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We report on the observation of periodic conductance oscillations near quantum Hall plateaus
in suspended graphene nanoribbons. They are attributed to single quantum dots that form in the
narrowest part of the ribbon, in the valleys and hills of a disorder potential. In a wide flake with two
gates, a double-dot system’s signature has been observed. Electrostatic confinement is enabled in
single-layer graphene due to the gaps that form between Landau levels, suggesting a way to create
gate-defined quantum dots that can be accessed with quantum Hall edge states.

Introduction— The Dirac spectrum results in several
peculiar features in the charge transport of graphene,
such as Klein tunneling, or the special Berry phase and
the half-integer quantum Hall-effect [1–4]. The high mo-
bility of graphene offers a good platform for field effect
transistors, whereas the low spin-orbit coupling [5] and
small amount of 13C nuclear spins make it promising for
the realization of long-lifetime spin qubits [6–9]. How-
ever, from an application point of view, the absence of a
band gap places limitations: it hinders effective electro-
static confinement of electrons, which makes the fabrica-
tion of spin qubits challenging and results in high OFF
state currents for field effect transistors.

Creating nanoribbons in graphene provides a way to
generate a band gap due to one dimensional confinement
[10, 11]. The common technique to confine electrons in
a graphene quantum dot (QD) or ribbon is based on tai-
loring the graphene sheet by etching. In QD devices [12–
15] thin graphene nanoribbon sections play the role of
tunnel barriers. Promising results have been achieved,
e.g. detection of the QD’s orbital spectrum [16, 17], or
observation of the spin-filling sequence [18]. However,
edge roughness, inhomogeneities in the substrate, fabri-
cation residues, and the unpredictability of the nanorib-
bons that act as tunnel barriers place clear limitations to
this technology [19–22].

Other confinement strategies involve opening a gap in
bilayer graphene using perpendicular electric fields, or
exploiting the angle-dependent transmission in p-n junc-
tions. Both techniques require ultra-clean high mobil-
ity junctions, for which encapsulation in hBN [23, 24]
or suspension of the graphene flake [25, 26] is required.
Recently quantum dots and point contacts have been cre-
ated by utilizing the gap opening in bilayer graphene [27–
29]. Futhermore, beamsplitters and waveguides were fab-
ricated using p-n junctions [30, 31], however, the confine-
ment offered by the p-n transition is soft and electrons
can leak out.

In this paper we focus on a different method, which
uses magnetic fields to form a gap in the bulk of single-

layer graphene. Applying a perpendicular magnetic field
B, Landau levels (LLs) form with remarkably high en-
ergy spacing: for example, the energy of the fourfold de-
generate, N = 1 LL is 36.3 meV ·

√
B [T]. Combining

this B field-induced gap with a local electrostatic field, a
confinement potential for quantum dots can be achieved,
which can be read out via edge states. In this work
we present the transport characterization of suspended
single-layer graphene strips where single and double dots
form based on this principle.

Measurements on a clean ribbon— We have fabricated
suspended graphene nanoribbons, an approximate ge-
ometry of which is shown in Fig. 1a. We have used a
polymer-based suspension method following Refs. 26, 32
and a transfer method by Ref. 23. Details are given in
the Methods section. Measurements were done at 1.5 K
using low frequency lock-in technique.

Fig. 1b shows the two-terminal differential conduc-
tance G of a nanoribbon (designated R1) as a function of
the magnetic field B and the electron density n, tuned by
the gate voltage Vg. A conductance plateau takes shape
at ν = −2 filling factor, slightly below G = |ν|e2/h due
to a contact resistance of 0.9 kΩ. Above 3 T, a widening
zero-conductance region appears around the Dirac-point,
caused by the splitting of the fourfold degenerate 0th
Landau level due to finite-range Coulomb-interactions
[33–37]. As confirmed by bias measurements, a true gap
- in the order of 10 meV in this B-field range [37] - forms
between the upper and lower split 0th LL (denoted by
indices 0+ and 0−), schematically shown in Fig. 1c.

A zoom of the yellow rectangle in Fig. 1b can be seen
in Fig. 2a, showing parts of the plateaus at ν = −2 and
ν = 0. The -2 plateau is separated from the gap by a wide
transition region, where the 0−th LL is gradually filled,
allowing scattering between edge states and contacts. A
cut at 5 T (Fig. 2b) shows that the random conductance
fluctutations visible in the transition region become very
regular close to the gap or the ν = −2 plateau. Zooms of
these regions are shown in the insets of the same figure.
These fluctuations are periodic in nature: at the plateau-
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FIG. 1: (Color online) (a) An approximate geometry of the
first measured nanoribbon, R1, and (b) its two-terminal con-
ductance as a function of magnetic field and electron den-
sity. Grey lines mark the first few Landau levels (LLs).
Dashed lines are the estimated positions of the twowise split
0th LL, indicated by 0− and 0+. (c) Schematic of the
N = −2,−1, 0−, 0+, 1, 2 Landau levels, including the split
0th level, with degeneracies of g = 4, 4, 2, 2, 4, 4 [eB/h], re-
spectively.

edge, 18 oscillations can be seen with a period of 0.17 V,
and at the gap-edge there are about 30 oscillations with
0.09 V spacing. We call the regular oscillations on the
edge of the ν = −2 plateau ”plateau-edge oscillations”,
and the ones close to the ν = 0 region ”gap-edge oscilla-
tions”. Similar features were observed in the conductance
band.

The plateau-edge and gap-edge oscillations are most
visible between the red and blue dashed lines in Fig. 2a,
and are parallel with the -2 and the 0 filling factor di-
rections, respectively. These directions are marked with
short red and blue lines at the top of the figure. Fig. 2c
shows the oscillations’ average periodicity as a function
of magnetic field: red dots correspond to plateau-edge,
while blue circles correspond to gap-edge oscillations.
Their periodicity is approximately constant for a wide
range of magnetic fields, except for the gap-edge oscilla-
tions’ below 4 T, where the fluctuations become irregular.
In the following, the mechanisms behind both random
and regular conductance fluctuations, and their behav-
ior, are addressed.

The transition region between the -2 and 0 plateaus

points to a disorder potential that widens the 0−th LL
in energy. In this region, the LL is partially filled, and
the bulk is conducting due to delocalized states that con-
nect edge states and contacts. Whereas near small, or
almost complete filling, these states are localized to ex-
trema of the potential landscape, stabilizing the quan-
tum Hall plateaus. When a LL is almost empty, only the
lowest disorder-potential valleys are filled with electrons,
while in an almost full LL, the same happens in the hole
picture. An example of the potential is shown in the
top halves of Figs. 2d, e. The conductance fluctuations
observed near low and high filling may be resonant tun-
nelling events via the eigenenergy levels of the localized
states. However, random potential features would pro-
duce eigenspectra that give random curves on the n-B
map [38, 39], contrary to the parallel, regular lines of the
plateau and gap edges.

The fluctuation lines’ behavior is explained if we take
electrostatic interactions into account. The disorder po-
tential will be partially screened due to the electrons
or holes present in the LL, which will accumulate in
potential valleys and hills. Full screening, however, is
not possible due to the limited number of states allowed
within a given LL. The filled potential features result
in a series of electron or hole islands with electrostatic
charging energy, i.e. quantum dots, separated by tun-
nel barriers (Figs. 2d, e), not unlike the finite B-field
case of Ref. 27. Disorder-induced localized states have
been visualized in 2DEGs and graphene using local probe
techniques, such as single electron transistor [38, 39],
scanning tunnelling microscopy and spectroscopy [40, 41]
and spacially resolved photocurrent measurements [42].
Since these quantum dots cause scattering events be-
tween quantum Hall edge states and contacts (see the
bottom halves of Figs. 2d, e), their signature can be ob-
served in conductance (Refs. 43–45, and even Refs. 46–
48) and transconductance measurements [49].

The magnetic field dependence of the fluctuations, i.e.
gathering together into sets of lines parallel with filling
factor directions, is easily explained. Along a fluctuation
line on the n−B map, the average electron (hole) num-
ber on the originating dot is constant. Accordingly, the
electron (hole) density belonging to the current LL is also
constant, thus the fluctuations are parallel with the con-
ductance plateau which corresponds to the empty (full)
LL.

For multiple dots, a random series of parallel lines is
expected close to the plateau and gap edge, contrary to
the periodic oscillations seen in the experiment in Fig. 2.
Therefore, a single electron and hole QD must dominate
scattering events for low and high filling of the 0−th LL,
respectively. The questions arise, what makes a dot dom-
inant, and in what circumstances? In the following, we
give a physical picture and highlight the different mecha-
nisms behind the plateau-edge and gap-edge oscillations.

Since the plateau-edge oscillations have a negative con-
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FIG. 2: (a) A zoom of the region highlighted by the yellow box in Fig. 1b. The observed fluctuation lines are either parallel
with the center of the -2 plateau, or the center of the gap. The short red (ν = −2) and blue (ν = 0) lines at the top indicate
these directions of integer filling factors. Regular oscillations are found in the regions indicated by two pairs of dashed lines.
(b) A slice of the map in (a) at B = 5 T. Left and right insets are zooms of the regular plateau-edge and gap-edge fluctuations,
respectively, which originate in the charging of a single quantum dot each. Dashed lines indicate periodicity. (c) Gate voltage
period of the regular fluctuations averaged over the two regions of (a), i.e. between the red and blue pairs of dashed lines: dots
(red) show the period of the plateau-edge, while empty circles (blue) show the period of the gap-edge oscillations. (d), (e) The
upper sketches depict the split 0th Landau level with a simplified disorder potential at a cross-section of the sample. Left side
represents low filling, with an electron QD forming in a potential valley, while the right side shows high filling of the LL, with
a hole QD defined by a potential hill. Horizontal red and blue lines represent the charging energy spacing of a dot. The left
and right schematics in the lower half depict scattering between edge states or contacts/the rest of the dot network, causing
conductance dips or peaks, respectively. The Coulomb-peak structure is especially recognizable in the left inset of (b), where
it is inverted.

tribution to the conductance plateau (see left inset of
Fig. 2b), we infer that the dominant electron quantum
dot connects mainly the edge states, causing backscatter-
ing. For a schematic drawing of the process, see Fig. 2d.
In contrast, when we approach the gap, the 0−th LL
is almost filled with electrons, and a single hole QD’s
charging dominates. In this case, however, no edge states
exist, therefore the gap-edge oscillations can only result
from forward scattering between the contacts (schematic
in Fig. 2e). We attribute the dominant quantum dots
to local potential extrema situated near the narrowest
part of the ribbon, since conductance is most sensitive to
this section. If the dominant dot were elsewhere, the ob-
served oscillations would likely be irregular due to the
contribution of other dots to either scattering mecha-
nism. Nonetheless, for the hole QD, the rest of the dot
network - in the wider sections of the sample - is essential
to establish a connection toward the contacts.

The estimation of the electron and hole dots’ sizes sup-
ports this suggestion. The exact capacitance per area can
be calculated from the slope of the -2 plateau center, since
the filling factor relates to the density via ν = hn/eB.

We calculate the capacitance per area, C̃ = dn/dVg, to
be (1.07 ± 0.02) · 1010 cm−2/V, which agrees well with
electrostatic calculations on similar devices [50, 51]. Us-
ing the average gate voltage periodicities ∆Vg in Fig. 2c,
we estimate that the electron quantum dot responsible
for the plateau-edge oscillations extends over an area of
approximately (C̃ ·∆Vg)−1 = (4.7± 0.5) · 104 nm2, while
the hole quantum dot - causing the gap-edge oscillations
- is (9.3±1.9)·104 nm2 in size. Since the ribbon’s narrow-
est part is ∼ 200 nm wide, quantum dots with the above
areas are able to cause scattering events across the width
or length of the constriction, thus connecting the edge
states or the wider, highly doped regions (and therefore
the contacts).
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Since the dominant QDs are formed in potential ex-
trema of the constriction, their signatures are best seen
at either low or high Landau level filling, between the
dashed lines in Fig. 2a. Moving the Fermi level toward
the LL’s center, more potential valleys or hills start to
play a role in transport, and the fluctuation pattern be-
comes random. Eventually, all charges become delocal-
ized, and the bulk becomes conducting. In contrast, in-
creasing the magnetic field while following a fluctuation
line from its high-visibility region between the red (blue)
dashed lines of Fig. 2a, and into the -2 (0) plateau, the
size and coupling of localized and edge states decreases.
Tunnelling rates are suppressed, and eventually only the
flat plateau remains visible.

Coulomb peak behavior— We reproduced the oscilla-
tion pattern in the conductance band of a second nanorib-
bon, designated R2, that didn’t show well-developed
quantum Hall plateaus. Its two-terminal conductance,
displayed in Fig. 3a, shows regularly placed conductance
dips, their lines parallel with the expected slope of the
ν = +2 plateau. Therefore, they are attributed to a hole
dot belonging to the electron side of the 0th LL, causing
backscattering. Fig. 3b shows their peak-to-peak ampli-
tude at 8 T as a function of temperature. The fluctua-
tions disappear in the 10− 15 K range, where the charg-
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FIG. 3: (a) Conductance of nanoribbon R2 in the electron
regime. (b) The average peak-to-peak amplitude of the peri-
odic oscillations between Vg = 7 and 9 V, at 8 T, as a function
of temperature. (c) Conductance at 8 T as a function of DC
bias and gate voltage. Dashed lines are guides to the eye for
the Coulomb-diamond structure.

ing energy of the QD becomes comparable with ther-
mal broadening. Since the oscillations’ width is similar
to their period, fitting curves on the series of inverted
Coulomb-peaks, or their amplitude - to analyze height
and width change with temperature - can’t be done with-
out a huge margin of error.

The fluctuations’ slope, parallel with the ν = +2 direc-
tion, gives the gate capacitance per area, which is C̃ =
(1.36± 0.04) · 1010 cm−2/V, or 21.8± 0.6 aF/µm2. With
the oscillation period, we estimate the area of the dot to
be approximately (2.7 ± 0.3) · 104 nm2. In Fig. 3c the
dominant quantum dot’s stability diagram, i.e. conduc-
tance versus Vg and VSD (source-drain voltage), is shown.
The conductance contribution of the Coulomb-diamonds
is negative, since the dot causes backscattering. Their
size gives a charging energy of 5.5±0.5 meV, allowing us
to calculate the self capacitance: CΣ = 29.1± 2.6 aF. As
a comparison, the gate capacitance is Cg = 0.58±0.07 aF.
By counting the number of regular oscillations, we esti-
mate that the height of the potential hill that defines the
hole QD is a remarkable 260 meV, comparable to the
energy of the first LL at 8 T, ∼ 100 meV. However, the
charging energy deduced from the size of the Coulomb di-
amonds in the source-drain axes might be overestimated,
since not all of the bias voltage drops at the barriers
defining the quantum dot.

Double-dot system in a wide sample— To examine the
role of sample width, we measured the conductance of a
1.8 µm wide and 0.8 µm long graphene strip. The density
of the device could be locally tuned by two bottom gates,
g1 and g2, that were aligned in parallel with the sample
current direction, as shown in the schematic in Fig. 4a.

Fig. 4b shows the conductance of the quantum Hall
plateau near ν = −2 filling of both sides, as a function
of the two gate voltages, at 4 T. A random structure
of lines with different slopes - some of them highlighted
by arrows - are conspicuous on the conductance map,
indicating that QDs are tuned by both voltages. The
slope of a dot’s fluctuation lines is determined by the
dot’s position relative to the two gate electrodes. As
expected, the map shows the signatures of a network of
QDs. Due to the low aspect ratio, scattering between
contacts is much more likely than between edge states,
explaining the positive conductance contribution of the
dots.

Some of the fluctuation lines show avoided crossings.
They have similar slopes, indicating they belong to quan-
tum dots that are close to each other, enabling them to
hybridize (purple QDs in Fig. 4a). Thus, the lines with
avoided crossings belong to one or more double-dot sys-
tems. The expected hexagonal pattern of a double dot is
highlighted in purple as a guide to the eye, and is even
more evident in Fig. 4c, where the map is distorted to
compensate for cross-capacitances. This way the conduc-
tance is shown as a function of the individual dot charges
of this double-dot system. One set of lines is stronger,
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suggesting one dot is better coupled to the contact elec-
trodes than the other.

Summary and outlook— A band gap is essential to cre-
ate graphene transistors and spin qubits. However, Klein
tunnelling limits the effectiveness of electrostatic confine-
ment, while hard wall confinement (etching) introduces
further obstacles. In the quantum Hall regime, a disorder
potential can act as confinement due to the bulk gaps be-
tween Landau levels. As a result, a network of quantum
dots form. In our nanoribbons the small sample width
enabled a single QD to dominate that could be read out
not only by contacts, but also by edge channels. In a wide
flake with two gates a double-dot system’s hexagonal
pattern was observed. This mechanism suggests a way
to electrostatically confine electrons in clean single-layer

graphene devices using multiple gate electrodes. With
suitable geometries, the creation of quantized conduct-
ing channels, single and double quantum dots, quantum
point contacts, and even interferometers becomes possi-
ble.

Acknowledgements— We acknowledge useful discus-
sions with Romain Maurand, Andreas Baumgartner,
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Methods— Fabrication steps followed Refs. 26, 32.
First, 5/55 nm thick Pd/Al or Ti/Au bottom gates were
fabricated on a p:Si/SiO2 layer, which were covered first
with a 50 nm ALD-grown Al2O3 insulating layer, sec-
ond with 600 nm thick LOR resist. Graphene was ex-
foliated onto a separate wafer and transferred using the
method described in Ref. 23. Subsequently, the flake was
contacted with 40 nm thick Pd wires, and etched using
e-beam lithography and reactive ion etching. Approxi-
mate dimensions of ribbons R1, R2 are given in Fig. 1a.
Finally, graphene was suspended by exposing and devel-
oping the LOR resist below. Samples were current an-
nealed at low temperature to remove solvent and polymer
residues. Measurements were carried out at 1.5 K, using
standard lock-in technique. The Dirac-points of the rib-
bons R1, R2, and the wide sample were at approximately
VG∼3, 0, and 1 V, respectively.
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