct line measurements.

Fig. [I0] shows the dependence of the error of the recon-
struction on galaxy properties (cf. Fig. |5| for histograms of
these) for select lines. The brighter and higher metallicity
galaxies have a larger fraction of AGNs and are estimated
with higher errors, especially in the case of oxygen and sul-
fur lines. Objects at higher redshifts generally exhibit de-
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Figure 8. Reconstructed log EWs from continuum principal com-
ponents. Estimated log EWs are plotted as functions of the di-
rectly measured log EWs for the 11 emission lines we used. Colour
coding of data points is the same as in panel (a) of Fig. [3| and
reflects the activity class of galaxies.
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Figure 9. Reconstructed log EWs from broad-band SDSS magni-
tudes. Estimated log EWs are plotted as functions of the directly
measured log EWs for the 11 emission lines we used. Colour cod-
ing of data points is the same as in panel (a) of Fig. and reflects
the activity class of galaxies.

creasing accuracy. The error of line reconstruction visibly
increases towards the limits of our training set. This is due
to the fact that near the edges of the training set there are
fewer galaxies and the nearest neighbours used to estimate
the emission lines are generally less similar to each other and
to the galaxy whose lines are being fitted.

As we expected, emission lines can be much better re-
constructed from the continuum of star-forming galaxies due
to the strong connection between the young stellar popula-
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Figure 10. The rms error of emission line log EW reconstruction
as the function of various galaxy properties. The colours corre-
spond to the following emission lines: red — [O111] 5008 A, black —
[N11] 6585 A, grey — [S1] 6718 A, and blue — Ha. See the text for
a discussion.

tion and the ISM: young massive stars are responsible for
the excitation of interstellar gas clouds. Nevertheless, [O11]
and [N1] lines show a significant scatter even in the star-
forming case. Interestingly, sulfur lines can be reconstructed
much better.

One intriguing result is that, while [O111] is an important
indicator of nuclear activity, its reconstruction from contin-
uum properties in case of AGNs seems rather problematic.
It is understandable as AGN activity correlates much less
with the properties of the stellar populations than in the
star-forming case. Yet, some connections exist as it is visi-
ble from [N11] and the hydrogen lines.

3.3 Emission line reconstruction from broad-band
magnitudes

To see if continuum PCA is any better than directly esti-
mating emission lines from broad-band magnitudes, we per-
formed the above analysis using the SDSS photometric mag-
nitudes instead of the principal components. For this pur-
pose, we used dereddened model magnitudes without any
K-correction. The lack of K-correction is not supposed to
significantly affect the procedure as the redshift distribution
of the sampled galaxies is rather sharp.

While broad-band magnitudes are strongly correlated
with continuum principal components, it is still interesting
to see how lines are reconstructed from them. First of all,
magnitudes are highly correlated with each other, whereas
PCA eliminates covariance. Also, observed magnitudes are
already ‘contaminated’ with emission lines which might re-
sult in stronger correlations with EWs. Results of line recon-
struction from magnitudes are plotted in Fig. [0] Compared
with line reconstruction from PCA as plotted in Fig. [§] no
clear difference can be seen in terms of scatter, perhaps with
the exception of more outliers being visible in the photo-

© 2015 RAS, MNRAS 000,
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Principal components Magnitudes Principal components Randomized

30 NN galaxies 30 NN galaxies 30 random galaxies 30 NN galaxies
line A[A] | p o p o p o p x 102 o
Ha 6565 | 0.898 0.388 0.842 0.481 0.803 0.561 -1.46 0.961
HS 4863 | 0.882 0.369 0.840 0.430 0.795 0.535 -1.52 0.854
St 6718 | 0.839 0.416 0.773 0.492 0.798 0.484 -1.23 0.832
Su 6733 | 0.827 0.433 0.751 0.516 0.754 0.527 -1.36 0.840
H~ 4342 | 0.816 0.418 0.773 0.465 0.698 0.772 -2.81 0.790
On 3727 | 0.749 0.498 0.700 0.547 0.556 0.716 -0.710 0.817
Om 5008 | 0.743 0.784 0.673 0.884 0.673 0.877 -1.10 1.268
O111 4960 0.721 0.773 0.659 0.858 0.628 0.890 -1.35 1.208
N1 6585 | 0.680 0.514 0.677 0.527 0.411 0.815 -0.318 0.757
N1t 6550 0.664 0.570 0.669 0.579 0.367 0.880 0.306 0.820

Table 2. Numerical properties of the various line reconstruction methods, for all 11 emission lines. The four methods are as follows:
(1) from continuum principal components, fitting the 30 nearest neighbours, (2) from broad-band magnitudes, fitting the 30 nearest
neighbours, (3) from continuum principal components, but instead of using the 30 nearest neighbours we used 30 random galaxies, and
(4) from continuum principal components, but with a randomized sample (as a cross-test). For each reconstruction, we calculated the
Pearson product-moment correlation coefficient p and rms error o. Emission lines are ordered by reconstructability using the first method.

metric case. Thus, log EWs can be reconstructed from mag-
nitudes almost as well as from the principal components.
Quantitative results are listed in Col. 5-6 of Tab. We
have to emphasize here that our sample contained strong
emission line galaxies only, thus the strong correlation be-
tween magnitudes and log EWs exists only for our sample
and cannot be generalized to all galaxies.

3.4 Non-local line reconstruction from the
continuum

To test whether a single global linear model is sufficient to
reproduce the lines, we repeated the procedure of estimating
log EWs from the continuum principal components as de-
scribed in Sec. [3.2] but instead of using the 30 nearest neigh-
bour galaxies, we randomly selected 30 galaxies from the
entire sample. Another difference was that the x? of the fit
was not weighted by the inverse-square of the distance from
the query point to relax the effect of locality. By looking at
Col. 7-8 of Tab. [2| it is somewhat surprising that correla-
tion coefficients and rms errors of the individual lines did
not get much worse. By looking at panel (¢) of Fig. one
can clearly see, however, that that the star-forming branch
of the BPT diagram cannot be reconstructed this way, and
the AGN sequence is also greatly distorted. The conclusion is
that emission line log EWs cannot be explained by a simple,
global linear relationship with continuum principal compo-
nents. Thus, local fitting from nearest neighbours is neces-
sary to reconstruct the BPT from either continuum principal
components or broad-band magnitudes.

3.5 Cross-tests with randomized data

As another test, we shuffled the sample and randomly paired
continuum principal components with emission line vectors
of other galaxies to break the locality in the PCA space.
Results are listed in Col. 9-10 of Tab. |2} It is not surprising
that correlations almost entirely disappear in the shuffled
case (note that p values are multiplied by 10?). This supports
that information about the emission lines is indeed encoded
in the continuum of a galaxy spectrum.

© 2015 RAS, MNRAS 000,

3.6 Reconstructing the BPT

As the BPT diagram is generally used to classify emission
line galaxies into star-forming and AGN, it is very infor-
mative to see how well the various methods can recover it
solely from the continuum. The difference among the line es-
timation methods introduced above is obvious once the BPT
diagram is plotted from the reconstructed log EWs, as it was
done in Fig. Local linear fitting of EWs using the nearest
neighbours and reconstructing lines from broad-band magni-
tudes give similarly fair, qualitatively correct BPT diagrams
while the randomization of the sample disrupts the diagram
entirely.

To further analyse the properties of a reconstructed
BPT diagram, we will stick to local linear regression based
on the continuum principal components. In Fig. |3| we plot
the original BPT for reference, the reconstructed diagram
for all galaxies, and two diagrams showing AGNs and star-
forming galaxies only, as classified by [Kauffmann et al.
(2003D).

The first thing to see in panels (¢) and (d) of Fig. [3]is
the mixing of weak star-forming galaxies with weak AGNs in
the bottom corner of the reconstructed BPT diagram. The
mixing is caused by the bad reconstructability of the [O111]
line which is most likely due to lack of a strong correlation
between AGN activity level and the stellar continuum.

4 REVISITING STAR-FORMING/AGN
SEPARATION

The mixed, low activity — low star formation rate region
is located at the bottom corner of the [Ni]/Ha-[O11]/HS
BPT diagram. Empirically drawn BPT diagrams are noisy
enough to smear pure star-forming galaxies and mixed star-
forming/AGNs together in this part of the BPT so it is
an interesting question whether it is possible to segregate
galaxies into two distinct classes or not by incorporating in-
formation on the stellar continuum into classification model.
By visually inspecting the projections of the 5D continuum
PCA space, one can see that while AGNs and star-forming
galaxies occupy different loci, they cannot be clearly sepa-
rated into two disjoint sets by cuts in any principal compo-
nent dimensions, nor the distribution of galaxies is bimodal.
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Figure 11. BPT diagrams with log EWs reconstructed from the
stellar continuum using different methods and cross-tests. Panel
(a) shows reconstructed log EWs from continuum principal com-
ponents using local linear regression from the 30 nearest neigh-
bours. Panel (b) is the reconstruction of lines from broad-band
magnitudes by local linear regression from the 30 nearest neigh-
bours. Panel (¢) was drawn from lines estimated using the global
linear regression technique from 30 randomly selected galaxies.
Panel (d) is the cross-test using local linear regression but with
shuffled continuum principal components. The colour coding of
the data points is based on the original BPT as in panel (a) of
Fig. 3] See the text for discussion.

We turned to SVM, a machine learning algorithm, to deter-
mine an empirical segregation plane between the two classes
in the continuum-PCA-line-PCA space.

4.1 Support vector machines

SVM are supervised learning algorithms which can be
trained to automatically classify multidimensional data vec-
tors into two disjoint sets (Vapnik|1998; Karatzoglou, Meyer|
. The training phase starts with compiling
a training set of data vectors that are tagged as either be-
longing to class A or class B. During learning, the model
will find a hyperplane in the space of data vectors which
separates the elements of A and B with the largest possi-
ble margirﬂ Once the model is trained, it can be used to
classify any query point into one of the two classes.

4.2 Automatic star-forming/AGN classification

We compiled the training set from our emission line galaxy
sample by selecting galaxies on the BPT that could be clas-

2 Since this is often not possible in the original space of data
vectors because the distributions of the two halves of the training
set are non-convex, kernel functions are used to map training set
vectors into a higher dimensional space where linear segregation
is possible (Scholkopf et al.|2000)). Another option to handle non-
convex situations is to find a best possible segregation plane which
minimizes the overlap.

sified with high confidence either as pure star-forming or
AGN. To select high-confidence AGNs only, we picked galax-
ies above the theoretical maximum starburst line of Kewleyl]

et al.| (2001):

—1
10g 10 (g?) > 0.61 [1og10 ng}) - 0.47] +1.19.

Star-forming galaxies were selected to fall below the empir-
ical starburst line of [Kauffmann et al| (2003b)):

-1
log,o ([(gg]) <0.61 {loglo ng}) - 0.05} +1.3,

and at the same time be above the following line, defined by

us:
O111 N1
log,, ([H5}> > 3log, (%) + 1.55.

The line was drawn empirically to cut out the most reliably
identifiable part of the star-forming population. Curves on
Fig. illustrate these cuts.

We used the first five continuum principal components
and the first four log EW principal components of the train-
ing set galaxies as input data vectors to SVM. By combining
information from the continuum into the training, we might
hope a better separation of the two galaxy types in the mixed
lower corner of the BPT than simply from the emission lines.
As SVM is a strictly empirical model, we shall not, however,
draw far-reaching theoretical conclusions from its outcome.
Since our training set was not containing the mixed region,
it was directly separable into two disjoint classes by a linear
cut. Consequently, data points did not need to be projected
into any higher dimensional space by a kernel function, like
in most applications of SVM, we simply ran it on the 5+ 4
dimensional vectors of the continuum + line PCA space.

We plot the results of the SVM-based classification in
Fig. Panels (a) and (b) show the two training set classes
(star-forming and AGN, respectively) with log EWs of the
originally measured emission lines. Panels (c) and (d) show
the outcome of the SVM classification. Even though the
mixed region was not included in the training set at all,
SVM reproduced the empirical segregation line of
|mann et al.| (2003b) surprisingly well, with only about 6 per
cent of the sample scattered into the opposite region.

5 GENERATING REALISTIC RANDOM
EMISSION LINES

5.1 The stochastic recipe

Based on our findings, we propose a simple stochastic recipe
to generate a realistic distribution of emission lines for stel-
lar population synthesis models that provide the continuum
only. The algorithm works by expressing the model contin-
uum as a linear combination of the basis vectors derived
from PCA of the continua of SDSS galaxies. According to
these principal components, the model spectrum is classi-
fied into one of the 60 continuum classes. We used k-means
clustering to define the continuum classes, as described in
Sec.

Let us denote the average continuum vector with eg x
and the PCA basis vectors with e; x, where ¢ indexes the

© 2015 RAS, MNRAS 000, [T}[T4]
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Figure 12. BPT diagrams resulting from the SVM-based star-
forming/AGN separation. Panels (a) and (b) show star-forming
and AGN galaxies used to train the algorithm. Panels (c) and (d)
display the outcome of the automatic classification. The theoret-
ical segregation line of [Kewley et al.| (2001)) is drawn in blue and
the empirical one of [Kauffmann et al| (2003b) in red. Our star-
forming/low-activity line is in black. Colour coding of the data
points is based on the original BPT as in panel (a) of Fig.[3] See
the text for discussion.

five dimensions of the PCA space and A goes over the wave-
length bins. Continuum classes are given by the centre of
mass vectors cn,; where n indexes the 60 classes. Within
each class, model lines are randomly generated from a mul-
tivariate Gaussian distribution. The mean line log EWs m,,
and the covariance matrices C,, of the distributions are pre-
calculated from the real galaxy sample and provided for each
of the 60 continuum classes.

The detailed recipe for generating realistic emission
lines given a stellar continuum model spectrum is the fol-
lowing.

(i) Rebin the rest-frame model spectrum sy to the grid
of the basis vectors and normalize it as described in Sec. [2.4]
to get Sx.

(ii) Subtract the average continuum eg from the nor-
malized spectrum.

(iii) Express the continuum as a linear combination of
the provided basis by calculating the dot products a; =
2oxlein - (8x —eon)]

(iv) Find the class centre c¢,,; in the continuum PCA
space that is the closest (in Euclidean distance) to the vector
a; of the linear coefficients.

(v) Take the covariance matrix C,, and mean line log EW
vector m,, of the line distribution within the closest class
and generate a random vector of line log EWs from the
corresponding multivariate Gaussian distribution.

Data necessary to generate random lines are published
on the paper’s web site.

© 2015 RAS, MNRAS 000,
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5.2 k-means clustering

k-means clustering is a machine learning algorithm that clas-
sifies data points based on their distances from cluster cen-
tres: points belonging to a cluster must be closer to the
centre of mass of that particular cluster than any other
clustersﬂ This implicit definition of a cluster makes finding
the best exact solution a hard problem, but heuristic, ran-
domized algorithms exist that can find a reasonable cluster-
ing relatively fast (Forgy|1965}; MacQueen|[1967; [Hartigan &
[Wong|[1979; [Lloyd||[1982)). The only inputs of k-means clus-
tering are the data vectors and k, the number of clusters
wanted. The output is the centres of mass of the k clusters.
Once the latter are known, new points can be classified sim-
ply by measuring their distances from the cluster centres
and putting them into the one with the closest centre.

5.3 Automatic classification of emission line
galaxies

To construct our stochastic model of emission lines, we
started from the 5 + 4-dimensional vector space of contin-
uum and log EW principal components of our high signal-to-
noise ratio SDSS galaxy sample. First, we classified galaxies
into continuum-log EW classes using the k-means clustering
function of R and the algorithm of .

To choose the right number of clusters, one has to con-
sider the variance of emission line log EWs as functions of
the number of the clusters. The variance in each cluster is
supposed to be decreasing as the number of clusters is grow-
ing since clusters are becoming smaller. The minimum vari-
ance is limited by the noise in the data. The o (k) curves for
all emission lines are plotted in panel (a) of Fig. Hence,
to minimize the variance of line strengths within each class,
we chose k = 60 as all curves get essentially flat above this
value. For training sets of different sizes and characteristics,
a similar analysis of the variance is advisable to determine
the input parameter of k-means clustering.

5.4 Modelling the emission line distributions

Once k-means clusters in the continuum-PCA-line-PCA
space are determined in the way described in Sec. we
have to model the distribution of emission line log EWs
within each cluster. If the number of clusters is sufficiently
high, clusters will become small enough that the distribu-
tion of emission lines within them can be well modelled by
a multivariate Gaussian distribution parametrized with m,,
and C,,. We note that a multivariate Gaussian distribution,
when its entire covariance matrix is known, does not only
account for individual line strengths but also for line ratios,
including ratios from the same line series. It is also impor-
tant to mention that, while we did the k-means classification
of galaxies in the 5 + 4-dimensional continuum + log EW
space, stellar population synthesis models yield the contin-
uum coefficients only. As a result, when classifying model
continua, we measure distances from cluster centres in the

3 The k-means algorithm basically constructs a Voronoi tessella-
tion from the data vectors, with seeds being the centres of mass
of the clusters.
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Figure 13. Variance of log EW of the 11 strong emission lines,
averaged over all clusters, as a function of the number of clusters.
Panel (a) refers to the case of considering both the continuum
and line principal components for clustering and classification.
Variance results from the sum of line measurement errors and
uncertainty due to the finite size of the clusters. Panel (b) shows
the effect of misclassification when only the continuum principal
components are used to classify galaxies, with the clustering done
in both the continuum and line log EW PCA space. Misclassifica-
tion will add extra scatter to the randomly generated log EWs, cf.
Sec. and Fig. Panel (c) illustrates the case of performing
both the clustering and classification in the continuum princi-
pal component space only. Even with the additional variance due
to misclassification, using both the continuum and line log EW
principal components for the clustering is favourable.

5D continuum-PCA subspace only. This will introduce some
mixing among clusters as determined by k-means and cause
somewhat larger scatter in the randomly generated log EWs
than what it would be based solely on the C,, covariance ma-
trices. This effect is shown in panel (b) of Fig. It is still
worth using the entire 5+ 4-dimensional space to run the k-
mean classification because the resulting variances are still
lower than using the continuum principal components only,
cf. panel (c) of Fig. Also, because the covariance of the
lines is treated stochastically, there will be random scatter
in line ratios as well.

A direct test of the algorithm is to take the galax-
ies of our SDSS sample, generate emission lines based on
their fitted continua and see how well the BPT diagram can
be reconstructed. Results of this procedure are plotted in
Fig. [[4 where we also show the original BPT for reference
in panel (a) next to the stochastically generated BPT in
panel (b). While the curve of star-forming galaxies and the
AGN mixing sequence is reproduced reasonably well, there
are also a large number of red data points corresponding to
the bottom corner of the original BPT visible in all regions
of the plot.
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Figure 14. Panel (a) shows the original diagram plotted from
the directly measured emission line for reference. Panel (b) is the
BPT diagram plotted from stochastically generated emission lines
based on the recipe described in Sec. El While lines were generated
from a multivariate distribution randomly, based on the location
of the continuum in the PCA space, the resulting BPT diagram
resembles the original one remarkably well, although more scatter
and significant mixing of galaxy types is visible. Colour coding of
the data points is based on the original BPT as in panel (a) of

Fig. 3]

5.5 Shortcomings of the method

The recipe outlined above yields line EWs only, and is suf-
ficient to reproduce the flux excess caused by emission lines
but not line widths. In general, line widths should be taken
to be equal to the velocity dispersion, at least in the case
of star-forming galaxies. Width distributions of broad lines
would need to be investigated to generate AGN lines with
realistic breadth distribution.

As we pointed out in Sec. [5-4] using only the contin-
uum principal components to generate log EWs introduces
additional variance due to the mixing of the classes as de-
fined in the continuum + line space. Additionally, as lines
are randomly generated based on a multivariate Gaussian
distribution, EWs and line ratios are not guaranteed to be
correct for individual galaxies, but will be for the entire en-
semble of mock galaxies.

If the goal is to generate realistic emission lines for in-
dividual model continua, we suggest using the local linear
regression method as described in Sec. While that tech-
nique yields more accurate emission line estimates, it also
requires a much larger input data set and more heavyweight
algorithms.

6 SUMMARY AND FUTURE WORK

We have measured the emission lines of galaxies from
SDSS DR7 to analyse the correlation between the emis-
sion lines and the stellar continua in the optical wavelength
range. We have developed an algorithm, noise limited fit-
ting, to accurately measure the parameters of broad and
asymmetric emission lines, yet avoid overfitting of narrow,
symmetric lines. We have also demonstrated how to cor-
rect for discrepancies between theoretical stellar continuum
modelling and real measurements by low-pass filtering the
residual before emission line fitting.

In Sec. [3] we have shown that optical emission line
log EWs can be reasonably well reconstructed from both
the optical stellar continuum and broad-band magnitudes
of galaxies.
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The main practical use case of our method is to gen-
erate emission lines for stellar continua from stellar popula-
tion synthesis models, provided that the models fall into the
wavelength and physical parameter coverage of our training
set. Since our sample contained strong emission line galaxies
only (with all 11 prominent lines measured), the results can-
not be generalized to any type of galaxy without extending
the training set, but the algorithm still applies. Also, further
research is necessary to use our line reconstruction method
for galaxies with fewer and weaker lines: correlations be-
tween the stellar continuum and the probability of the very
presence of weak emission lines need to be taken into ac-
count.

Another application of our method is to estimate emis-
sion lines of photometric galaxies. The technique readily
works for the SDSS ugriz filter set, but the existing training
set can be adapted to other filter systems as well. While
one simple way to do this is to compute synthetic pho-
tometry from the spectra, building a new training set by
cross-matching the photometric measurements made with
the other filter set to our spectroscopic sample is a better
option (provided that the survey overlaps with the SDSS),
since it would automatically account for the unknown sys-
tematics in spectrophotometry. With the outlined modifica-
tions, our technique will be of great value for analysing data
from large photometric surveys like PanSTARRS and the
LSST.

Additionally, by correcting for the contributions of
strong emission lines to broad-band magnitudes, our method
can be useful in improving template-based photometric red-
shift estimation algorithms to narrow the performance gap
between the theoretical and the empirical approach.

In Sec. [ we used a supervised machine learning algo-
rithm, SVM, to verify the empirical demarcation line be-
tween star-forming galaxies and AGNs defined by Kauff-
mann et al| (2003bf). Even though we used only extreme
starburst galaxies and strong AGNs to train the algorithm,
SVM yielded a result very similar to the analytical segrega-
tion curve, only about 6 per cent of galaxies in the bottom
corner of the BPT diagram got classified differently. A future
application to SVM would be to revisit the Seyfert/LINER
separation as it was done in [Kewley et al.| (2006)).

Finally, in Sec. [5} we gave a very simple recipe to gen-
erate random emission lines with realistic EWs on top of
stellar continua generated by stellar population synthesis
modes. We have demonstrated that, despite its simplicity,
the method can qualitatively reconstruct the BPT. Our
model has its application when the objective is not the ac-
curate modelling of the emission lines of individual galaxies
but rather generating stochastic mock catalogues with more
realistic broad-band magnitudes.
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