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Gold nanoparticles (partially below 5 nm in diameter) were successfully deposited on 

hexagonal and monoclinic WO3 supports by deposition–precipitation, which had been 

considered previously not feasible owing to the low isoelectronic point of WO3. The catalysts 

were characterized by TEM, SEM, N2-adsorption, XRD, and XPS. In CO oxidation m-

WO3/Au showed better catalytic activity over 100 °C than h-WO3/Au. This was explained by 

that m-WO3 had higher surface OH coverage, resulting in larger Au nanoparticle loading and 

thus better catalytic activity. 
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Introduction 

 

Heterogeneous gold catalysts are intensively investigated, as the outstanding catalytic 

activity of this metal in nanosize has been proven in a lot of reactions and under various 



3 

 

circumstances [1]. It is well known that the activity of gold catalysts highly depends on the 

gold nanoparticle size, the properties of the support material [2], the preparation process [3], 

the conditions of the pretreatment [4] etc. Oxidation reactions (e.g. oxidation of alcohols [5], 

alkenes [6], monosaccharides [7] and carbon monoxide [8]) are good examples for the very 

high activity of gold catalysts. 

The oxidation circumstances of CO by Au nanoparticles have garnered a lot of 

attention recently [9-11]. CO is a toxic gas, which can irreversibly bond to hemoglobin in 

human blood, converting it to carboxyhemoglobin, if the concentration of CO approaches 100 

ppm in the atmosphere [12].  

Semiconductor oxides (TiO2, WO3, SnO2, ZnO, V2O5, etc.), which are widely studied 

as heterogeneous catalysts [13], can be supports for catalytic Au nanoparticles as well [14-

16]. Tungsten oxide (WO3) is a well-known catalyst (e.g. for the selective oxidation of olefins 

or sulfides [17], reforming reactions [18], etc.), and the application of WO3 supported noble 

metal (Pt, Pd) catalysts in CO oxidation is well known [19]. Nevertheless, to the best of our 

knowledge, the investigation of a WO3/Au catalyst in CO oxidation has been reported only in 

one study [20].  

Immobilizing gold nanoparticles on WO3 surfaces was done mainly by physical 

methods (e.g. by sputtering [20]). The otherwise widely used deposition-precipitation of Au 

was considered to be impossible on WO3 previously, due to the low isoelectronic point of 

WO3 [21]. 

Recently a new way has been developed to deposit Au nanoparticles through 

deposition-precipitation, but it has been used only on Al2O3 and SiO2 supports [22-23]. It was 

unclear whether this method can be used also on an oxide with low isoelectronic point (i.e. 

WO3). 
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WO3 has different crystalline modifications (e.g. monoclinic, hexagonal [24]). 

Recently, it was revealed that the hexagonal (h-) and monoclinic (m-) forms of WO3 behaved 

quite differently in gas sensing [25-30] and photocatalysis [31]. However, it was unclear how 

they would influence in general the catalytic activity of WO3, and in particular how they 

would affect catalysis when they are used as supports for Au nanoparticles.  

Therefore, we aimed to prepare WO3/Au catalysts and demonstrate that Au 

nanoparticles can be deposited on WO3 from solution by the deposition-precipitation method. 

In addition, we explored the activity of WO3/Au catalysts in CO oxidation, and also 

investigated the influence of the crystal structure (monoclinic or hexagonal) of the WO3 

support on catalysis. Recently a new way was developed to prepare h-WO3 and m-WO3 by 

annealing (NH4)xWO3-y [27], which enabled preparing them with very similar morphologies. 

This ensured that mostly the different WO3 crystal structures could have effect on catalysis, 

while the morphologies influenced it to a smaller extent.  

Therefore, in this paper we report on the different catalytic activity of m-WO3/Au and 

h-WO3/Au composites. Gold nanoparticles were synthesized on m-WO3 and h-WO3 with 

deposition–precipitation (reducing HAuCl4 solution) and consecutive pretreatment (annealing 

in air at 350 °C). Transmission electron microscopy (TEM), scanning electron microscopy 

(SEM), low temperature nitrogen adsorption measurement, X-ray diffraction (XRD) and X-

ray photoelectron spectroscopy (XPS) were used to characterize the catalysts. The catalytic 

activity of the composites was tested in CO oxidation.  

 

Experimental 

 

Preparation of Au/WO3 catalysts 

 

http://en.wikipedia.org/wiki/Photoelectron
http://en.wikipedia.org/wiki/Spectroscopy
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Preparing m-WO3 and h-WO3 supports. Hexagonal WO3 and monoclinic WO3 

samples were prepared by annealing hexagonal ammonium tungsten bronze, (NH4)0.33-xWO3-y 

in air at 470 °C and 600 °C, respectively [25]. The precursor (NH4)0.33-xWO3-y was obtained 

by the partial reduction of ammonium paratungstate tetrahydrate (APT), 

(NH4)10[H2W12O42]·4H2O, in H2 at 400 °C [32]). 

Deposition–precipitation (DP) of Au nanoparticles. 0.5 g of hexagonal or monoclinic 

WO3 was suspended in 150 ml of 3.1*10
-4

 M chloroauric acid (HAuCl4) solution. The 

reaction mixture was stirred for 1 h; then 4 M NH4OH was added to maintain pH 7 in the 

whole process. After 75 min the reaction was completed, and the liquid phase became 

colorless. The as-prepared catalysts were washed with de-ionized water and centrifuged three 

times at room temperature. Consecutively, the catalysts were dried overnight at 60 °C. Prior 

to the CO oxidation test reactions, the catalysts were pretreated at 350 °C for 1 h in air 

atmosphere (50 ml min
-1

 flow rate), so that the gold-amine complexes could be completely 

decomposed and gold nanoparticles could be formed. 

 

Catalyst characterization 

 

Transmission electron microscope (TEM) images about the WO3/Au samples were 

recorded on a FEI Morgagni 268b instrument operated at 100 keV. At least 200 nanoparticles 

were measured on the TEM images to define the particle size distribution. 

Scanning electron microscopy (SEM) characterization was performed by a LEO-1550 

FEG SEM instrument.  

Surface area values were deduced from low temperature nitrogen adsorption data 

(Quantachrome NOVA 2000E) according to the multi point BET model [33].   
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Powder X-ray diffraction (XRD) patterns were measured by a PANalytical X’pert Pro 

MPD X-ray diffractometer using Cu K radiation. 

X-ray Photoelectron (XPS) spectra from the surface of the samples were recorded by a 

VG Microtech instrument using Mg K radiation. The spectrometer was calibrated with the 

binding energy of the C1s line (285 eV).  

 

Temperature programmed oxidation of CO 

 

Temperature programmed oxidation (TPO) of CO was measured in the temperature 

range from −30 to 270 °C with a heating rate of 5 °C min
-1

 in a U-tube quartz reactor. 25mg 

of each catalyst was mixed with 125 mg Al2O3 in order to make a catalyst bed to facilitate 

formation of plug like flow, and to inhibit the catalysts to occlude the filter. Prior to the CO 

oxidation reaction, the catalyst samples were pretreated at 350 °C for 1 h in air atmosphere 

(50 ml min
-1

 flow rate) to generate catalytically active gold nanoparticles on the catalyst 

supports. Upon completion of the pretreatment, the samples were cooled in helium gas flow. 

When temperature reached -30 °C, helium flow was replaced with the flow of the gaseous 

reaction mixture (70 ml min
-1

), in which the volume ratios were 1.5/1.5/67 for CO/O2/He, 

respectively. The outlet gas flow was monitored by a quadruple mass spectrometer (Prisma 

QMS 200, Pfeiffer Vacuum Technology) recording the m/z = 28
+
, 32

+
, and 44

+
 signals of 

consumed CO and O2 and as-formed CO2, respectively.  

 

Results and discussion 

 

Structure, morphology and composition 
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According to our previous studies, deposition–precipitation method with HAuCl4 and 

NH3 solution results gold-amine complexes directly bonded to a metal oxide catalyst support 

such as SiO2 or Al2O3. In the present work, conditions of catalyst preparations on WO3 

support were similar to that used previously at the Au/SiO2 and Au/Al2O3 catalysts [22-23]. In 

the case of WO3 supports, it was noticed that small portion of the complexes started to 

degrade during the deposition–precipitation process, resulting in sub 5 nm nanoparticles 

(observed on TEM images not shown here). However, the dominant part of the Au 

nanoparticles was obtained, only when the amine complexes degraded in air flow during the 

pretreatment process at 350 °C. 

Based on SEM (Fig. 1) and TEM (Fig. 2) images, the estimated size of the h- and m-

WO3 support particles were 50-70 nm and 60-90 nm, respectively. The surface area values 

(SBET) were 11 and 6.5 m
2
/g for pure h- and m-WO3 particles, respectively.  

After the pretreatment process, SEM (Fig. 1) and TEM (Fig. 2) showed that large 

portion of Au nanoparticles was under the critical 5 nm (Fig. 3), which is required to generate 

catalytic activity [34]. The supports influenced the Au particle size, as in the case of h-WO3 

43 % of Au particles was under 5 nm, while in the case of m-WO3 this value was 37 %.  

According to XRD patterns (Fig. 4), the supports were pure h-WO3 (ICDD 85-2460) 

and m-WO3 (ICDD 43-1035). Gold (ICDD 04-0784) was identified at about 38° in the case of 

both catalyst supports (see insets in Fig. 4). No impurities were detected by XRD on the 

WO3/Au samples.  

The oxidation states of tungsten, oxygen and gold atoms were investigated by XPS 

(Fig. 5). Though XPS is a surface analytical method with an average information depth of 10 

nm, it gave a good estimate also about the bulk composition of the particles. The particle size 

of our samples was between 50-90 nm. If 70 nm is taken as an average particle size and 

spherical particles with 35 nm average particle radius are assumed, then XPS can give 



8 

 

information about the outer 10 nm shell of the particles. The volume of the outer 10 nm shell 

is ca. the half (49 %) of the volume of the whole particle. Thus the XPS signal came from half 

of the complete volume of the particles, which provided a good estimate of the bulk 

composition of the nanoparticles.  

Recently it was shown that while m-WO3 is completely oxidized, the structure of h-

WO3 is partially reduced. This was explained by that stabilizing cations (Na
+
, K

+
, NH4

+
, etc) 

(or water molecules) were always present in the hexagonal channels of h-WO3, and they 

stabilized the metastable hexagonal framework [27]. Due to the presence of W
5+

 and W
4+

 

atoms, there were less surface OH groups and water molecules on the surface of h-WO3, 

compared to m-WO3 [31].  

The different oxidation states of tungsten were confirmed by XPS in the case of the h- 

and m-WO3 supports of Au nanoparticles as well. In the m-WO3/Au catalyst, the m-WO3 

support was basically completely oxidized with 96.7 % W
6+

 atoms detected (W4f7/2 peak: 

37.3 eV; W4f5/2 peak: 35.1 eV). The small amount of W
5+

 atoms (3.3 %; W4f7/2 peak: 36.2 

eV; W4f5/2 peak: 33.6 eV) is due to that m-WO3 usually obtains a greenish color in the high 

vacuum of the XPS chamber and its surface gets slightly reduced. However, in as-prepared 

form, m-WO3 is completely oxidized. In the h-WO3/Au catalyst, the h-WO3 support contained 

also W
4+

 atoms besides W
6+

 and W
5+

 species (93.6 %, 5%, 1.5%; W4f7/2 peaks: 37.2, 36.2, 

35.2 eV; W4f5/2 peaks: 35.1, 33.6, 32.9 eV for W
6+

, W
5+

, W
4+

, respectively).  

The amount of surface O
2-

, OH
-
 and H2O species (530.9, 531.6, 533.5 eV, 

respectively) was also examined by XPS. Their normalized ratios showed that the amount of 

surface OH
-
 was ca. 25 % larger on m-WO3/Au (1.00/0.69/0.11 for O

2-
/OH

-
/H2O 

respectively), compared to h-WO3/Au (1.00/0.55/0.10 for O
2-

/OH
-
/H2O respectively). It can 

be noted that H2O was present on the surface of h-WO3 both in physically adsorbed and 

chemically bonded forms [35], and XPS measures their overall amount.  
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According to XPS, gold was present only in metallic form (Au4f7/2 peak: 83.5 eV; 

Au4f5/2 peak: 87.2 eV) [36-38]. The gold loading of the WO3 supports was different, i.e. 5.3 

mass% Au was present on m-WO3, while only 3.7 mass% on h-WO3. The support h-WO3 had 

larger specific surface, which might result in larger gold loading; however, the opposite was 

observed. Thus, the larger amount of Au on the m-WO3 support can be explained only by that 

the amount of surface OH groups was larger on m-WO3, compared to h-WO3. The larger OH 

density over m-WO3 probably meant more reaction and then nucleation sites for Au reduction 

and Au nanoparticle formation. 

 

Temperature programmed oxidation of CO 

 

The TPO test results of h-WO3/Au and m-WO3/Au catalysts are presented in Fig 6. 

Below 100 °C both catalysts exhibited minor activity. In this temperature region (between -30 

and 100 °C) the hexagonal support seemed to be better for catalytic activity. There was a 

minimum in the catalytic activity of both catalysts around 100 °C. From 100 °C the 

conversion of CO started to increase again in the case of both catalysts, and from this point 

the activity of m-WO3/Au superseded increasingly that of Au/h-WO3. The activity of both 

catalysts rose especially dramatically after 150 °C.  

On the one hand, due to larger specific surface and larger portion of loaded Au 

nanoparticles below 5 nm h-WO3 was expected to be a better catalyst support. On the other 

hand, the larger amount of Au nanoparticles might be an advantage for using the m-WO3 

support. According to the catalysis tests, Au/m-WO3 had significantly larger activity above 

100 °C, which means that the 43 % larger Au load of the m-WO3 support was the decisive on 

the catalytic activity, and its influence surpassed the effect of the larger specific surface of h-

WO3 and larger portion of Au nanoparticles below 5 nm. 
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Recently, it was revealed that the higher surface OH density of m-WO3 was 

responsible for that it was a better photocatalyst than h-WO3 [31]. In the present study, the 

larger amount of surface OH groups on m-WO3 resulted in larger Au nanoparticle loading on 

m-WO3 and better activity of the m-WO3/Au catalyst, compared to the h-WO3/Au composite. 

Thus, though not directly as in photocatalysis, but in an indirect way the higher surface OH 

density of m-WO3 was responsible for that m-WO3 was a better support for the catalytic Au 

nanoparticles, compared to h-WO3. 

The conversion reached with the Au/m-WO3 catalyst in CO oxidation is not 

outstanding compared to previous supported Au catalysts [9-11,20], mostly due to the 

relatively low specific surface of the m-WO3 support. However, the aim of the present study 

was not to prepare the best catalyst for CO oxidation, but to study how the crystal structure of 

the WO3 support influences the activity of Au/WO3 catalysts. 

 

Conclusion 

 

In this work Au/WO3 catalysts with different WO3 support crystal forms (hexagonal or 

monoclinic) were investigated. Au nanoparticles with diameters partially smaller than 5 nm 

were prepared on WO3 substrates for the first time with the deposition and precipitation 

method using HAuCl4 and NH4OH solutions, followed by a pretreatment in air at 350 °C. 

Previously it was considered not possible to deposit Au nanoparticles with this method on an 

oxide with low isoelectronic point (i.e. WO3). The as-prepared Au/h-WO3 and Au/m-WO3 

catalysts were characterized with TEM, SEM, N2-BET specific surface measurement, XRD 

and XPS.  

To reveal the effect of support crystal structure, the catalysts were tested in the 

oxidation reaction of CO. The catalyst m-WO3/Au showed considerably larger catalytic 
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activity over 100 °C compared to h-WO3/Au. The reason for this is that m-WO3 is completely 

oxidized and its surface is rich in OH groups, which are beneficial for Au nanoparticle 

nucleation. In contrast, h-WO3 is partially reduced due to stabilizing cation impurities in its 

structure, resulting in lower surface OH coverage, and thus lower Au nanoparticle loading and 

lower catalytic activity. This means that m-WO3 is a better support for catalytic Au 

nanoparticles. 
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Figures 

 

 

Fig. 1. SEM images of (a) h-WO3/Au and (b) m-WO3/Au 

 

 

Fig. 2. TEM images of (a) h-WO3/Au and (b) m-WO3/Au 
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Fig. 3. Size distribution of gold nanoparticles on (a) h-WO3 and (b) m-WO3 supports 

 

 

Fig. 4. XRD patterns of (a) h-WO3/Au and (b) m-WO3/Au. The insets show the presence of 

gold on the surface of the WO3 supports. 
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Fig. 5. XPS spectra of (a) O1s region of h-WO3/Au; (b) O1s region of m-WO3/Au; (c) 

W4f region of h-WO3/Au; (a) W4f region of m-WO3/Au 

 

 

Fig. 6. Activity of h-WO3/Au and m-WO3/Au catalysts in CO oxidation  

 


