
Polyadic Algebras
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1 Polyadic Algebras

Polyadic algebras were introduced and intensively studied by Halmos, after having
studied cylindric algebras in Tarski’s seminar in Berkeley; we refer to Section 5.4 of
[11], see also [9]. This class of algebras can be regarded as an alternative approach
to algebraize first order logic. After a thorough reformulation of Henkin, Monk, and
Tarski, polyadic algebras also can be regarded as certain generalizations of cylindric
algebras. On one hand, polyadic algebras have nice representation properties, on the
other, their languages are rather large (in the ω-dimensional case the cardinality of
their set of operations is continuum), which makes their equational theory recursively
undecidable for trivial reasons. This is undesirable from metalogical point of view,
hence, during the last decades, certain countable (even finite) reducts of polyadic
algebras have also been intensively studied.The goal of this research direction is to
find a countable reduct of polyadic algebras which has nice representation properties,
and, at the same time, their equational theory is recursively enumerable.

This subsection is closely related to, and is based on Section 5.4 of [11]. In
more detail, in subsection 1.1 we recall the definition of certain classes of polyadic
algebras. In subsection 1.2 we are dealing with the representation theory of polyadic
algebras; in subsection 1.3 we are establishing some connections between polyadic
and cylindric algebras. Finally, subsection 1.4 is devoted to study the recursion
theoretic complexity of the equational theories of certain classes of (reducts of)
polyadic algebras.

1.1 Basic Properties of Polyadic Algebras

We start by recalling the definitions of polyadic and polyadic equality algebras and
their representable subclasses. These definitions are the same as Definitions 5.4.1
and 5.4.22 of [11].

Definition. Let α be an ordinal. An algebra

A = 〈A; ·,∼, 0, 1, c(Γ), sτ 〉Γ⊆α, τ∈αα

is defined to be a polyadic algebra of dimension α iff the following equational stipu-
lations hold for any x, y ∈ A, for any Γ,∆ ⊆ α and for any σ, τ ∈ αα.

(P0) 〈A; ·,∼, 0, 1〉 is a Boolean Algebra;
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(P1) c(Γ)0 = 0;
(P2) x ≤ c(Γ)x;
(P3) c(Γ)(x · c(Γ)(y)) = c(Γ)(x) · c(Γ)(y);
(P4) c(∅)x = x;
(P5) c(Γ)c(∆)x = c(Γ∪∆)x;
(P6) sidx = x;
(P7) sσsτx = sσ◦τx;
(P8) sσ(x · y) = sσ(x) · sσ(y);
(P9) sσ(∼ x) =∼ sσ(x);
(P10) if σ|α−Γ = τ |α−Γ then sσc(Γ)x = sτc(Γ)x;
(P11) if ∆ = τ−1[Γ] and τ |∆ is one-one then c(Γ)sτx = sτc(∆)x.

The class of all α dimensional polyadic algebras will be denoted by PAα.

Definition. Let α be an ordinal. An algebra

A = 〈A; ·,∼, 0, 1, c(Γ), sτ , dij〉Γ⊆α, τ∈αα, i,j∈α

is defined to be a polyadic equality algebra of dimension α iff its PAα-type reduct is
a polyadic algebra of dimension α, for all i, j ∈ α we have dij ∈ A and, in addition,
the following equational stipulations hold for any x ∈ A, for any i, j ∈ α and for
any τ ∈ αα.

(E1) dii = 1;
(E2) x · dij ≤ s[i/j]x;
(E3) sτdij = dτ(i)τ(j).

The class of all α dimensional polyadic equality algebras will be denoted by PEAα.
Next we recall the definition of representable polyadic algebras; this definition is

the same as Definition 5.4.22 of [11].

Definition. Let α be an ordinal, U a set and let W ⊆ αU . For τ ∈ αα,Γ ⊆ α, i, j ∈
α and x ⊆ W the operations of cylindrification CW

(Γ), substitution SWτ and diagonal

elements DW
ij are defined as follows.

CW
(Γ)(x) = {z ∈ W : (∃r ∈ x)(z|α−Γ = r|α−Γ)};

Sτ (x) = {z ∈ W : z ◦ τ ∈ x} and

Dij = {z ∈ W : zi = zj}.

The structure
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A = 〈P(W );∩,∼, ∅,W,CW
(Γ), S

W
τ , D

W
ij 〉Γ⊆α,τ∈αα,i,j∈α

is called the full α-dimensional relativized polyadic set algebra of W . If W = αU
then A is called the α-dimensional full polyadic set algebra of U . In addition, ac-
cording to Definition 5.4.22 of [11],

(i) the class Pseα of polyadic equality set algebras of dimension α consists of
all subalgebras of full polyadic set algebras (of appropriate dimension);

(ii) the class Rppeα of representable polyadic equality algebras of dimension α
consists of all subdirect products of full polyadic set algebras (of appropriate dimen-
sion);

(iii) the class Gpα of α dimensional generalized polyadic set algebras consists of
all subalgebras of relativized polyadic set algebras of W = ∪i∈IαUi (of appropriate
dimension).

Note, that according to the last item of the previous definition, generalized polyadic
set algebras are relativied polyadic set algebras of some W , where W is the union
of the αth direct power of some sets Ui. We emphasize, that we do not require the
different Ui to be disjoint from each other. The class of relativized subalgebras of
the disjoint unions of αUi is called the class Gwpα of generalized weak polyadic set
algebras. It is easy to see, that Rppeα = IGwpα.

Remark 1.1 By a representation of a polyadic (equality) algebra A we mean an
isomorphism between A and an Rppe (or RPA, respectively). Representability with
relativized algebras has also deserved considerable attention - this research direction
can be well motivated by the Resek-Thompson theorem in cylindric algebra theory.
In this connection we refer to Remark 3.2.88 of [11].

Definition. The classes of SPAα and RPAα consist of the diagonal-free reducts of
elements of Pseα and Rppeα respectively.

It is routine to check that RPAα ⊆ PAα and Rppeα ⊆ PEAα. We will see in
Subsection 1.2 below, that the aim of representation theory of polyadic algebras is
establishing results related to the converse inclusions.

As we mentioned, if α ≥ ω, then the cardinality of operations of PAα is un-
countable, making the equational theory undecidable for trivial reasons. Hence,
finite and countably infinite reducts of polyadic algebras has also been intensively
studied. Next, we recall the definitions of some countable reducts of polyadic alge-
bras.

Definition 1.2 Let α be given and let G ⊆ αα be a semigroup (under composition
of functions). Then the class G−PAα consists of all subreducts of elements of PAα
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having the following set of operations:
• the Boolean operations;
• {c(Γ) : Γ ⊆ α is finite } and
• {sτ : τ ∈ G}.

If G = {τ ∈ αα : {i ∈ α : τ(i) 6= i} is finite } then the class G− PAα is denoted by
QPAα and called the class of α dimensional quasi-polyadic algebras.

G− PEAα and QPEAα are defined similarly.

Remark 1.3 Let α be an ordinal, and as usual, for i, j ∈ α let [i/j] : α → α be
the function mapping i to j and leaving every other element fixed. Similarly, [i, j]
denotes the function that maps i onto j, maps j onto i and leaves every other element
of α fixed. It is easy to check, that the semigroup G = {τ ∈ αα : {i ∈ α : τ(i) 6= i}
is finite } can be generated by G0 = {[i/j], [i, j] : i, j ∈ α}. Hence, in QPAα , for
τ ∈ G the operation sτ is term definable by the operations {sτ : τ ∈ G0}.

Suppose α is given. Then QPAα can be regarded as the “minimalistic polyadic
extension” of CAα. Particularly, the language of QPAω contains countably many
operation symbols only. However, there is an essential difference between the defi-
nition of QPAα and CAα.

For different α, the classes CAα can be defined as a system of varieties. In more
detail, this means the following. If α is given, and ξ ∈ αα is a function, then ξ acts
on the equations of the language of CAα in the natural way: if e is a CAα-equation,
then ξ(e) can be obtained from e by replacing each occurrence of ci by cξ(i) and dij
by dξ(i)ξ(j), respectively. Then there is a finite set E of equations such that for any
α, CAα is the class of all models of {ξ[E] : ξ ∈ αα is a permutation }. This uniform
definability may be useful, because it makes accessible some techniques of universal
algebra.

The set of instances of the equations in the definition of QPAα is not closed
under all permutations of α; in addition, it is not obvious, if there exists an alter-
native definition of QPAα containing schemas of equations whose set of instances
is closed under permutations. To study the situation, Sain and Thompson in [24]
introduced the classes FPAα and FPEAα of Finitary Polyadic (Equality) Algebras
of dimension α.

Definition. A finitary polyadic equality algebra of dimension of α is an algebra

A = 〈A; ·,∼, 0, 1, ci, sij, pij, dij〉i,j∈α

where dij are constants, and the following equational stipulations hold for any i, j, k ∈
α:

(F0) 〈A; ·,∼, 0, 1〉 is a Boolean algebra, sii = pii = dii = Id|A and pij = pji
(F1) x ≤ cix;
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(F2) ci(x ∨ y) = ci(x) ∨ ci(y);
(F3) sijci(x) = ci(x);
(F4) cis

i
j(x) = sijci(x) if i 6= j;

(F5) sijck(x) = cks
i
j(x) if k 6∈ {i, j};

(F6) sij and pij are Boolean endomorphisms;
(F7) pijpijx = x;
(F8) pijpik(x) = pjkpij(x) if i, j, k are distinct;
(F9) pijs

i
j(x) = sji (x);

(F10) sijdij = 1;
(F11) x · dij ≤ sijx.

The class of finitary polyadic equality algebras of dimension α is denoted by FPEAα;
its diagonal free subreduct is denoted by FPAα.

It is easy to check, that the set of instances of defining equations of FPEAα is
closed under permutations of α.

Theorem (Sain, Thompson). Let α > 2.
(i) The varieties FPEAα and QPEAα are term definitionally equivalent.
(ii) The varieties FPAα and QPAα are term definitionally equivalent.

The proof can be found in [24].

1.2 Representation Theory of Polyadic Algebras

We will cut this subsection into two parts: first we survey results from the rep-
resentation theory of polyadic algebras (without diagonal elements) and next, we
will deal with the case of polyadic equality algebras (containing diagonal elements).
Both parts can be further divided to the finite dimensional and to the infinite di-
mensional case or to “positive” and “negative” results.

Representation theory, the diagonal-free case

The first theorem we should mention is the following celebrated result of Daigneault
and Monk. The original proof can be found in [15]; see also Remark 5.4.41 of [11].

Theorem (Daigneault, Monk). For infinite α we have PAα = RPAα.

We also note, that independently, Keisler in [14] proved a completeness theorem
for a version of first order logic with infinitary predicates; this completeness theo-
rem may be considered as the logical version of the Daignault-Monk representation
theorem.

On one hand, the Daigneault-Monk Theorem is elegant: it describes a finite
schema of equations axiomatizing RPAα (for infinite α). On the other hand, these
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equational schemas have continuum many instances for the smallest, α = ω case.
This is necessary, because the cardinality of the set of operations of RPAω is the
continuum.

If α is finite, then the polyadic axiom schemas P0 − P11 have finitely many in-
stances only. For finite α, the class RPAα is a variety; however, as the next theorem
indicates, its equational theory is rather complicated.

Theorem 1.4 For finite α ≥ 2 the variety RPAα is not finitely axiomatizable. In
addition, Rppeα “cannot be axiomatized by finitely many variables”: if Σ is a set
of polyadic equations such that Mod(Σ) = RPAα then, for every n ∈ ω there is an
equation en ∈ Σ containing at least n distinct variables.

For a proof and more details, see [1], [2] and [12].
As we mentioned, QPAα may be considered as the “minimalistic polyadic ex-

tension” of cylindric algebras. Even, this minimalistic class cannot be finitely ax-
iomatized, as the following theorem says.

Theorem 1.5 (Sain, Thomson).
For α > 2, the class RQPAα of representable quasi-polyadic algebras of dimension
α cannot be axiomatized by finitely many equations.

The proof, and stronger related results can be found in [24]. In fact, in [24] it
was shown, that for α > 2, the class of representable FPAα (or equivalently, QPAα)
cannot be defined by finitely many equational schemas closed under permutations of
the dimension set (i.e. these classes cannot be defined by finitely many Monk-type
equational schemas).

By Theorem 1.5, for finite α, RPAα is a proper subclass of PAα. If we take
smaller reducts, some positive results may be obtained.

Definition 1.6 For a set U , the structure

A = 〈P(αU);∩,∼, 0, 1, S[i/j]〉i,j∈α

is called the α-dimensional full substitution set algebra of U .
(i) The class SetSAα of substitution set algebras of dimension α consists of sub-

algebras of full substitution set algebras (of appropriate dimension);
(ii) the class RSAα of representable substitution algebras of dimension α is de-

fined to be RSAα = ISPSetSAα.

These classes first was studied by Pinter (see [11], page 267). In [20] and in [19]
the following were proved for RSAn.

Theorem 1.7 (Sági)
(i) For finite n ≥ 2 the class RSAn is a finitely axiomatizable quasi-variety, but
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not a variety;
(ii) the generated variety is also finitely axiomatized and it consists of (isomorphic
copies of) the appropriate reducts of Gpα;
(iii) the (quasi-)equational theory of RSAα is decidable for α ≤ ω.

We emphasize, that in (iii) above, α = ω is allowed, as well.

Proof. We give a sketch only. Let n ≥ 2 be finite and fixed. Let V be the variety
generated by SetSAn. Suppose, that A ∈ SetSAn with base set U and W ⊆ U .
Let B ∈ SetSAn be the full set algebra over W . Then it is easy to see, that the
function ϕW : A → B satisfying ϕW (x) = x∩nW is a SetSAn-homomorphism. Now
let a ∈ A − {0} be arbitrary. Then there exists s ∈ A. Let W = ran(s). Then
ϕW is a homomorphism from A which maps a to a non-zero element and the base
set of its image is of cardinality at most n. Consequently, every A ∈ SetSAn can
be embedded into a direct product Πi∈IBi such that the base set of each Bi is of
cardinality at most n. It follows, that V can be generated by finitely many finite
algebras. In addition, V has a Boolean reduct, hence it is congruence distributive.
Thus, by Baker’s theorem, V is finitely axiomatizable. This proves the first part of
(ii) and (iii) for finite α and for the equational theory of RSAn.

Next, we show that RSAn is not a variety. Let σ be the quasi-equation

s[0/1](x) · s[1/0](y) = 0⇒ s[1/0](x) · s[0/1](y) = 0.

It is easy to see, that σ holds in every SetSAn, hence in RSAn. Let A ∈ SetSAn be
the full set algebra on base set {0, ..., n− 1}. Then A has a homomorphic image, in
which σ is not true; for the details, see Theorem 3 of [20]. This shows, that RSAn
is not a variety.

Next, we show, that SetSAn is closed under ultraproducts. Let Ai ∈ SetSAn;
suppose, that the base set of Ai is Ui and let F is an ultrafilter over I. Let
U = Πi∈IUi/F and let ϕ : Πi∈IAi/F → P(nU) defined to be

ϕ(〈x(i) : i ∈ I〉/F) = {〈s0, ..., sn−1〉/F : {i ∈ I : 〈s0(i), ..., sn−1(i)〉 ∈ x(i)} ∈ F}.

It is easy to check that ϕ is an embedding of Πi∈IAi/F . It follows, that SetSAn, is
closed under ultraproducts. Consequently RSAn is also closed under ultraproducts,
hence it is a quasi-variety. This proves the last two parts of (i).

The proofs of the remaining parts of (i),(ii) and (iii) are much more longer, hence
we omit them. They can be found in [20] and in [19].

Parts of Theorem 1.7 not proved above, are based on a semigroup-theoretic ob-
servation. For a given set U , NP (U) denotes the semigroup of finite, non-bijective
selfmaps (that is,
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NP (U) = {t ∈ UU : {x ∈ U : x 6= t(x)} is finite and t is not bijective }

and the operation of NP (U) is composition of functions). It was shown in [27]
and [17] that there is a finite equational axiom system Σ such that, NP (U) is pre-
sented by (the set of all instances of) Σ. Thus, NP (U) can be presented by a finite
set of “presentation schemas”. These schemas can be used to describe the action of
the substitution operations - in the finite dimensional case they have finitely many
instances, and this fact implies that RSAα is finitely axiomatizable for finite α. For
completeness, we note, that Jónsson in [13] provided a finite schema presentation
for the semigroup of finite transformations F (U) = {t ∈ UU : {x ∈ U : x 6= t(x)} is
finite}.

It seems, that cylindrifications are the responsible for the negative results.

Representation theory, the diagonal case, negative results

It is natural to ask, whether the analogue of the Daigneault-Monk Theorem for
Rppeω remains true. It will turn out, that the situation is essentially different from
the diagonal free case.

We start by showing, that Rppeω is not closed under ultraproducts. As described
in Remark 5.4.41 of [11], this was first proved by Monk. Later Johnson showed that
certain ultraproducts of polyadic equality set algebras are not in Rppeω, hence Rppeω
cannot be axiomatized by any set of first order formulas (particularly, it is not a
variety).

Theorem. Rppeω is not closed under ultraproducts.

Proof. Let pred : ω → ω defined to be pred(0) = 0 and pred(n + 1) = n for each
n ∈ ω. Observe, that in each A ∈ Rppeω the following “infinitary quasi-equation”
is true for all x ∈ A:

(∗)
(∧

i,j∈ω x ≤ dij
)
⇒ x = spred(x).

Now let C ∈ Csω be countable, whose base set U is infinite and let A be the full ω
dimensional polyadic equality set algebra of U . Let F be a nonprincipal ultrafilter
over ω, let B = ωA/F and finally let b = 〈bn : n ∈ ω〉/F ∈ B where

bn = (
∏
i,j<n dij) · (

∏
i<n ∼ din).

Then clearly, for every i, j ∈ ω we have B |= b ≤ dij but sBpred(b) 6= b. So (∗)
does not hold in B and consequently, B 6∈ Rppeω.
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Remark 1.8 Now, by the previous theorem, there exists a nonrepresentable B ∈
PEAω. Using the notation of the previous proof, we can conclude, that the CAω-
type reduct of B is inRCAω (i.e., it is representable). Indeed, B has been constructed
as an ultrapower of a polyadic set-algebra A such that B is not representable. Since
taking ultraproducts and forming reducts are commuting operations, it follows, that
the CAω-type reduct of B coincides with the appropriate ultrapower of the CAω-
type reduct of A. Since this latter is a representable CAω, it follows from Theorem
3.1.109 of [11], that the CAω-type reduct of B is also in RCAα, but according to
the previous theorem, B itself is not in Rppeω.

After the previous theorem, , the next problem is to axiomatize the variety gen-
erated by (or, equivalently, the equational theory of) Rppeω. A finite axiomatization
is impossible, because of the set of operations of Rppeω is of infinite cardinality. So a
finite schema of equations would be desirable. A natural candidate for such a finite
schema axiomatization is P0 − E3.

It turned out, that there is an equation valid in HSPRppeω but does not valid
in PEAω. One could hope, that adding new, similar schemas to P0−E3 might lead
to an axiomatization of Rppeω. We will see below, that this also cannot be done.
We start by fixing the precise definition for “schemas similar to P0 − E3”.

Having a look for P0 −E3, one can realize, that these schemas contain variables
Γ,∆ ranging over subsets of ω and σ, τ ranging over ωω. Sometimes there is a con-
dition between the sets and functions occurring in the names of operations in the
schema, but such conditions always expressible in a certain first order language.

Consider P7 as a typical example. It can be rephrased as follows: if %, τ, σ ∈ ωω
are such that % = σ ◦ τ then the equation s%(x) = sσsτ (x) is an instance of P7. Here
%, σ and τ can be treated as “variables” ranging over the “names” of certain polyadic
operations; and, at the same time, they denote functions. So the names of polyadic
operations have a structure, and one can use this structure to describe a general
equational schema which applies for many polyadic operations. This motivates the
next three definitions (originally introduced in Németi-Sági [16]; see also [19]).

Definition 1.9
(i) Let L be a first order language containing countable many unary function sym-
bols f0, f1, ..., countably many unary relation symbols r0, r1, ... and countably many
constant symbols n0, n1, ... (and nothing more).
(ii) Let LPT be the similarity type (in the algebraic sense) of Boolean algebras en-
dowed with unary operation symbols sf0 , sf1 , ..., cr0 , cr1 , ... and constant symbols dn0n0 ,
dn0n1 , .... Here the indices of the symbols c, s and d are the same as the corresponding
symbols in L.
(iii) By a Halmos schema we mean a pair 〈s, e〉 where s is a first order sentence of
L and e is an equation of LPT .

In order to keep notation closer to intuition, we will write s⇒ e in place of 〈s, e〉.

9



Definition 1.10 Let s ⇒ e be a Halmos schema and let g be an equation in the
language of PEAα. Then g is defined to be an (α dimensional) instance of s ⇒ e
iff there are

fM0 , fM1 , ... ∈ αα, rM0 , r
M
1 , ... ⊆ α and nM0 , n

M
1 , ... ∈ α such that

〈α; rM0 , r
M
1 , ..., f

M
0 , fM1 , ...nM0 , n

M
1 , ...〉 |= s

and g can be obtained from e by replacing ri, fi and ni by rMi , f
M
i and nMi , re-

spectively.

For example, the set of all instances of P7 coincides with the set of all instances
of the Halmos schema

(∀v)(f0(v) = f1(f2(v)) ⇒ sf1sf2(x) = sf0(x).

It is easy to see, that all elements of P0−E3 can be expressed by a suitable Halmos
schema in this sense.

The use of set theoretic structure of the names of polyadic operations makes the
axiom system P0−E3 so elegant (and, as we will see, also the structure of the names
of operations makes the equational theory of Rppeω so complicated).

Definition 1.11 Let A ∈ PEAα. A Halmos schema is defined to be valid in A iff
every α dimensional instance of it is valid in A. A Halmos scehma is valid in a
class of algebras iff it is valid in all elements of the class.

Let PEA+
α be the class of all models of all α-dimensional instances of Halmos

schemas valid in Rppeα. Note, that PEA+
α is the smallest variety containing Rppeα

and defined by Halmos schemas.
Now we are ready to state our non-axiomatizability result.

Theorem 1.12 (Németi, Sági)
PEA+

ω 6= HSPRppeω. That is, the equational theory of Rppeω is not axiomatizable
by Halmos schemas.

The proof can be found in [16], see also [19].

In these papers it is shown, that there is an equation eCM valid in Rppeω but
not in PEA+

ω . Although it is rather complicated, eCM is explicitly given.
Next, one could try to axiomatize Rppeω by some kind of equation-schemas dif-

ferent from Halmos schemas. If Rppeω would be finitely axiomatizable by some kind
of schemas Σ, then, as we will see in subsection 1.4, the equational consequences of Σ
would form a Π1

1-hard set (in the recursion theoretic sense). Since finite (schema) ax-
iomatizability of a theory usually implies recursive enumerability, we can conclude,
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that Rppeω cannot be finitely axiomatized by any kind of “reasonable” schemas.
After these negative results it is natural to ask, what happens, if one takes small

subreducts of PEAω. The analogue of Theorem 1.5 remains true for RQPEAα,
α > 2, as well.

Theorem 1.13 (Sain, Thomson)
For α > 2, the class RQPEAα of representable quasi-polyadic equality algebras of

dimension α cannot be axiomatized by finitely many Monk type scemas.

The proof can also be found in [24]. Of course, by Theorem 1.13, the class of
representable quasi-polyadic equality algebras cannot be axiomatized by a finite set
of equations.

Representation theory, the diagonal case, positive results

We start this subsection by a positive result due to I. Sain which is in a sharp
contrast of the non-finite axiomatizability results presented so far and it has a defi-
nite knowledge theoretical significance.

Theorem 1.14 (Sain)
There is a finite reduct L of the language of PEAω such that

(i) all the CAω-operations are term-definable in L and
(ii) the class of L-subreduct of Rppeω is a finitely axiomatizable variety.

The proof can be found in [22] and it has also been based on semigroup theoretic
investigations. At the technical level, the cornerstone was to find a finitely generated,
finitely presented subsemigroup of ωω with further nice properties. We emphasize,
that in Theorem 1.14 the set Σ of equations axiomatizing the representable algebras
is not only described by a finite set of equational schemas - Σ itself is a finite set of
equations.

Next we give a sufficient condition which implies representability of a QPEAω.
Let A ∈ PAα. As usual, the dimension set ∆(a) of a ∈ A is defined to be
∆(a) = {i ∈ α : ci(a) 6= a}. In addition, A is defined to be locally finite-dimensional
iff every a ∈ A has a finite-dimension set. A PEAα is defined to be locally finite-
dimensional iff its PAα-reduct is locally finite-dimensional.

Our goal is to show, that every locally finite-dimensional QPEAω is repre-
sentable. Although this is a classical result, for completeness we include here a
proof, because other classical representation theorems for locally finite dimensional
cylindric algebras can be quickly derived from this one. To present the proof, we
need further preparations.
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Remark 1.15 We recall a method of constructing homomorphisms from certain
reducts of PEAα into (relativized) set algebras. The idea comes from Andréka-
Németi [3] (see also Remark 3.2.9 of [11]) where it was developed for locally finite-
dimensional cylindric algebras. Below we adapt the method to certain elements of
PEAα.

Let α be any set, Γ ⊆ P(α) and Λ ⊆ αα. Let

A = 〈A; ·,∼, 0, 1, c(γ), dij, sτ 〉γ∈Γ,i,j∈α,τ∈Λ

be a reduct of a PEAα. Let F be any ultrafilter on A. Then the kernel ker(F) of
F is defined to be

ker(F) = {〈i, j〉 ∈ ω × ω : dij ∈ F}.

It is easy to see, that ker(F) is an equivalence relation. For any τ ∈ αα we will
denote by τ/E the function satisfying τ/E(i) = τ(i)/E for every i ∈ α. Finally, for
each a ∈ A let

repF(a) = {τ/E : τ ∈ Λ, sτ (a) ∈ F}.

Our aim is to show, that if A is locally finite dimensional, then repF is a QPEAα-
homomorphism for some carefully chosen F . To do so, we still need some further
preparations.

Lemma 1.16 Let A be a locally finite-dimenisonal QPEAα and let F be an ultra-
filter over I. Then

(i) The set Alf := {a ∈ IA/F : ∆(a) is finite } is closed under the QPEAα-
operations.

(ii) If A is an α-dimensional quasi-polyadic equality set algebra, then the QPEAα
generated by Alf is isomorphic to an α-dimensional quasi-polyadic equality set alge-
bra.

Proof. To see (i), let a, b ∈ Alf and let c(Γ), sτ be QPEAα-operations. Then it is
easy to see, that

∆(a · b) ⊆ ∆(a) ∪∆(b);
∆(dij) ⊆ {i, j} for every i, j ∈ α;
∆(c(Γ)(a)) ⊆ ∆(a) and
∆(sτ (a)) ⊆ τ−1[∆(a)].

The right hand side is finite in all cases (for the last case we note, that τ−1[∆(a)] is
finite because {k ∈ α : τ(k) 6= k} is finite).

The idea of the proof of (ii) is similar to that of Theorem 1.7 (i). Assume, that
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the base set of A is U . Define ϕ : Alf → P(α(IU/F)) to be

ϕ(a) = {〈sk/F : k ∈ α〉 ∈ α(IU/F) : {j ∈ I : 〈sk(j) : k ∈ α〉 ∈ aj} ∈ F}

where a = 〈aj : j ∈ I〉/F . It is easy to check, that ϕ is an embedding from
the QPEAα generated by Alf into the full α-dimensional quasi-polyadic equality
set algebra on the base set IU/F .

Definition 1.17 Let A be a Boolean algebra (possibly with extra operations). The
set of ultrafilters of A will be denoted by U(A). For any a ∈ A we define Na to be

Na = {F ∈ U(A) : a ∈ F}.

Remark 1.18 The following facts are well known: {Na : a ∈ A} is a basis of a
topology on U(A); we will denote the generated topology by τ . U(A) endowed with
τ is called the Stone dual space of A and is denoted by A∗. It is a compact Hausdorff
space.

Definition 1.19 Suppose X ⊆ A,F ∈ U(A) and a ∈ A such that a = sup(X).
Then we say, that F preserves X iff

a ∈ F ⇒ (∃b ∈ X)(b ∈ F).

Note, that the converse implication always holds.

Lemma 1.20 Suppose X ⊆ A and a ∈ A such that a = sup(X). Then

UX := {F ∈ U(A) : F does not preserve X}

is nowhere dense in A∗.

Proof. Let G be a nonempty open set of A∗. By shrinking it, if necessary, we may
assume that G is basic open, that is, G = Nb for some 0 6= b ∈ A. It is enough to
show that there exists 0 < c < b such that Nc∩UX = ∅. To do so, we will distinguish
two cases.

Case 1: b · (∼ a) 6= 0. in this case c = b · (∼ a) is suitable.
Case 2: b · (∼ a) = 0. In this case b ≤ a. Assume, seeking a contradiction, that

for every x ∈ X we have b · x = 0. It follows, that ∼ b is an upper bound for X and
hence a ≤∼ b. Consequently, b ≤ a ≤∼ b, so b = 0, a contradiction.

By the previous paragraph, there exists x ∈ X with b · x 6= 0. Then, for c = b · x
we have Nc ∩ UX = ∅, as desired.
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Lemma 1.21 Let A ∈ QPEAω be countable and locally finite-dimensional. Let
a ∈ A − {0}. For each i ∈ ω let Xi ⊆ A and bi ∈ A be such that bi = sup(Xi).
Then there exists F ∈ U(A) such that F preserves all Xi, i ∈ ω, moreover, a ∈ F
and every equivalence class of ker(F) is infinite.

Proof. Let δ : ω → ω be a function such that for every k ∈ ω the set {n ∈ ω :
δ(n) = k} is infinite. In addition, let Bi := {F ∈ U(A) : F does not preserve Xi}.
We will modify the standard proof of the Baire Category theorem. More concretely,
by recursion we will define a sequence of elements 〈an : n ∈ ω〉 of A such that the
following hold for all n,m ∈ ω:

(a) a0 = a and an 6= 0;
(b) if n < m then am ≤ an;
(c) Nan+1 ∩Bn = ∅;
(d) (∃k ∈ ω)n ≤ k, an+1 ≤ dδ(n)k.

Let a0 = a; then (a)-(d) are clearly true. Next, suppose, that n ∈ ω and am
has already been defined for all m < n. Then ∆(an−1) is finite, hence exists k ∈ ω
with k ≥ n− 1 and k 6∈ ∆(an−1). Then

ck(an−1 · dδ(n−1)k) =
ck(ck(an−1) · dδ(n−1)k) =
ck(an−1) · ck(dδ(n−1)k) =
an−1 · 1 =
an−1,

hence by (a), an−1 · dδ(n−1)k 6= 0. By Lemma 1.20, the set Bn−1 is nowhere dense,
hence there exists a nonzero an ∈ A with an ≤ an−1 ·dδ(n−1)k such that Nan∩Bn−1 =
∅. Clearly, (a)-(d) remains true. In this way, the sequence 〈an, n ∈ ω〉 can be com-
pletely defined.

Combining (a) and (b), one obtains, that {Nan : n ∈ ω} has the finite intersection
property. Since A∗ is a compact space, it follows, that there exists F ∈ ∩n∈ωNan .
Then by (c), F preserves Xi, for every i ∈ ω. In addition, by (a), we have a ∈ F .
Finally, let i,m ∈ ω be arbitrary. We will show, that there exists k ≥ m such that
dik ∈ F . Let n ∈ ω be such that n ≥ m and i = δ(n). Then by (d), there exists
k ∈ ω such that m ≤ n ≤ k and an+1 ≤ dδ(n)k Therefore dδ(n)k = dik ∈ F , as desired.
It follows, that i/ker(F) is unbounded in ω.

Theorem 1.22 Let A ∈ QPEAω be locally finite-dimensional. Then
(i) For each 0 6= a ∈ A there exist an α-dimensional quasi-polyadic equality set

algebra Ba and a homomorphism ϕa : A → Ba such that ϕa(a) 6= 0.
(ii) A is representable.
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Proof. Let 0 6= a ∈ A be fixed. Let A0 be a countable elementary substructure
of A containing a. For any τ ∈ ωω define sτ : A → A to be sτ (x) = sτ ′(x), where
τ |∆(x) = τ ′|∆(x) and τ ′|ω−∆(x) is the identity function. This is meaningful, since sτ ′

is a quasi-polyadic operation. Throughout this proof, we assume that sτ is a basic
operation of A0 for every τ ∈ ωω.

Now we turn to the proof of (i). For each i ∈ ω and b ∈ A0 let Xi,b = {s[i/j](b) :
j ∈ ω − ∆(b)}. Then, by item 1.11.6(i) of [10] we have b = sup(Xi,b). By Lemma
1.21 there exists an ultrafilter F ∈ Na preserving every Xi,b such that every equiva-
lence class of ker(F) is infinite. Clearly, repF(a) 6= ∅.

We claim, that, in fact, repF is a homomorphism. Here is a sketch for a proof of
this claim. One can verify by a straightforward computation, that repF preserves ·
and dij for any i, j ∈ ω. Next, one can show, that if τ, τ ′ ∈ Λ are such that, for any
i ∈ ω we have 〈τ(i), τ ′(i)〉 ∈ ker(F) then for any x ∈ A0

(∗∗) sτ (x) ∈ F iff sτ ′(x) ∈ F ,

this may be established with an induction on n := |∆(x) ∩ {i ∈ ω : τ(i) 6= τ ′(i)}|.
Then (∗∗) implies, that repF preserves complementation and all the sσ. Finally,
combining (∗∗) with the fact, that F preserves each Xi,b and using, that each equiv-
alence class of ker(F) is infinite, one obtains, that repF preserves ci, for all i ∈ ω.

Thus, repF is a homomorphism from A0 into some Ca ∈ Pseω. Now let U be
an |A|-regular ultrafilter1 and let Da = (IA0/U)lf . Then A can be embedded into
Da. Let Ba = (ICa/U)lf . By Lemma 1.16, Ba ∈ Pseω; it is also a homomorphic
image of Da. Hence, there exists a homomorphism ϕa from A into Ba mapping a to
a nonzero element, as desired.

Now we turn to prove (ii). By (i), for each 0 6= a ∈ A there exist an α-dimensional
quasi-polyadic equality set algebra Ba and a homomorphism ϕa : A → Ba with
ϕa(a) 6= 0. Define ϕ : A → Π0 6=a∈ABa to be ϕ(x) = 〈ϕa(x), a ∈ A− {0}〉. Then ϕ is
the desired embedding.

1.3 Connections with Cylindric and Quasi-polyadic Alge-
beas

In this subsection we are comparing PEAα with CAα and QPEAα. Clearly, every
PEAα has a CAα-type and a QPEAα-type reduct. In addition, the following facts
are true:

(i) The Dfα-type reduct of a PAα is a Dfα;
(ii) The CAα-type reduct of a PEAα is a CAα. In addition, s[i/j](x) = ci(dij · x);
(iii) If β ≥ ω, A ∈ PEAβ then the CAβ-type reduct of A is a representable CAβ.

1for the definition and basic properties of regular ultrafilters we refer to [5]

15



For the proofs, see Theorem 5.4.3 and Corollary 5.4.18 of [11].

Remark 1.23 We note, that the converse of the above (ii) is not true: there exists
an A ∈ CAα which cannot be obtained as the cylindric reduct of a suitable PEAα.
Indeed, as was shown in Section 5.4 of [11], every A ∈ PEAω satisfies the marry-
go-round properties, but there exists a cylindric algebra B, which does not satisfies
these properties. The same argument shows, that there exists a CAω which cannot
be embedded into the cylindric reduct of a QPEAω (because every QPEAω also
satisfies the marry-go-round properties). This supports the view, that quasi-polyadic
equality algebras are “between” cylindric and polyadic algebras.

After Remark 1.23, the next natural question is: if a cylindric algebra A sat-
isfies the marry-go-round properties (i.e. A ∈ CA+

α ) then does it follow, that A
is isomorphic to the CAα-type reduct of a suitable B ∈ QPEAα ? The answer is
negative:

Theorem 1.24 (Sayed Ahmed)
There exists A ∈ RCAω such that A is not isomorphic to the CAω-type reduct of any
B ∈ QPEAω. (Since A is representable, it obviously satisfies the marry-go-round
properties).

For the proof and further details, see [25]. On the other hand, in [7], Ferenczi
proved the following.

Theorem 1.25 There is a weakening QPEA−α of the axioms of QPEAα such that
if A ∈ CA+

α (i.e. A is a CAα satisfying the merry-go-round properties) then A is
isomorphic to the CAα-type reduct of a suitable B ∈ QPEA−α .

It is also natural to search subclasses of CAα (or, subclasses of CA+
α ) whose

elements can be obtained as CAα-type reducts of certain QPEAα. Of course, Lfω,
Dcω and the class included in [11], Theorem 3.2.52 are such classes. The following
result is a generalization of this latter theorem from CAα to CA+

α due to Ferenczi
(see, [8], Theorem 3.5 ).

An algebra A in CAα can be supplemented to an algebra A in FPEAα if
supplementing A by the usual substitution operators sij and by certain operators
pij, (i, j < α) the algebra obtained is in FPEAα.

Theorem 1.26 Suppose that A ∈ CA+
α and A = NrαB for some B ∈ CA+

α+1

(where α ≥ 4). Then A can be supplemented to an algebra Ã ∈ FPEAα such that
pija = ks(i, j)a for any k 6∈ ∆(a), k ≤ α.
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Proof. As a consequence of the merry-go-round properties, B ∈ CA+
α+1 implies,

that the operation pij = ks(i, j)a satisfies axioms (F6), (F7), (F8) and (F9), for any
k 6∈ ∆(a), k ≤ α. Further, ks(i, j)a ∈ A holds by definition, if k < α and by
A = NrαB, if k = α. So A can be supplemented to an algebra Ã ∈ FPEAα.

We claim, that Ã is R-representable. By the Resek-Thompson theorem, B is
representable by an algebra B∗ ∈ Crsα+1 ∩ CAα+1; let A’ be the image of A under
this representation. Obviously, A′ is an α−dimensional algebra in Crsα∩CAα. For
any a ∈ A, we will denote by a′ the element in A′ corresponding to a. Combining
the facts, that
• A′ = NrαB∗,
• pij(a) = ks(i, j)a, and
• ks(i, j) can be expressed by cylindrifications and diagonals included in B,

one obtains, that A’ can also be supplemented to an algebra Ã′ ∈ FPEAα and, in
addition, Pij(a

′) = kS
V (i, j)a′ for any k 6∈ ∆(a), k ≤ α where V is the unit of A′

(so A′ is closed under the operations kS
V (i, j), too). In addition, Ã ' Ã′.

We claim, that Ã′ ∈ Prsα. Namely, RdcaÃ′ ∈ Crsα ∩ CAα and we show that

kS
V (i, j) coincides with the operation s[i,j] in Ã′. One can check that

s[i, j](a
∗) = kS

V (i, j) a∗ (1)

where V is the unit of B∗. Restricting (1) to A′, we get s[i,j](a
′) = kS

V (i, j) a′

because A′ = NrαB∗ (here V is the unit of A′).
s[i,j](V ) = V follows from kS

V (i, j)V = V using that RdcaA′ ∈ CAα; s[i,j] sat-

isfies the FPEA axioms concerning the p′ijs. So we have Ã′ ∈ Prsα ∩ FPEAα.
Therefore Ã ∈ RFPEAα and pij(a) = ks(i, j)a for any k 6∈ ∆(a), k ≤ α.

Moreover, Andréka and Németi proved in [4] that for 4 ≤ α < ω there exists a
nonrepresentable A ∈ PEAα such that its CAα-type reduct is representable (as a
cylindric algebra).

We close this subsection by recalling the infinite dimensional analogs of this
result. As we have seen in remark 1.8 above, there exists a nonrepresentable PEAω
whose CAω-type reduct is representable. Moreover, by a recent result of T. Sayed
Ahmed [26], there exists a nonrepresentable QPEAω with a representable CAω-type
reduct. Related investigations can also be found in Sági [21].

1.4 Complexity of the Equational Theories of Certain Classes
of Polyadic Algebras

In this subsection we study the recursion theoretic complexity of the equational
theories of polyadic algebras of dimension α. We start by the finite dimensional
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case.

Theorem 1.27 For 3 ≤ α < ω the equational theory of Rppeα is undecidable.

This theorem may be derived from the analogous result for cylindric algebras,
see e.g. [11].

As we mentioned, if α is infinite, then the langauge of PAα contains continuum
many operation symbols, hence, the equational theory of Rppeα is not recursively
enumerable for trivial reasons. We will see below, that the situation remains the
same, if we study “rich enough” finite reducts. Again, the rest of this subsection is
divided into two parts: first we will deal with polyadic algebras without diagonal
elements and then with polyadic equality algebras.

Complexity of equational theories, the diagonal-free case

After the Daigneault-Monk Theorem one could think, that if L is any finite reduct
of the language of PAω, then the set of equations written in L and valid in RPAω
forms a recursively enumerable set. Indeed, usually, representation theorems imply
completeness theorems, and completeness theorems usually imply recursive enumer-
ability. It turned out, that this commonsense reasoning breaks down in the case of
RPAω.

Theorem 1.28 (Sági)
There is a finite reduct L of the language of PAω such that the set of equational

consequences of P0 − P11 written in L is not recursively enumerable.

The proof can be found in [18], see also [19].
There are some positive results, as well.

Theorem 1.29 (Sain-Gyuris)
There is a finite reduct L of the language of PAω such that all the CAω operations
are term definable in L and the variety generated by the L-reducts of RPAω can be
axiomatized by a recursive set Σ of equations. In addition, although Σ is infinite, it
may be described by finitely many schemas.

We note, that the schemas occurring in Theorem 1.29 are essentially simpler
than Halmos schemas in general. The proof of Theorem 1.29 can be found in [23].

Complexity of equational theories, the diagonal case

As we have seen in subsection 1.2, the equational theory of Rppeω is rather com-
plex in the “axiomatic sense”, that is, there is no way to axiomatize it by Halmos
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schemas. In this section we survey some results on the recursion theoretic complex-
ity of the equational theory of Rppeω.

We start by recalling some notions from recursion theory. Throughout N de-
notes the standard model of number theory. By a Π1

1 formula we mean a second
order formula in prenex form in which every second order variable is quantified uni-
versally. A set A of natural numbers is defined to be
• arithmetical iff A is definable in N by a first order formula of arithmetic;
• A is called a Π1

1-set iff it is definable by a Π1
1-formula of arithmetic.

As it is well known, recursively enumerable sets and their complements are arith-
metical sets, and the family of arithmetical sets contains sets much more complicated
than any recursively enumerable set. Clearly, arithmetical sets are Π1

1, as well.

Theorem 1.30 (Németi, Sági)
There is a strictly finite reduct L of the language of Rppeω and a recursive function tr
mapping Π1

1 formulas of arithmetic to equations of L such that for any Π1
1 sentence σ

N |= σ iff Rppeω |= tr(σ).

The proof can be found in [16], see also [19].
Theorem 1.30 may be interpreted as follows: there is a finite reduct L of the

language of Rppeω such that the set P of (Gödel numbers of) equations written in
L and valid in Rppeω is at least as complicated as the set S of (Gödel numbers of)
Π1

1 formulas of arithmetic true in N . By a (version of) Tarski’s theorem of undefin-
ability of truth, S is not Π1

1. Hence P is not Π1
1, as well. Consequently, Eq(Rppeω)

cannot be axiomatized by any kind of finite equational schemas Σ whose set of con-
sequences is recursively enumerable (or at least Π1

1).
Although Theorems 1.28 and 1.30 have very strong consequences, the reducts L

in them are rather artificial: the indices of the substitution operations are carefully
chosen, tricky recursive functions on ω. Hence, it is natural to ask what can be
said about “more natural” reducts of Rppeω. The following theorem is due to R.
McKenzie and it shows, that even, some “natural reducts” of Rppeω may have a
complicated equational theory.

Recall, that pred, suc : ω → ω are the functions defined by

pred(0) = 0, pred(n+ 1) = n and suc(n) = n+ 1

for every n ∈ ω.

Theorem 1.31 (McKenzie)
Let L be any countable reduct of the language of Rppeω containing the set of opera-
tions {·,∼, c(ω), ssuc, spred, s[0,1], s[i/j], dij : i, j ∈ ω}. Then the set of equations valid
in Rppeω and written in L is not recursively enumerable.
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For the details, see Chapter 11 of [6].
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