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Aradi vértanúk tere 1, H–6720 Szeged, Hungary.

*** Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H–6720 Szeged, Hungary.
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Abstract

We study asymptotic behavior of conditional least squares estimators for critical con-

tinuous state and continuous time branching processes with immigration based on discrete

time (low frequency) observations.

1 Introduction

Under some mild moment condition (see (2.3)), a continuous state and continuous time branch-

ing process with immigration (CBI process) can be represented as a pathwise unique strong

solution of the stochastic differential equation (SDE)

Xt = X0 +

∫ t

0

(β + b̃Xs) ds+

∫ t

0

√
2cmax{0, Xs} dWs

+

∫ t

0

∫ ∞

0

∫ ∞

0

z1{u6Xs−} Ñ(ds, dz, du) +

∫ t

0

∫ ∞

0

z M(ds, dz)

(1.1)

for t ∈ [0,∞), where β, c ∈ [0,∞), b̃ ∈ R, and (Wt)t>0 is a standard Wiener process, N

and M are Poisson random measures on (0,∞)3 and on (0,∞)2 with intensity measures

ds µ(dz) du and ds ν(dz), respectively, Ñ(ds, dz, du) := N(ds, dz, du) − ds µ(dz) du is the

compensated Poisson random measure corresponding to N , the branching jump measure µ

and the immigration jump measure ν satisfy some moment conditions, and (Wt)t>0, N

and M are independent, see Dawson and Li [8, Theorems 5.1 and 5.2]. The model is called

subcritical, critical or supercritical if b̃ < 0, b̃ = 0 or b̃ > 0, see Huang et al. [10, page 1105].
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Based on discrete time (low frequency) observations (Xk)k∈{0,1,...,n}, n ∈ {1, 2, . . .}, Huang

et al. [10] derived weighted conditional least squares (CLS) estimator of (̃b, β). Under some

additional moment conditions, they showed the following results: in the subcritical case the

estimator of (̃b, β) is asymptotically normal; in the critical case the estimator of b̃ has a

non-normal limit, but the asymptotic behavior of the estimator of β remained open; in the

supercritical case the estimator of b̃ is asymptotically normal with a random scaling, but the

estimator of β is not weakly consistent.

Overbeck and Rydén [19] considered CLS and weighted CLS estimators for the well-known

Cox–Ingersoll–Ross model, which is, in fact, a diffusion CBI process (without jump part), i.e.,

when µ = 0 and ν = 0 in (1.1). Based on discrete time observations (Xk)k∈{0,1,...,n},

n ∈ {1, 2, . . .}, they derived CLS estimator of (̃b, β, c) and proved its asymptotic normality in

the subcritical case. Note that Li and Ma [18] started to investigate the asymptotic behaviour

of the CLS and weighted CLS estimators of the parameters (̃b, β) in the subcritical case for a

Cox–Ingersoll–Ross model driven by a stable noise, which is again a special CBI process (with

jump part).

For simplicity, we suppose X0 = 0. We suppose that c, µ and ν are known, and

we derive the CLS estimator of (̃b, β̃) based on discrete time (low frequency) observations

(Xk)k∈{1,...,n}, n ∈ {1, 2, . . .}, where β̃ := β +
∫∞

0
z ν(dz). In the critical case, i.e, when

b̃ = 0, under some moment conditions, we describe the asymptotic behavior of these CLS

estimators as n → ∞, provided that β 6= 0 or ν 6= 0, see Theorem 3.1. We point out that

the limit distributions are non-normal in general. In the present paper we do not investigate

the asymptotic behavior of CLS estimators of (̃b, β̃) in the subcritical and supercritical cases,

it could be the topic of separate papers.

2 CBI processes

Let Z+, N, R, R+ and R++ denote the set of non-negative integers, positive integers, real

numbers, non-negative real numbers and positive real numbers, respectively. For x, y ∈ R,

we will use the notations x ∧ y := min{x, y} and x+ := max{0, x}. By ‖x‖ and ‖A‖,

we denote the Euclidean norm of a vector x ∈ R
d and the induced matrix norm of a matrix

A ∈ Rd×d, respectively. The null vector and the null matrix will be denoted by 0. By

C2
c (R+,R) we denote the set of twice continuously differentiable real-valued functions on R+

with compact support. Convergence in distribution and in probability will be denoted by
D

−→

and
P

−→, respectively.

2.1 Definition. A tuple (c, β, b, ν, µ) is called a set of admissible parameters if c, β ∈ R+,

b ∈ R, and ν and µ are Borel measures on (0,∞) satisfying
∫∞

0
(1 ∧ z) ν(dz) < ∞ and∫∞

0
(z ∧ z2)µ(dz) <∞.

2.2 Theorem. Let (c, β, b, ν, µ) be a set of admissible parameters. Then there exists a unique

conservative transition semigroup (Pt)t∈R+ acting on the Banach space (endowed with the
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supremum norm) of real-valued bounded Borel-measurable functions on the state space R+

such that its infinitesimal generator is

(2.1)

(Af)(x) = cxf ′′(x) + (β + bx)f ′(x) +

∫ ∞

0

(
f(x+ z)− f(x)

)
ν(dz)

+ x

∫ ∞

0

(
f(x+ z)− f(x)− f ′(x)(1 ∧ z)

)
µ(dz)

for f ∈ C2
c (R+,R) and x ∈ R+. Moreover, the Laplace transform of the transition semigroup

(Pt)t∈R+ has a representation

∫ ∞

0

e−λyPt(x, dy) = e−xv(t,λ)−
∫ t
0 ψ(v(s,λ)) ds, x ∈ R+, λ ∈ R+, t ∈ R+,

where, for any λ ∈ R+, the continuously differentiable function R+ ∋ t 7→ v(t, λ) ∈ R+ is

the unique locally bounded solution to the differential equation

(2.2) ∂tv(t, λ) = −ϕ(v(t, λ)), v(0, λ) = λ,

with

ϕ(λ) := cλ2 − bλ+

∫ ∞

0

(
e−λz − 1 + λ(1 ∧ z)

)
µ(dz), λ ∈ R+,

and

ψ(λ) := βλ+

∫ ∞

0

(
1− e−λz

)
ν(dz), λ ∈ R+.

2.3 Remark. This theorem is a special case of Theorem 2.7 of Duffie et al. [9] with m = 1,

n = 0 and zero killing rate. The unique existence of a locally bounded solution to the

differential equation (2.2) is proved by Li [17, page 45]. Here, we point out that the moment

condition on µ given in Definition 2.1 (which is stronger than the one (2.11) in Definition 2.6

in Duffie et al. [9]) ensures that the semigroup (Pt)t∈R+ is conservative (we do not need the

one-point compactification of Rd
+), see Duffie et al. [9, Lemma 9.2] and Li [17, page 45]. For

the continuity of the function R+×R+ ∋ (t, λ) 7→ v(t, λ), see Duffie et al. [9, Proposition 6.4].

Finally, we note that the infinitesimal generator (2.1) can be rewritten in another equivalent

form

(Af)(x) = cxf ′′(x) +

(
β +

(
b+

∫ ∞

1

(z − 1)µ(dz)

)
x

)
f ′(x)

+

∫ ∞

0

(
f(x+ z)− f(x)

)
ν(dz) + x

∫ ∞

0

(
f(x+ z)− f(x)− zf ′(x)

)
µ(dz),

where b+
∫∞

1
(z − 1)µ(dz) is nothing else but b̃ given in (2.5). ✷

2.4 Definition. A conservative Markov process with state space R+ and with transition semi-

group (Pt)t∈R+ given in Theorem 2.2 is called a CBI process with parameters (c, β, b, ν, µ).

The function R+ ∋ λ 7→ ϕ(λ) ∈ R is called its branching mechanism, and the function

R+ ∋ λ 7→ ψ(λ) ∈ R+ is called its immigration mechanism.
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Note that the branching mechanism depends only on the parameters c, b and µ, while

the immigration mechanism depends only on the parameters β and ν.

Let (Xt)t∈R+ be a CBI process with parameters (c, β, b, ν, µ) such that E(X0) <∞ and

the moment condition

(2.3)

∫ ∞

1

z ν(dz) <∞

holds. Then, by formula (3.4) in Barczy et al. [5],

(2.4) E(Xt |X0 = x) = eb̃tx+ β̃

∫ t

0

eb̃u du, x ∈ R+, t ∈ R+,

where

(2.5) b̃ := b+

∫ ∞

1

(z − 1)µ(dz), β̃ := β +

∫ ∞

0

z ν(dz).

Note that b̃ ∈ R and β̃ ∈ R+ due to (2.3). One can give probabilistic interpretations of the

modified parameters b̃ and β̃, namely, eb̃ = E(Y1 | Y0 = 1) and β̃ = E(Z1 |Z0 = 0), where

(Yt)t∈R+ and (Zt)t∈R+ are CBI processes with parameters (c, 0, b, 0, µ) and (0, β, 0, ν, 0),

respectively, see formula (2.4). The processes (Yt)t∈R+ and (Zt)t∈R+ can be considered as

pure branching (without immigration) and pure immigration (without branching) processes,

respectively. Consequently, eb̃ and β̃ may be called the branching and immigration mean,

respectively. Moreover, by the help of the modified parameters b̃ and β̃, the SDE (1.1) can

be rewritten as

Xt = X0 +

∫ t

0

(β̃ + b̃Xs) ds+

∫ t

0

√
2cX+

s dWs

+

∫ t

0

∫ ∞

0

∫ ∞

0

z1{u6Xs−} Ñ(ds, dz, du) +

∫ t

0

∫ ∞

0

z M̃(ds, dz)

(2.6)

for t ∈ [0,∞), where M̃(ds, dz) :=M(ds, dz)− ds µ(dz).

Next we will recall a convergence result for critical CBI processes.

A function f : R+ → R is called càdlàg if it is right continuous with left limits. Let

D(R+,R) and C(R+,R) denote the space of all R-valued càdlàg and continuous functions

on R+, respectively. Let D∞(R+,R) denote the Borel σ-field in D(R+,R) for the metric

characterized by Jacod and Shiryaev [14, VI.1.15] (with this metric D(R+,R) is a complete

and separable metric space). For R-valued stochastic processes (Yt)t∈R+ and (Y (n)
t )t∈R+ ,

n ∈ N, with càdlàg paths we write Y (n) D
−→ Y as n → ∞ if the distribution of Y (n) on

the space (D(R+,R),D∞(R+,R)) converges weakly to the distribution of Y on the space

(D(R+,R),D∞(R+,R)) as n → ∞. Concerning the notation
D

−→ we note that if ξ and

ξn, n ∈ N, are random elements with values in a metric space (E, ρ), then we also denote by

ξn
D

−→ ξ the weak convergence of the distributions of ξn on the space (E,B(E)) towards
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the distribution of ξ on the space (E,B(E)) as n → ∞, where B(E) denotes the Borel

σ-algebra on E induced by the given metric ρ.

The following convergence theorem can be found in Huang et al. [10, Theorem 2.3].

2.5 Theorem. Let (Xt)t∈R+ be a CBI process with parameters (c, β, b, ν, µ) such that X0 =

0, the moment conditions

(2.7)

∫ ∞

1

zq ν(dz) <∞,

∫ ∞

1

zq µ(dz) <∞

hold with q = 2, and b̃ = 0 (hence the process is critical). Then

(X (n)
t )t∈R+ := (n−1X⌊nt⌋)t∈R+

D
−→ (Yt)t∈R+ as n→ ∞(2.8)

in D(R+,R), where (Yt)t∈R+ is the pathwise unique strong solution of the SDE

(2.9) dYt = β̃ dt +

√
CY+

t dWt, t ∈ R+, Y0 = 0,

where (Wt)t∈R+ is a standard Brownian motion and

(2.10) C := 2c+

∫ ∞

0

z2µ(dz) ∈ R+.

2.6 Remark. The SDE (2.9) has a pathwise unique strong solution (Y (y)
t )t∈R+ for all initial

values Y (y)
0 = y ∈ R, and if the initial value y is nonnegative, then Y (y)

t is nonnegative for

all t ∈ R+ with probability one, since β̃ ∈ R+, see, e.g., Ikeda and Watanabe [11, Chapter

IV, Example 8.2]. ✷

2.7 Remark. Note that C = 0 if and only if c = 0 and µ = 0, when the pathwise

unique strong solution of (2.9) is the deterministic function Yt = β̃t, t ∈ R+. Further,

C = Var(Y1 | Y0 = 1), see Proposition B.3, where (Yt)t∈R+ is a pure branching CBI process

with parameters (c, 0, b, 0, µ). Clearly, C depends only on the branching mechanism. ✷

3 Main results

Let (Xt)t∈R+ be a CBI process with parameters (c, β, b, ν, µ) such that the moment condition

(2.3) holds. For the sake of simplicity, we suppose X0 = 0. In the sequel we also assume that

β 6= 0 or ν 6= 0 (i.e., the immigration mechanism is non-zero), equivalently, β̃ 6= 0 (where

β̃ is defined in (2.5)), otherwise Xt = 0 for all t ∈ R+, following from (2.4). The parameter

b̃ can also be called the criticality parameter, since (Xt)t∈R+ is critical if and only if b̃ = 0.

For k ∈ Z+, let Fk := σ(X0, X1, . . . , Xk). Since (Xk)k∈Z+ is a time-homogeneous Markov

process, by (2.4),

(3.1) E(Xk | Fk−1) = E(Xk |Xk−1) = ̺Xk−1 + β, k ∈ N,

5



where

(3.2) ̺ := eb̃ ∈ R++, β := β̃

∫ 1

0

eb̃s ds ∈ R+.

Note that β = E(X1 |X0 = 0), see (2.4). Note also that β depends both on the branching

and immigration mechanisms, although β̃ depends only on the immigration mechanism. Let

us introduce the sequence

(3.3) Mk := Xk − E(Xk | Fk−1) = Xk − ̺Xk−1 − β, k ∈ N,

of martingale differences with respect to the filtration (Fk)k∈Z+. By (3.3), the process (Xk)k∈Z+

satisfies the recursion

(3.4) Xk = ̺Xk−1 + β +Mk, k ∈ N.

For each n ∈ N, a CLS estimator (̺̂n, β̂n) of (̺, β) based on a sample X1, . . . , Xn can be

obtained by minimizing the sum of squares

n∑

k=1

(Xk − ̺Xk−1 − β)2

with respect to (̺, β) over R2, and it has the form

(3.5)


̺̂n
β̂n


 :=

1

n
n∑
k=1

X2
k−1 −

(
n∑
k=1

Xk−1

)2




n
n∑
k=1

XkXk−1 −
n∑
k=1

Xk

n∑
k=1

Xk−1

n∑
k=1

Xk

n∑
k=1

X2
k−1 −

n∑
k=1

XkXk−1

n∑
k=1

Xk−1




on the set

Hn :=

{
ω ∈ Ω : n

n∑

k=1

X2
k−1(ω)−

(
n∑

k=1

Xk−1(ω)

)2

> 0

}
,

see, e.g., Wei and Winnicki [21, formulas (1.4), (1.5)]. In the sequel we investigate the critical

case. By Lemma C.1, P(Hn) → 1 as n→ ∞. Let us introduce the function h : R2 → R++×R

by

h(̃b, β̃) :=

(
eb̃, β̃

∫ 1

0

eb̃s ds

)
= (̺, β), (̃b, β̃) ∈ R

2.

Note that h is bijective having inverse

h−1(̺, β) =

(
log(̺),

β∫ 1

0
̺s ds

)
= (̃b, β̃), (̺, β) ∈ R++ × R.

Theorem 3.4 will imply that the CLS estimator ̺̂n of ̺ is weakly consistent, hence, for

sufficiently large n ∈ N with probability converging to 1, (̺̂n, β̂n) falls into the set R++×R,

and hence

(̺̂n, β̂n) = argmin(̺,β)∈R++×R

n∑

k=1

(Xk − ̺Xk−1 − β)2.
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Thus one can introduce a natural estimator of (̃b, β̃) by applying the inverse of h to the CLS

estimator of (̺, β), that is,

(̂̃bn,
̂̃
βn) := h−1(̺̂n, β̂n) =

(
log(̺̂n),

β̂n∫ 1

0
(̺̂n)s ds

)
, n ∈ N,

on the set {ω ∈ Ω : (̺̂n(ω), β̂n(ω)) ∈ R++ × R}. We also obtain

(3.6) (̂̃bn,
̂̃
βn) = argmin(̃b,β̃)∈R2

n∑

k=1

(
Xk − eb̃Xk−1 − β̃

∫ 1

0

eb̃s ds

)2

for sufficiently large n ∈ N with probability converging to 1, hence
(̂̃
bn,
̂̃
βn
)

is the CLS

estimator of (̃b, β̃) for sufficiently large n ∈ N with probability converging to 1. We would

like to stress the point that the estimator
(̂̃
bn,
̂̃
βn
)

exists only for sufficiently large n ∈ N

with probability converging to 1. However, as all our results are asymptotic, this will not

cause a problem.

3.1 Theorem. Let (Xt)t∈R+ be a CBI process with parameters (c, β, b, ν, µ) such that X0 =

0, the moment conditions (2.7) hold with q = 8, β 6= 0 or ν 6= 0, and b̃ = 0 (hence the

process is critical). Then the probability of the existence of the estimator (̂̃bn,
̂̃
βn) converges

to 1 as n→ ∞ and

(3.7)


n(̂̃bn − b̃)
̂̃
βn − β̃


 D
−→

1
∫ 1

0
Y2
t dt−

(∫ 1

0
Yt dt

)2




∫ 1

0
Yt dMt −M1

∫ 1

0
Yt dt

M1

∫ 1

0
Y2
t dt−

∫ 1

0
Yt dt

∫ 1

0
Yt dMt




as n → ∞, where (Yt)t∈R+ is the pathwise unique strong solution of the SDE (2.9), and

Mt := Yt − β̃t, t ∈ R+.

If, in addition, c = 0 and µ = 0 (hence the process is a pure immigration process), then

(3.8)


 n

3/2 (̂̃bn − b̃)

n1/2(
̂̃
βn − β̃)


 D
−→ N2


0,

∫ ∞

0

z2 ν(dz)

[
1
3
(β̃)2 1

2
β̃

1
2
β̃ 1

]−1

 as n→ ∞.

3.2 Remark. By Remark 2.7, if C = 0, then Mt = 0, t ∈ R+, further, by (3.7),

n(̂̃bn − b̃)
D

−→ 0 and
̂̃
βn − β̃

D
−→ 0 as n→ ∞. ✷

3.3 Remark. If C 6= 0 then the estimator
̂̃
βn is not consistent. The same holds for the

discrete time analogues of β̃, for instance, the immigration mean of a critical Galton–Watson

branching process with immigration, see Wei and Winnicki [22], or the innovation mean of a

positive regular unstable INAR(2) process, see Barczy et al. [4]. ✷

Theorem 3.1 will follow from the following statement.
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3.4 Theorem. Under the assumptions of Theorem 3.1, the probability of the existence of

unique CLS estimator (̺̂n, β̂n) converges to 1 as n→ ∞ and

(3.9)


n(̺̂n − ̺)

β̂n − β


 D
−→

1
∫ 1

0
Y2
t dt−

(∫ 1

0
Yt dt

)2




∫ 1

0
Yt dMt −M1

∫ 1

0
Yt dt

M1

∫ 1

0
Y2
t dt−

∫ 1

0
Yt dt

∫ 1

0
Yt dMt




as n→ ∞.

If, in addition, c = 0 and µ = 0 (hence the process is a pure immigration process), then

(3.10)


n

3/2(̺̂n − ̺)

n1/2(β̂n − β)


 D
−→ N2


0,

∫ ∞

0

z2 ν(dz)

[
1
3
(β̃)2 1

2
β̃

1
2
β̃ 1

]−1

 as n→ ∞.

Proof of Theorem 3.1. Before Theorem 3.1 we have already investigated the existence of

(̂̃bn,
̂̃
βn). Now we apply Lemma D.1 with S = T = R2, C = R2,

ξn =


n(̺̂n − ̺)

β̂n − β


 =


n(̺̂n − 1)

β̂n − β̃


 ,

ξ =
1

∫ 1

0
Y2
t dt−

(∫ 1

0
Yt dt

)2




∫ 1

0
Yt dMt −M1

∫ 1

0
Yt dt

M1

∫ 1

0
Y2
t dt−

∫ 1

0
Yt dt

∫ 1

0
Yt dMt


 ,

with functions f : R2 → R2 and fn : R2 → R2, n ∈ N, given by

f

([
x

y

])
:=

[
x

y

]
, (x, y) ∈ R

2, fn

([
x

y

])
:=




n log
(
1 + x

n

)

y + β̃∫ 1

0
(1 + x

n
)s ds

− β̃




for (x, y) ∈ R2 with x > −n, and fn(x, y) := 0 otherwise. We have fn(n(̺̂n−1), β̂n− β̃) =

(n(̂̃bn − b̃),
̂̃
βn − β̃) on the set {ω ∈ Ω : ̺̂n(ω) ∈ R++}, and fn(xn, yn) → f(x, y) as n→ ∞

if (xn, yn) → (x, y) as n→ ∞, since

lim
n→∞

log
(
1 +

xn
n

)n
= log(ex) = x,

and limn→∞

∫ 1

0
(1 + xn

n
)s ds = 1, if xn → x as n → ∞, since the function R++ ∋ u 7→∫ 1

0
us ds ∈ R is continuous. Consequently, (3.9) implies (3.7).

Next we apply Lemma D.1 with S = T = R2, C = R2,

ξn =


n

3/2(̺̂n − ̺)

n1/2(β̂n − β)


 , ξ

D
= N2


0,

∫ ∞

0

z2 ν(dz)

[
1
3
(β̃)2 1

2
β̃

1
2
β̃ 1

]−1

 ,

8



with functions f : R2 → R
2 and fn : R2 → R

2, n ∈ N, given by

f

([
x

y

])
:=

[
x

y

]
, (x, y) ∈ R

2, fn

([
x

y

])
:=




n3/2 log
(
1 + x

n3/2

)

n1/2

(
n−1/2y + β̃∫ 1

0
(1 + x

n3/2 )s ds
− β̃

)




for (x, y) ∈ R2 with x > −n3/2, and fn(x, y) := (0, 0) otherwise. We have again fn(xn, yn) →

f(x, y) as n→ ∞ if (xn, yn) → (x, y) as n→ ∞. Indeed,

n1/2

(
n−1/2yn + β̃∫ 1

0
(1 + xn

n3/2 )s ds
− β̃

)
=

yn∫ 1

0
(1 + xn

n3/2 )s ds
+
β̃n1/2

(
1−

∫ 1

0
(1 + xn

n3/2 )
s ds
)

∫ 1

0
(1 + xn

n3/2 )s ds

if xn > −n3/2. Moreover,

∣∣∣∣n
1/2
(
1−

∫ 1

0

(1 +
xn
n3/2

)s ds
)
− n1/2

(
1−

∫ 1

0

(1 +
x

n3/2
)s ds

)∣∣∣∣

= n1/2

∣∣∣∣
xn − x

n3/2

∫ 1

0

s
(
1 +

θn
n3/2

)s−1

ds

∣∣∣∣ 6 K
|xn − x|

n
→ 0 as n→ ∞

with θn (depending on xn and x) lying between xn and x, and with some appropriate

K > 0. Further, by L’Hospital’s rule,

lim
n→∞

n1/2

(
1−

∫ 1

0

(
1 +

x

n3/2

)s
ds

)
= lim

h→0

1−
∫ 1

0
(1 + h3x)s ds

h

= − lim
h→0

3h2x

∫ 1

0

s(1 + h3x)s−1 ds = 0.

Consequently, (3.10) implies (3.8). ✷

Theorem 3.4 will follow from the following statements by the continuous mapping theorem

and by Slutsky’s lemma, see below.

3.5 Theorem. Under the assumptions of Theorem 3.1, we have

(3.11)
n∑

k=1




n−2Xk−1

n−3X2
k−1

n−1Mk

n−2MkXk−1




D
−→




∫ 1

0
Yt dt

∫ 1

0
Y2
t dt

M1∫ 1

0
Yt dMt




as n→ ∞.

In case of C = 0 the third and fourth coordinates of the limit vector is 0 in Theorem 3.5,

since (Yt)t∈R+ is the deterministic function Yt = β̃t, t ∈ R+ (see Remark 2.7), hence other

scaling factors should be chosen for these coordinates, as given in the following theorem.
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3.6 Theorem. Suppose that the assumptions of Theorem 3.1 hold. If C = 0, then

n−2
n∑

k=1

Xk−1
P

−→
β̃

2
as n→ ∞,

n−3

n∑

k=1

X2
k−1

P
−→

(β̃)2

3
as n→ ∞,

n∑

k=1

[
n−1/2Mk

n−3/2MkXk−1

]
D

−→ N2

(
0,

∫ ∞

0

z2 ν(dz)

[
1 1

2
β̃

1
2
β̃ 1

3
(β̃)2

])
as n→ ∞.

Proof of Theorem 3.4. The statements about the existence of unique CLS estimators (̺̂n, β̂n)
under the given conditions follow from Lemma C.1.

In order to derive (3.9) from Theorem 3.5, we can use the continuous mapping theorem.

Indeed,


 ̺̂n − ̺

β̂n − β


 =

1

n
n∑
k=1

X2
k−1 −

(
n∑
k=1

Xk−1

)2




n
n∑
k=1

MkXk−1 −
n∑
k=1

Mk

n∑
k=1

Xk−1

n∑
k=1

Mk

n∑
k=1

X2
k−1 −

n∑
k=1

MkXk−1

n∑
k=1

Xk−1




on the set Hn. Moreover, since β̃ 6= 0, by the SDE (2.9), we have P
(
Yt = 0, t ∈

[0, 1]
)
= 0, which implies P

(∫ 1

0
Y2
t dt > 0

)
= 1. By Remark 2.6, P(Yt > 0, t ∈ R+) = 1,

and hence P(
∫ 1

0
Yt dt > 0) = 1. Next we show P

(∫ 1

0
Y2
t dt −

(∫ 1

0
Yt dt

)2
> 0

)
= 1. We

have
∫ 1

0
Y2
t dt −

(∫ 1

0
Yt dt

)2
=
∫ 1

0

(
Yt −

∫ 1

0
Ys ds

)2
dt > 0, and equality holds if and only if

Yt =
∫ 1

0
Ys ds for almost every t ∈ [0, 1]. Since Y has continuous sample paths almost surely,

P
(∫ 1

0
Y2
t dt−

(∫ 1

0
Yt dt

)2
= 0
)
> 0 holds if and only if P

(
Yt =

∫ 1

0
Ys ds, ∀t ∈ [0, 1]

)
> 0. Hence,

since Y0 = 0, this holds if and only if P (Yt = 0, ∀t ∈ [0, 1]) > 0, which is a contradiction

due to our assumption β̃ ∈ R++. Indeed, with the notations of the proof of Theorem 3.1 in

Barczy et al. [1], {ω ∈ Ω : Yt(ω) = 0, ∀t ∈ [0, 1]} = Ã1 ∩A1 = ∅. Consequently,


n(̺̂n − ̺)

β̂n − β


 D
−→

1
∫ 1

0
Y2
t dt−

(∫ 1

0
Yt dt

)2




∫ 1

0
Yt dMt −M1

∫ 1

0
Yt dt

M1

∫ 1

0
Y2
t dt−

∫ 1

0
Yt dt

∫ 1

0
Yt dMt




as n→ ∞, and we obtain (3.9).

If, in addition, c = 0 and µ = 0, then we derive (3.10) from Theorem 3.6 applying the

continuous mapping theorem and Slutsky’s lemma. We have

1

n3

n∑

k=1

X2
k−1 −

(
1

n2

n∑

k=1

Xk−1

)2
P

−→
(β̃)2

3
−

(
β̃

2

)2

=
(β̃)2

12
as n→ ∞.
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Moreover,

n−4

[
n
∑n

k=1MkXk−1 −
∑n

k=1Mk

∑n
k=1Xk−1∑n

k=1Mk

∑n
k=1X

2
k−1 −

∑n
k=1MkXk−1

∑n
k=1Xk−1

]

= n−4

[
−n1/2

∑n
k=1Xk−1 n5/2

n1/2
∑n

k=1X
2
k−1 −n3/2

∑n
k=1Xk−1

][
n−1/2

∑n
k=1Mk

n−3/2
∑n

k=1MkXk−1

]

=

[
n−3/2 0

0 n−1/2

][
−n−2

∑n
k=1Xk−1 1

n−3
∑n

k=1X
2
k−1 −n−2

∑n
k=1Xk−1

][
n−1/2

∑n
k=1Mk

n−3/2
∑n

k=1MkXk−1

]
,

hence, by Theorem 3.6 and Slutsky’s lemma,

n

3/2(̺̂n − ̺)

n1/2(β̂n − β)


 =


n

3/2 0

0 n1/2




 ̺̂n − ̺

β̂n − β


 D
−→ N2(0,Σ),

as n→ ∞, where

Σ :=

(
12

(β̃)2

)2 ∫ ∞

0

z2 ν(dz)

[
−1

2
β̃ 1

1
3
(β̃)2 −1

2
β̃

][
1 1

2
β̃

1
2
β̃ 1

3
(β̃)2

][
−1

2
β̃ 1

3
(β̃)2

1 −1
2
β̃

]

=

(
12

(β̃)2

)2 ∫ ∞

0

z2 ν(dz)

[
1
12
(β̃)2 − 1

24
(β̃)3

− 1
24
(β̃)3 1

36
(β̃)4

]
=

12

(β̃)2

∫ ∞

0

z2 ν(dz)

[
1 −1

2
β̃

−1
2
β̃ 1

3
(β̃)2

]
,

and we obtain (3.10). ✷

4 Proof of Theorem 3.5

Consider the sequence of stochastic processes

Z
(n)
t :=

[
M(n)

t

N (n)
t

]
:=

⌊nt⌋∑

k=1

Z
(n)
k with Z

(n)
k :=

[
n−1Mk

n−2MkXk−1

]

for t ∈ R+ and k, n ∈ N. Theorem 3.5 follows from the following theorem (this will be

explained after Theorem 4.1).

4.1 Theorem. Under the assumptions of Theorem 3.1, we have

(4.1) Z
(n) D

−→ Z , as n→ ∞,

where the process (Zt)t∈R+ with values in R2 is the pathwise unique strong solution of the

SDE

(4.2) dZ t = γ(t,Zt) dWt, t ∈ R+,

11



with initial value Z0 = 0, where (Wt)t∈R+ is a standard Wiener process, and γ : R+×R
2 → R

is defined by

γ(t,x) :=

[
C1/2 ((x1 + β̃t)+)1/2

C1/2 ((x1 + β̃t)+)3/2

]
, t ∈ R+, x = (x1, x2)

⊤ ∈ R
2.

(Note that the statement of Theorem 4.1 holds even if C = 0.)

The SDE (4.2) has the form

dZt =:

[
dMt

dNt

]
=


C

1/2 ((Mt + β̃t)+)1/2 dWt

C1/2 ((Mt + β̃t)+)3/2 dWt


 , t ∈ R+.(4.3)

One can prove that the first equation of the SDE (4.3) has a pathwise unique strong solution

(M(y0)
t )t∈R+ with arbitrary initial value M(y0)

0 = y0 ∈ R. Indeed, it is equivalent to the

existence of a pathwise unique strong solution of the SDE

(4.4) dS(y0)
t = β̃ dt+ C1/2 ((S(y0)

t )+)1/2 dWt, t ∈ R+,

with initial value S(y0)
0 = y0, since we have the correspondences

S(y0)
t = M(y0)

t + β̃t, M(y0)
t = S(y0)

t − β̃t,

by Itô’s formula. By Remark 2.6, the SDE (4.4) has a pathwise unique strong solution

(S(y0)
t )t∈R+ for all initial values S(y0)

0 = y0 ∈ R, and (S(y0)
t )+ may be replaced by S(y0)

t for

all t ∈ R+ in (4.4) provided that y0 ∈ R+, hence (Mt+ β̃t)+ may be replaced by Mt+ β̃t

for all t ∈ R+ in (4.3). Thus the SDE (4.2) has a pathwise unique strong solution with initial

value Z0 = 0, and we have

Z t =

[
Mt

Nt

]
=



∫ t
0
C1/2 (Ms + β̃s)1/2 dWs

∫ t
0
(Ms + β̃s) dMs


 , t ∈ R+.

By continuous mapping theorem (see, e.g., the method of the proof of X (n) D
−→ X in Theorem

3.1 in Barczy et al. [2]), one can easily derive

[
X (n)

Z
(n)

]
D

−→

[
X̃

Z

]
, as n→ ∞,(4.5)

where

X (n)
t = n−1X⌊nt⌋, X̃t := Mt + β̃t, t ∈ R+, n ∈ N.

By Itô’s formula and the first equation of the SDE (4.3) we obtain

dX̃t = β̃ dt + C1/2 (X̃+
t )1/2 dWt, t ∈ R+,
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hence the process (X̃t)t∈R+ satisfies the SDE (2.9). Consequently, X̃ = Y . Next, by

continuous mapping theorem, convergence (4.5) implies (3.11), see, e.g., the method of the

proof of Proposition 3.1 in Barczy et al. [3].

Proof of Theorem 4.1. In order to show convergence Z
(n) D

−→ Z , we apply Theorem E.1

with the special choices U := Z , U
(n)
k := Z

(n)
k , n, k ∈ N, (F (n)

k )k∈Z+ := (Fk)k∈Z+ and the

function γ which is defined in Theorem 4.1. Note that the discussion after Theorem 4.1 shows

that the SDE (4.2) admits a pathwise unique strong solution (Zz

t )t∈R+ for all initial values

Z
z

0 = z ∈ R2. Applying Cauchy–Schwarz inequality and Corollary B.5, one can check that

E(‖U (n)
k ‖2) <∞ for all n, k ∈ N.

Now we show that conditions (i) and (ii) of Theorem E.1 hold. The conditional variance

has the form

Var
(
Z

(n)
k | Fk−1

)
= Var(Mk | Fk−1)

[
n−2 n−3Xk−1

n−3Xk−1 n−4X2
k−1

]

for n ∈ N, k ∈ {1, . . . , n}, and

γ(s,Z(n)
s )γ(s,Z(n)

s )⊤ = C

[
M(n)

s + β̃s (M(n)
s + β̃s)2

(M(n)
s + β̃s)2 (M(n)

s + β̃s)3

]

for s ∈ R+, where we used that (M(n)
s + β̃s)+ = M(n)

s + β̃s, s ∈ R+, n ∈ N. Indeed, by

(3.3), we get

M(n)
s + β̃s =

1

n

⌊ns⌋∑

k=1

(Xk − eb̃Xk−1 − β) + β̃s =
1

n
X⌊ns⌋ +

ns− ⌊ns⌋

n
β̃ ∈ R+(4.6)

for s ∈ R+, n ∈ N, since eb̃ = 1 and β = β̃.

In order to check condition (i) of Theorem E.1, we need to prove that for each T > 0, as

n→ ∞,

sup
t∈[0,T ]

∣∣∣∣
1

n2

⌊nt⌋∑

k=1

Var(Mk | Fk−1)− C

∫ t

0

(M(n)
s + β̃s) ds

∣∣∣∣
P

−→ 0,(4.7)

sup
t∈[0,T ]

∣∣∣∣
1

n3

⌊nt⌋∑

k=1

Xk−1Var(Mk | Fk−1)− C

∫ t

0

(M(n)
s + β̃s)2 ds

∣∣∣∣
P

−→ 0,(4.8)

sup
t∈[0,T ]

∣∣∣∣
1

n4

⌊nt⌋∑

k=1

X2
k−1Var(Mk | Fk−1)− C

∫ t

0

(M(n)
s + β̃s)3 ds

∣∣∣∣
P

−→ 0.(4.9)

First we show (4.7). By (4.6),
∫ t
0
(M(n)

s + sβ̃) ds has the form

1

n2

⌊nt⌋−1∑

k=1

Xk +
nt− ⌊nt⌋

n2
X⌊nt⌋ +

⌊nt⌋ + (nt− ⌊nt⌋)2

2n2
β̃.
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By Proposition B.3 and b̃ = 0,

(4.10) Var(Mk | Fk−1) = V Xk−1 + V0 = CXk−1 + V0.

Thus, in order to show (4.7), it suffices to prove

n−2 sup
t∈[0,T ]

X⌊nt⌋
P

−→ 0,(4.11)

n−2 sup
t∈[0,T ]

[
⌊nt⌋ + (nt− ⌊nt⌋)2

]
→ 0,(4.12)

as n → ∞. Using (B.5) with (ℓ, i) = (2, 1), we have (4.11). Clearly, (4.12) follows from

|nt− ⌊nt⌋| 6 1, n ∈ N, t ∈ R+, thus we conclude (4.7).

Next we turn to prove (4.8). By (4.6),

∫ t

0

(M(n)
s + sβ̃)2 ds =

1

n3

⌊nt⌋−1∑

k=1

X2
k +

1

n3
β̃

⌊nt⌋−1∑

k=1

Xk +
nt− ⌊nt⌋

n3
X2

⌊nt⌋

+
(nt− ⌊nt⌋)2

n3
β̃X⌊nt⌋ +

⌊nt⌋ + (nt− ⌊nt⌋)3

3n3
(β̃)2.

Recalling formula (4.10), we obtain

(4.13)

⌊nt⌋∑

k=1

Xk−1Var(Mk | Fk−1) = C

⌊nt⌋∑

k=1

X2
k−1 + V0

⌊nt⌋∑

k=1

Xk−1.

Thus, in order to show (4.8), it suffices to prove

n−3

⌊nT ⌋∑

k=1

Xk
P

−→ 0,(4.14)

n−3/2 sup
t∈[0,T ]

X⌊nt⌋
P

−→ 0,(4.15)

n−3 sup
t∈[0,T ]

[
⌊nt⌋ + (nt− ⌊nt⌋)3

]
→ 0(4.16)

as n→ ∞. Using (B.4) with (ℓ, i) = (2, 1), we have (4.14). By (B.5) with (ℓ, i) = (3, 1), we

have (4.15). Clearly, (4.16) follows from |nt − ⌊nt⌋| 6 1, n ∈ N, t ∈ R+, thus we conclude

(4.8).

Now we turn to check (4.9). Again by (4.6), we have

∫ t

0

(M(n)
s + sβ̃)3 ds =

1

n4

⌊nt⌋−1∑

k=1

X3
k +

3

2n4
β̃

⌊nt⌋−1∑

k=1

X2
k +

1

n4
(β̃)2

⌊nt⌋−1∑

k=1

Xk

+
nt− ⌊nt⌋

n4
X3

⌊nt⌋ +
3(nt− ⌊nt⌋)2

2n4
β̃X2

⌊nt⌋

+
(nt− ⌊nt⌋)3

n4
(β̃)2X⌊nt⌋ +

⌊nt⌋ + (nt− ⌊nt⌋)4

4n4
(β̃)3.
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Recalling formula (4.10), we obtain

(4.17)

⌊nt⌋∑

k=1

X2
k−1Var(Mk | Fk−1) = C

⌊nt⌋∑

k=1

X3
k−1 + V0

⌊nt⌋∑

k=1

X2
k−1.

Thus, in order to show (4.9), it suffices to prove

n−4

⌊nT ⌋∑

k=1

X2
k

P
−→ 0,(4.18)

n−4

⌊nT ⌋∑

k=1

Xk
P

−→ 0,(4.19)

n−4/3 sup
t∈[0,T ]

X⌊nt⌋
P

−→ 0,(4.20)

n−4 sup
t∈[0,T ]

[
⌊nt⌋ + (nt− ⌊nt⌋)4

]
→ 0(4.21)

as n → ∞. Using (B.4) with (ℓ, i) = (4, 2) and (ℓ, i) = (2, 1), we have (4.18) and (4.19),

respectively. By (B.5) with (ℓ, i) = (4, 1), we have (4.20). Clearly, (4.21) follows again from

|nt− ⌊nt⌋| 6 1, n ∈ N, t ∈ R+, thus we conclude (4.9). Note that the proof of (4.7)–(4.9) is

essentially the same as the proof of (5.5)–(5.7) in Ispány et al. [13].

Finally, we check condition (ii) of Theorem E.1, that is, the conditional Lindeberg condition

(4.22)

⌊nT ⌋∑

k=1

E
(
‖Z(n)

k ‖21
{‖Z

(n)
k ‖>θ}

∣∣Fk−1

) P
−→ 0, as n→ ∞

for all θ > 0 and T > 0. We have E
(
‖Z(n)

k ‖21
{‖Z

(n)
k ‖>θ}

∣∣Fk−1

)
6 θ−2 E

(
‖Z(n)

k ‖4
∣∣Fk−1

)

and

‖Z(n)
k ‖4 6 2

(
n−4 + n−8X4

k−1

)
M4

k .

Hence, for all θ > 0 and T > 0, we have

⌊nT ⌋∑

k=1

E
(
‖Z(n)

k ‖21
{‖Z

(n)
k ‖>θ}

)
→ 0, as n→ ∞,

since E(M4
k ) = O(k2) and E(M4

kX
4
k−1) 6

√
E(M8

k )E(X
8
k−1) = O(k6) by Corollary B.5. This

yields (4.22). ✷

We call the attention that our moment conditions (2.7) with q = 8 are used for applying

Corollaries B.5 and B.6.

5 Proof of Theorem 3.6

The first two convergences in Theorem 3.6 follows from the following approximations.
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5.1 Lemma. Suppose that the assumptions of Theorem 3.1 hold. If C = 0, then for each

T > 0,

(5.1) sup
t∈[0,T ]

∣∣∣∣
1

n2

⌊nt⌋∑

k=1

Xk−1 − β̃
t2

2

∣∣∣∣
P

−→ 0, as n→ ∞.

Proof. We have

∣∣∣∣
1

n2

⌊nt⌋∑

k=1

Xk−1 − β̃
t2

2

∣∣∣∣ 6
1

n2

⌊nt⌋∑

k=1

|Xk−1 − β̃(k − 1)|+ β̃

∣∣∣∣
1

n2

⌊nt⌋∑

k=1

(k − 1)−
t2

2

∣∣∣∣,

where

sup
t∈[0,T ]

∣∣∣∣
1

n2

⌊nt⌋∑

k=1

(k − 1)−
t2

2

∣∣∣∣→ 0, as n→ ∞,

hence, in order to show (5.1), it suffices to prove

(5.2)
1

n2

⌊nT ⌋∑

k=1

|Xk − β̃k|
P

−→ 0, as n→ ∞.

Recursion (3.4) yields E(Xk) = E(Xk−1) + β̃, k ∈ N, with intital value E(X0) = 0, hence

E(Xk) = β̃k, k ∈ N. For the sequence

(5.3) X̃k := Xk − E(Xk) = Xk − β̃k, k ∈ N,

by (3.4), we get a recursion X̃k = X̃k−1 +Mk, k ∈ N, with intital value X̃0 = 0. Applying

Doob’s maximal inequality (see, e.g., Revuz and Yor [20, Chapter II, Theorem 1.7]) for the

martingale X̃n =
∑n

k=1Mk, n ∈ N,

E

(
sup
t∈[0,T ]

∣∣∣∣∣

⌊nt⌋∑

k=1

Mk

∣∣∣∣∣

2)
6 4E

(∣∣∣∣∣

⌊nT ⌋∑

k=1

Mk

∣∣∣∣∣

2)
= 4

⌊nT ⌋∑

k=1

E(M2
k ) = O(n),

where we applied Corollary B.5. Consequently,

(5.4) n−1 max
k∈{1,...,⌊nT ⌋}

|Xk − β̃k| = n−1 max
k∈{1,...,⌊nT ⌋}

|X̃k|
P

−→ 0 as n→ ∞.

Thus,

1

n2

⌊nT ⌋∑

k=1

∣∣Xk − kβ̃
∣∣ 6 ⌊nT ⌋

n2
max

k∈{1,...,⌊nT ⌋}

∣∣Xk − kβ̃
∣∣ P
−→ 0,

as n→ ∞, thus we conclude (5.2), and hence (5.1). ✷

5.2 Lemma. Suppose that the assumptions of Theorem 3.1 hold. If C = 0, then for each

T > 0,

(5.5) sup
t∈[0,T ]

∣∣∣∣
1

n3

⌊nt⌋∑

k=1

X2
k−1 − (β̃)2

t3

3

∣∣∣∣
P

−→ 0, as n→ ∞.
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Proof. We have

∣∣∣∣
1

n3

⌊nt⌋∑

k=1

X2
k−1 − (β̃)2

t3

3

∣∣∣∣ 6
1

n3

⌊nt⌋∑

k=1

∣∣X2
k−1 − (β̃)2(k − 1)2

∣∣+ (β̃)2
∣∣∣∣
1

n3

⌊nt⌋∑

k=1

(k − 1)2 −
t3

3

∣∣∣∣,

where

sup
t∈[0,T ]

∣∣∣∣
1

n3

⌊nt⌋∑

k=1

(k − 1)2 −
t3

3

∣∣∣∣→ 0, as n→ ∞,

hence, in order to show (5.5), it suffices to prove

(5.6)
1

n3

⌊nT ⌋∑

k=1

∣∣X2
k − (β̃)2k2

∣∣ P
−→ 0, as n→ ∞.

We have

|X2
k − k2(β̃)2| 6 |Xk − kβ̃|2 + 2kβ̃|Xk − kβ̃|,

hence, by (5.4),

n−2 max
k∈{1,...,⌊nT ⌋}

|X2
k − k2(β̃)2|

6

(
n−1 max

k∈{1,...,⌊nT ⌋}
|Xk − kβ̃|

)2
+

2⌊nT ⌋

n2
β̃ max
k∈{1,...,⌊nT ⌋}

|Xk − kβ̃|
P

−→ 0,

as n→ ∞. Thus,

1

n3

⌊nT ⌋∑

k=1

∣∣X2
k − k2(β̃)2

∣∣ 6 ⌊nT ⌋

n3
max

k∈{1,...,⌊nT ⌋}

∣∣X2
k − k2(β̃)2

∣∣ P
−→ 0,

as n→ ∞, and we conclude (5.6), and hence (5.5). ✷

The proof of the third convergence in Theorem 3.6 is similar to the proof of Theorem 3.5.

Consider the sequence of stochastic processes

Z
(n)
t :=

⌊nt⌋∑

k=1

Z
(n)
k with Z

(n)
k :=

[
n−1/2Mk

n−3/2MkXk−1

]

for t ∈ R+ and k, n ∈ N. The proof of the third convergence in Theorem 3.6 follows from

Lemmas 5.1 and 5.2, and the following theorem.

5.3 Theorem. If C = 0 then

(5.7) Z
(n) D

−→ Z , as n→ ∞,

where the process (Zt)t∈R+ with values in R2 is the pathwise unique strong solution of the

SDE

(5.8) dZ t = γ(t) dW̃ t, t ∈ R+,
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with initial value Z0 = 0, where (W̃ t)t∈R+ is a 2-dimensional standard Wiener process, and

γ : R+ → R2×2 is defined by

γ(t) := V0


 1 β̃t

β̃t (β̃)2t2




1/2

, t ∈ R+,

where V0 =
∫∞

0
z2 ν(dz).

The SDE (5.8) has a pathwise unique strong solution with initial value Z0 = 0, for which

we have

Z t = V
1/2
0

∫ t

0


 1 β̃s

β̃s (β̃)2s2



1/2

dW̃s, t ∈ R+.

Proof of Theorem 5.3. We follow again the method of the proof of Theorem 4.1. The

conditional variance has the form

Var
(
Z

(n)
k | Fk−1

)
= Var(Mk | Fk−1)

[
n−1 n−2Xk−1

n−2Xk−1 n−3X2
k−1

]

for n ∈ N, k ∈ {1, . . . , n}. Moreover, γ(s)γ(s)⊤ takes the form

γ(s)γ(s)⊤ = V0


 1 β̃s

β̃s (β̃)2s2


 , s ∈ R+.

In order to check condition (i) of Theorem E.1, we need to prove only that for each T > 0,

sup
t∈[0,T ]

∣∣∣∣
1

n

⌊nt⌋∑

k=1

Var(Mk | Fk−1)− V0

∫ t

0

ds

∣∣∣∣
P

−→ 0,(5.9)

sup
t∈[0,T ]

∣∣∣∣
1

n2

⌊nt⌋∑

k=1

Xk−1Var(Mk | Fk−1)− V0β̃

∫ t

0

s ds

∣∣∣∣
P

−→ 0,(5.10)

sup
t∈[0,T ]

∣∣∣∣
1

n3

⌊nt⌋∑

k=1

X2
k−1Var(Mk | Fk−1)− V0β̃

2

∫ t

0

s2 ds

∣∣∣∣
P

−→ 0,(5.11)

as n→ ∞.

By Proposition B.3, the assumption C = 0 yields Var(Mk | Fk−1) = V0 =
∫∞

0
z2 ν(dz),

hence (5.9), (5.10) and (5.11) follow from Lemmas 5.1 and 5.2, respectively.

Finally, we check condition (ii) of Theorem E.1, that is, the conditional Lindeberg condition

(5.12)

⌊nT ⌋∑

k=1

E
(
‖Z(n)

k ‖21
{‖Z

(n)
k ‖>θ}

∣∣Fk−1

) P
−→ 0, as n→ ∞
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for all θ > 0 and T > 0. We have E
(
‖Z(n)

k ‖21
{‖Z

(n)
k ‖>θ}

∣∣Fk−1

)
6 θ−2

E
(
‖Z(n)

k ‖4
∣∣Fk−1

)

and

‖Z(n)
k ‖4 6 2

(
n−2 + n−6X4

k−1

)
M4

k .

Hence, for all θ > 0 and T > 0, we have

⌊nT ⌋∑

k=1

E
(
‖Z(n)

k ‖21
{‖Z

(n)
k ‖>θ}

)
→ 0, as n→ ∞,

since E(M4
k ) = O(1) and E(M4

kX
4
k−1) 6

√
E(M8

k )E(X
8
k−1) = O(k4) by Corollary B.5. This

yields (5.12). ✷

Appendices

A SDE for CBI processes

One can rewrite the SDE (1.1) in a form which does not contain integrals with respect to non-

compensated Poisson random measures (see, SDE (2.6)), and then one can perform a linear

transformation in order to remove randomness from the drift as follows, see Lemma 4.1 in

Barczy et al. [6]. This form is very useful for handling Mk, k ∈ N.

A.1 Lemma. Let (c, β, b, ν, µ) be a set of admissible parameters such that the moment con-

dition (2.3) holds. Let (Xt)t∈R+ be a pathwise unique R+-valued strong solution to the SDE

(1.1) such that E(X0) <∞. Then

Xt = eb̃(t−s)Xs +

∫ t

s

eb̃(t−u)β̃ du+

∫ t

s

eb̃(t−u)
√

2cXu dWu

+

∫ t

s

∫ ∞

0

∫ ∞

0

eb̃(t−u)z1{v6Xs−} Ñ(du, dz, dv) +

∫ t

s

∫ ∞

0

eb̃(t−u)z M̃(du, dz)

for all s, t ∈ R+, with s 6 t. Consequently,

Mk =

∫ k

k−1

eb̃(k−u)
√

2cXu dWu +

∫ k

k−1

∫ ∞

0

∫ ∞

0

eb̃(k−u)z1{v6Xs−} Ñ(du, dz, dv)

+

∫ k

k−1

∫ ∞

0

eb̃(k−u)z M̃(du, dz), k ∈ N.

Proof. The last statement follows from (3.3), since β̃
∫ k
k−1

eb̃(k−u) du = β̃
∫ 1

0
eb̃(1−u) du = β. ✷

Note that the formulas for (Xt)t∈R+ and (Mk)k∈N in Lemma A.1 can be found as the first

displayed formula in the proof of Lemma 2.1 in Huang et al. [10], and formulas (1.5) and (1.7)

in Li and Ma [18], respectively.
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A.2 Lemma. Let (Xt)t∈R+ be a CBI process with parameters (c, β, b, ν, µ) such that X0 = 0,

β 6= 0 or ν 6= 0, and b̃ = 0 (hence it is critical). Suppose that C = 0 and the moment

conditions (2.7) hold with q = 2. Then

Mk =

∫ k

k−1

∫ ∞

0

z M̃(du, dz), k ∈ N.

and the sequence (Mk)k∈N consists of independent and identically distributed random vectors.

Proof. The assumption C = 0 implies c = 0 and µ = 0 (see, Remark 2.7), thus, by Lemma

A.1, we obtain the formula for Mk, k ∈ N.

A Poisson point process admits independent increments, hence Mk, k ∈ N, are indepen-

dent.

For each k ∈ N, the Laplace transform of the random variable Mk has the form

E(e−θMk) = exp

{
−

∫ k

k−1

∫ ∞

0

(
1− e−θr

)
ds ν(dr)

}

= exp

{
−

∫ 1

0

∫ ∞

0

(
1− e−θr

)
du ν(dr)

}
= E(e−θM1)

for all θ ∈ R+, see, i.e., Kyprianou [16, page 44], hence Mk, k ∈ N, are identically distributed.

✷

B On moments of CBI processes

In the proof of Theorem 3.1, good bounds for moments of the random variables (Mk)k∈Z+

and (Xk)k∈Z+ are extensively used. The following estimates are proved in Barczy and Pap [7,

Lemmas B.2 and B.3].

B.1 Lemma. Let (Xt)t∈R+ be a CBI process with parameters (c, β, b, ν, µ) such that E(Xq
0) <

∞ and the moment conditions (2.7) hold with some q ∈ N. Suppose that b̃ = 0 (hence the

process is critical). Then

(B.1) sup
t∈R+

E(Xq
t )

(1 + t)q
<∞.

In particular, E(Xq
t ) = O(tq) as t→ ∞ in the sense that lim supt→∞ t−q E(Xq

t ) <∞.

B.2 Lemma. Let (Xt)t∈R+ be a CBI process with parameters (c, β, b, ν, µ) such that E(Xq
0) <

∞ and the moment conditions (2.7) hold, where q = 2p with some p ∈ N. Suppose that b̃ = 0

(hence the process is critical). Then, for the martingale differences Mn = Xn − E(Xn |Xn−1),

n ∈ N, we have E(M2p
n ) = O(np) as n→ ∞ that is, supn∈N n

−p E(M2p
n ) <∞.
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We have Var(Mk | Fk−1) = Var(Xk |Xk−1) and Var(Xk |Xk−1 = x) = Var(X1 |X0 = x)

for all x ∈ R+, since (Xt)t∈R+ is a time-homogeneous Markov process. Hence Proposition

4.8 in Barczy et al. [6] implies the following formula for Var(Mk | Fk−1).

B.3 Proposition. Let (Xt)t∈R+ be a CBI process with parameters (c, β, b, ν, µ) such that

E(X2
0 ) <∞ and the moment conditions (2.7) hold with q = 2. Then for all k ∈ N, we have

Var(Mk | Fk−1) = V Xk−1 + V0,

where

V := C

∫ 1

0

eb̃(1+u) du,

V0 :=

∫ ∞

0

z2 ν(dz)

∫ 1

0

e2b̃u du+ β̃C

∫ 1

0

(∫ 1−u

0

eb̃v dv

)
e2b̃u du.

Note that V0 = Var(X1 |X0 = 0). Moreover, if b̃ = 0, i.e., in the critical case, we have

V = C.

B.4 Proposition. Let (Xt)t∈R+ be a CBI process with parameters (c, β, b, ν, µ) such that

E(Xq
0) < ∞ and the moment conditions (2.7) hold with some q ∈ N. Then for all j ∈

{1, . . . , q}, there exists a polynomial Pj : R → R having degree at most ⌊j/2⌋, such that

E
(
M j

k | Fk−1

)
= Pj(Xk−1), k ∈ N.(B.2)

The coefficients of the polynomial Pj depends on c, β, b, ν, µ.

Proof. We have

E
(
M j

k | Fk−1

)
= E

[
(Xk − E(Xk |Xk−1))

j |Xk−1

]

and

E
[
(Xk − E(Xk |Xk−1))

j |Xk−1 = x
]
= E

[
(X1 − E(X1 |X0 = x))j |X0 = x

]

for all x ∈ R+, since (Xt)t∈R+ is a time-homogeneous Markov process. Replacing w by eb̃t

in the formula for E
[
(we−b̃t(Yt − E(Yt))

k
]

in the proof of Barczy et al. [6, Theorem 4.5], and

then using the law of total probability, one obtains

(B.3)

E
[
(Xt − E(Xt))

j
]
= j(j − 1)c

∫ t

0

ejb̃(t−s) E
[
(Xs − E(Xs))

j−2Xs

]
ds

+

j−2∑

ℓ=0

(
j

ℓ

)∫ ∞

0

zj−ℓ µ(dz)

∫ t

0

ejb̃(t−s) E
[
(Xs − E(Xs))

ℓXs

]
ds

+

j−2∑

ℓ=0

(
j

ℓ

)∫ ∞

0

zj−ℓ ν(dz)

∫ t

0

ejb̃(t−s) E
[
(Xs − E(Xs))

ℓ
]
ds
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for all t ∈ R+ and j ∈ {1, . . . , q}, and hence, for each t ∈ R+ and j ∈ {1, . . . , q}, there

exists a polynomial Pt,j : R → R having degree at most ⌊j/2⌋, such that

E
[
(Xt − E(Xt))

j
]
= E

[
Pt,j(X0)

]
,

where the coefficients of the polynomial Pt,j depends on c, β, b, ν, µ, which clearly implies

the statement with Pj := P1,j . ✷

B.5 Corollary. Let (Xt)t∈R+ be a CBI process with parameters (c, β, b, ν, µ) such that

X0 = 0, β 6= 0 or ν 6= 0, and b̃ = 0 (hence the process is critical). Suppose that the moment

conditions (2.7) hold with some q ∈ N. Then

E(X i
k) = O(ki), E(M2j

k ) = O(kj)

for i, j ∈ Z+ with i 6 q and 2j 6 q.

If, in addition, C = 0, then

E(|Mk|
i) = O(1)

for i ∈ Z+ with i 6 q.

Proof. The first and second statements follow from Lemmas B.1 and B.2, respectively.

If C = 0, then, by Lemma A.2, Mk, k ∈ N, are independent and identically distributed,

thus

E(|Mk|
i) = E(|M1|

i) = O(1)

for i ∈ Z+ with i 6 q. ✷

B.6 Corollary. Let (Xt)t∈R+ be a CBI process with parameters (c, β, b, ν, µ) such that

X0 = 0, β 6= 0 or ν 6= 0, and b̃ = 0 (hence the process is critical). Suppose that the moment

conditions (2.7) hold with some ℓ ∈ N. Then

(i) for all i ∈ Z+ with i 6 ⌊ℓ/2⌋, and for all θ > i+ 1, we have

n−θ
n∑

k=1

X i
k

P
−→ 0 as n→ ∞,(B.4)

(ii) for all i ∈ Z+ with i 6 ℓ, for all T > 0, and for all θ > i+ i
ℓ
, we have

n−θ sup
t∈[0,T ]

X i
⌊nt⌋

P
−→ 0 as n→ ∞,(B.5)

(iii) for all i ∈ Z+ with i 6 ⌊ℓ/4⌋, for all T > 0, and for all θ > i+ 1
2
, we have

n−θ sup
t∈[0,T ]

∣∣∣∣∣∣

⌊nt⌋∑

k=1

[X i
k − E(X i

k | Fk−1)]

∣∣∣∣∣∣
P

−→ 0 as n→ ∞.(B.6)

Proof. The statements can be derived exactly as in Barczy et al. [4, Corollary 9.2 of arXiv

version]. ✷
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C CLS estimators

C.1 Lemma. If (Xt)t∈R+ is a CBI process with parameters (c, β, b, ν, µ) such that b̃ = 0

(hence it is critical), E(X0) < ∞, and the moment condition (2.3) holds, then P(Hn) → 1

as n → ∞, and hence, the probability of the existence of a unique CLS estimator (̺̂n, β̂n)
converges to 1 as n → ∞, and this CLS estimator has the form given in (3.5) on the event

Hn.

Proof. First, note that for all n ∈ N,

Ω \Hn =



ω ∈ Ω :

n∑

k=1

X2
k−1(ω)−

1

n

(
n∑

i=1

Xi−1(ω)

)2

= 0





=



ω ∈ Ω :

n∑

k=1

(
Xk−1(ω)−

1

n

n∑

i=1

Xi−1(ω)

)2

= 0





=

{
ω ∈ Ω : Xk−1(ω) =

1

n

n∑

i=1

Xi−1(ω), k ∈ {1, . . . , n}

}

= {ω ∈ Ω : 0 = X0(ω) = X1(ω) = · · · = Xn−1(ω)}

=

{
ω ∈ Ω :

1

n2

n∑

i=1

Xi−1(ω) = 0

}
,

where we used that X0 = 0 and Xk > 0, k ∈ Z+.

By continuous mapping theorem, we obtain

1

n2

n∑

k=1

Xk
D

−→

∫ 1

0

Yt dt as n→ ∞,(C.1)

see, e.g., the method of the proof of Proposition 3.1 in Barczy et al. [3].

By the proof of Theorem 3.4, we have P
(∫ 1

0
Yt dt > 0

)
= 1. Thus the distribution function

of
∫ 1

0
Yt dt is continuous at 0, and hence, by (C.1),

P(Hn) = P

(
n∑

i=1

Xi−1 > 0

)
= P

(
1

(n− 1)2

n∑

i=1

Xi−1 > 0

)
→ P

(∫ 1

0

Yt dt > 0

)
= 1

as n→ ∞. ✷

D A version of the continuous mapping theorem

The following version of continuous mapping theorem can be found for example in Kallenberg

[15, Theorem 3.27].
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D.1 Lemma. Let (S, dS) and (T, dT ) be metric spaces and (ξn)n∈N, ξ be random elements

with values in S such that ξn
D

−→ ξ as n→ ∞. Let f : S → T and fn : S → T , n ∈ N, be

measurable mappings and C ∈ B(S) such that P(ξ ∈ C) = 1 and limn→∞ dT (fn(sn), f(s)) = 0

if limn→∞ dS(sn, s) = 0 and s ∈ C. Then fn(ξn)
D

−→ f(ξ) as n→ ∞.

E Convergence of random step processes

We recall a result about convergence of random step processes towards a diffusion process, see

Ispány and Pap [12]. This result is used for the proof of convergence (4.1).

E.1 Theorem. Let γ : R+ × Rd → Rd×r be a continuous function. Assume that uniqueness

in the sense of probability law holds for the SDE

(E.1) dU t = γ(t,U t) dW t, t ∈ R+,

with initial value U0 = u0 for all u0 ∈ R
d, where (W t)t∈R+ is an r-dimensional standard

Wiener process. Let (U t)t∈R+ be a solution of (E.1) with initial value U 0 = 0 ∈ Rd.

For each n ∈ N, let (U
(n)
k )k∈N be a sequence of d-dimensional martingale differences with

respect to a filtration (F (n)
k )k∈Z+, that is, E(U

(n)
k | F (n)

k−1) = 0, n ∈ N, k ∈ N. Let

U
(n)
t :=

⌊nt⌋∑

k=1

U
(n)
k , t ∈ R+, n ∈ N.

Suppose that E
(
‖U (n)

k ‖2
)
<∞ for all n, k ∈ N. Suppose that for each T > 0,

(i) sup
t∈[0,T ]

∥∥∥∥∥
⌊nt⌋∑
k=1

Var
(
U

(n)
k | F (n)

k−1

)
−
∫ t
0
γ(s,U (n)

s )γ(s,U (n)
s )⊤ds

∥∥∥∥∥
P

−→ 0,

(ii)
⌊nT ⌋∑
k=1

E
(
‖U (n)

k ‖21
{‖U

(n)
k ‖>θ}

∣∣F (n)
k−1

) P
−→ 0 for all θ > 0,

where
P

−→ denotes convergence in probability. Then U
(n) D

−→ U as n→ ∞.

Note that in (i) of Theorem E.1, ‖ · ‖ denotes a matrix norm, while in (ii) it denotes a

vector norm.
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[1] Barczy, M., Döring, L., Li, Z. and Pap, G. (2013). On parameter estimation for

critical affine processes. Electronic Journal of Statistics 7 647–696.

24
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[12] Ispány, M. and Pap, G. (2010). A note on weak convergence of step processes. Acta

Mathematica Hungarica 126(4) 381–395.
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