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Abstract

A search for the pair production of top squarks, each with R-parity-violating decays into two
Standard Model quarks, is performed using 17.4 fb−1 of

√
s = 8 TeV proton–proton collision

data recorded by the ATLAS experiment at the LHC. Each top squark is assumed to decay
to a b- and an s-quark, leading to four quarks in the final state. Background discrimination
is achieved with the use of b-tagging and selections on the mass and substructure of large-
radius jets, providing sensitivity to top squark masses as low as 100 GeV. No evidence of
an excess beyond the Standard Model background prediction is observed and top squarks
decaying to b̄s̄ are excluded for top squark masses in the range 100 ≤ mt̃ ≤ 315 GeV at 95%
confidence level.
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1 Introduction

Supersymmetry (SUSY) is an extension of the Standard Model (SM) [1–7] that fundamentally relates
fermions and bosons. It is an especially alluring theoretical possibility given its potential to solve the
hierarchy problem [8–11] and to provide a dark-matter candidate [12, 13].

This paper presents a search for the pair production of supersymmetric top squarks (stops)1, which then
each decay to two SM quarks, using 17.4 fb−1 of

√
s = 8 TeV proton–proton (pp) collision data recorded

by the ATLAS experiment at the Large Hadron Collider (LHC). This decay violates the R-parity conser-
vation (RPC) [14] assumed by most searches for stops [15, 16]. In RPC scenarios, SUSY particles are
required to be produced in pairs and decay to the lightest supersymmetric particle (LSP), which is stable.
In R-parity-violating (RPV) models, decays to only SM particles are allowed, and generally relax the
strong constraints now placed on standard RPC SUSY scenarios by the LHC experiments. It is therefore
crucial to expand the scope of the SUSY search programme to include RPV models. Common signa-
tures used for RPV searches include resonant lepton-pair production [17], exotic decays of long-lived
particles with displaced vertices [18–21], high lepton multiplicities [22, 23], and high-jet-multiplicity fi-
nal states [24]. Scenarios which have stops of mass below 1 TeV are of particular interest as these address
the hierarchy problem [25–28].

SUSY RPV decays to SM quarks and leptons are controlled by three Yukawa couplings in the generic
supersymmetric superpotential [29, 30]. These couplings are represented by λi jk, λ

′
i jk, λ

′′
i jk, where i, j, k ∈

1, 2, 3 are generation indices that are sometimes omitted in the discussion that follows. The first two (λ, λ′)
are lepton-number-violating couplings, whereas the third (λ′′) violates baryon number. It is therefore
generally necessary that either of the couplings to quarks, λ′ or λ′′, be vanishingly small to prevent
spontaneous proton decay [7]. It is common to consider non-zero values of each coupling separately.
Scenarios in which λ′′ , 0 are often referred to UDD scenarios because of the baryon-number-violating
term that λ′′ controls in the superpotential. Current indirect experimental constraints [31] on the sizes of
each of the UDD couplings λ′′ from sources other than proton decay are primarily valid for low squark
mass and for first- and second-generation couplings. Those limits are driven by double nucleon decay [32]
(for λ′′112), neutron oscillations [33] (for λ′′113), and Z-boson branching ratios [34].

The benchmark model considered in this paper is a baryon-number-violating RPV scenario in which the
stop is the LSP. The search specifically targets low-mass stops in the range 100–400 GeV that decay via
the λ′′323 coupling, thus resulting in stop decays t̃ → b̄s̄ (assuming a 100% branching ratio) as shown
in Figure 1. The motivation to focus on the third-generation UDD coupling originates primarily from
the minimal flavour violation (MFV) hypothesis [35] and the potential for this decay channel to yield
a possible signal of RPV SUSY with a viable dark-matter candidate [36]. The MFV hypothesis essen-
tially requires that all flavour- and CP-violating interactions are linked to the known structure of Yukawa
couplings, and has been used to argue for the importance of the λ′′ couplings [37].

The process t̃t̃∗ → b̄s̄bs represents an important channel in which to search for SUSY in scenarios not
yet excluded by LHC data [36–38]. Some of the best constraints on this process are from the ALEPH
Collaboration, which set lower bounds on the mass of the stop at mt̃ & 80 GeV [39]. The CDF Collabor-
ation extended these limits, excluding 50 . mt̃ . 90 GeV [40]. The CMS Collaboration recently released
the results of a search that excludes 200 . mt̃ . 385 GeV [41] in the case where heavy-flavour jets are
present in the final state. In addition, two ATLAS searches have placed constraints on RPV stops that

1 The superpartners of the left- and right-handed top quarks, t̃L and t̃R, mix to form the two mass eigenstates t̃1 and t̃2, where t̃1

is the lighter one. This analysis focuses on t̃1, which is referred to hereafter as t̃.
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decay to b̄s̄ when they are produced in the decays of light gluinos (mg̃ . 900–1000 GeV) [42, 43]. The
search presented here specifically focuses on direct stop pair production and seeks to close the gap in
excluded stop mass between ∼ 100–200 GeV. Contributions from RPV interactions at production – such
as would be required for resonant single stop production – are neglected in this analysis. This approach is
valid provided that the RPV interaction strength is small compared to the strong coupling constant, which
is the case for λ′′323 . 10−2–10−1 [44] and for the estimated size of λ′′323 ∼ 10−4 from MFV in the model
described in Ref. [37].

The reduced sensitivity of standard SUSY searches to RPV scenarios is primarily due to the limited
effectiveness of the high missing transverse momentum requirements used in the event selection common
to many of those searches, motivated by the assumed presence of undetected LSPs. Consequently, the
primary challenge in searches for RPV SUSY final states is to identify suitable substitutes for background
rejection to the canonical large missing transverse momentum signature.

Figure 1: Benchmark signal process considered in this analysis. The solid black lines represent Standard Model
particles, the dashed red lines represent the stops, and the blue points represent RPV vertices labelled by the relevant
coupling for this diagram.

Backgrounds dominated by multijet final states typically overwhelm the signal in the four-jet topology.
In order to overcome this challenge, new observables are employed to search for t̃t̃∗ → b̄s̄bs in the low-
mt̃ regime [38]. For mt̃ ≈ 100–300 GeV, the initial stop transverse momentum (pT) spectrum extends
significantly into the range for which pT � mt̃. This feature is the result of boosts received from initial-
state radiation (ISR) as well as originating from the parton distribution functions (PDFs). As the Lorentz
boost of each stop becomes large, the stop decay products begin to merge with a radius roughly given by
∆R ≈ 2mt̃/pT, and thus can be clustered together within a single large-radius (large-R) jet with a mass
mjet ≈ mt̃. By focusing on such cases, the dijet and multijet background can be significantly reduced via
selections that exploit this kinematic relationship and the structure of the resulting stop jet, in a similar
way to boosted objects used in previous measurements and searches by ATLAS [45–49]. In this case,
since the stop is directly produced in pairs instead of from the decay of a massive parent particle, the
strategy is most effective at low mt̃ where the boosts are the largest.
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2 The ATLAS detector

The ATLAS detector [50,51] provides nearly full solid angle2 coverage around the collision point with an
inner tracking system (inner detector, or ID) covering the pseudorapidity range |η| < 2.5, electromagnetic
(EM) and hadronic calorimeters covering |η| < 4.9, and a muon spectrometer covering |η| < 2.7 that
provides muon trigger capability up to |η| < 2.4.

The ID comprises a silicon pixel tracker closest to the beamline, a microstrip silicon tracker, and a straw-
tube transition-radiation tracker at radii up to 108 cm. A thin solenoid surrounding the tracker provides a
2 T axial magnetic field enabling the measurement of charged-particle momenta. The overall ID accept-
ance spans the full azimuthal range in φ, and the range |η| < 2.5 for particles originating near the nominal
LHC interaction region [52].

The EM and hadronic calorimeters are composed of multiple subdetectors spanning |η| ≤ 4.9. The EM
barrel calorimeter uses a liquid-argon (LAr) active medium and lead absorbers. In the region |η| < 1.7,
the hadronic (Tile) calorimeter is constructed from steel absorber and scintillator tiles and is separated
into barrel (|η| < 1.0) and extended-barrel (0.8 < |η| < 1.7) sections. The endcap (1.375 < |η| < 3.2)
and forward (3.1 < |η| < 4.9) regions are instrumented with LAr calorimeters for EM as well as hadronic
energy measurements.

A three-level trigger system is used to select events to record for offline analysis. The different parts
of the trigger system are referred to as the level-1 trigger, the level-2 trigger, and the event filter [53].
The level-1 trigger is implemented in hardware and uses a subset of detector information to reduce the
event rate to a design value of at most 75 kHz. The level-1 trigger is followed by two software-based
triggers, the level-2 trigger and the event filter, which together reduce the event rate to a few hundred Hz.
The search presented in this document uses a trigger that requires a high-pT jet and a large summed jet
transverse momentum (HT), as described in Section 5.

3 Monte Carlo simulation samples

Monte Carlo (MC) simulation is used to study the signal acceptance and systematic uncertainties, to test
the background estimation methods used, and to estimate the tt̄ background. In all cases, events are
passed through the full GEANT4 [54] detector simulation of ATLAS [55] after the simulation of the parton
shower and hadronisation processes. Following the detector simulation, identical event reconstruction and
selection criteria are applied to both the MC simulation and to the data. Multiple pp collisions in the same
and neighbouring bunch crossings (pile-up) are simulated for all samples by overlaying additional soft
pp collisions which are generated with PYTHIA 8.160 [56] using the ATLAS A2 set of tuned parameters
(tune) in the MC generator [57] and the MSTW2008LO PDF set [58]. These additional interactions are
overlaid onto the hard scatter and events are reweighted such that the MC distribution of the average
number of pp interactions per bunch crossing matches the measured distribution in the full 8 TeV data
sample.

2 The ATLAS reference system is a Cartesian right-handed coordinate system, with the nominal collision point at the origin.
The anticlockwise beam direction defines the positive z-axis, while the positive x-axis is defined as pointing from the collision
point to the centre of the LHC ring and the positive y-axis points upwards. The azimuthal angle φ is measured around the
beam axis, and the polar angle θ is measured with respect to the z-axis. Pseudorapidity is defined as η = − ln[tan(θ/2)],
rapidity is defined as y = 0.5 ln[(E + pz)/(E − pz)], where E is the energy and pz is the z-component of the momentum, and
transverse energy is defined as ET = E sin θ.
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The signal process is simulated using Herwig++ 2.6.3a [59] with the UEEE3 tune [60] for several stop-
mass hypotheses using the PDF set CTEQ6L1 [61, 62]. All non-SM particles masses are set to 5 TeV
except for the stop mass, which is scanned in 25 GeV steps from mt̃ = 100 GeV to mt̃ = 400 GeV.

The signal cross-section used (shown in Figure 2) is calculated to next-to-leading order in the strong
coupling constant, adding the resummation of soft gluon emission at next-to-leading-logarithmic accuracy
(NLO+NLL) [63–65]. For the range of stop masses considered, the uncertainty on the cross-section is
approximately 15% [66]. MadGraph 5.1.4.8 [67] is used to study the impact of ISR on the stop pT
spectrum. The MadGraph samples have one additional parton in the matrix element, which improves the
modelling of a hard ISR jet. MadGraph is then interfaced to PYTHIA 6.426 with the AUET2B tune [68]
and the CTEQ6L1 PDF set for parton shower and hadronisation. The distribution of pT(t̃t̃∗) from the
nominal Herwig++ signal sample is then reweighted to match that of the MadGraph+PYTHIA sample.

Dijet and multijet events, as well as top quark pair (tt̄) production processes, are simulated in order to
study the SM contributions and background estimation techniques. For optimisation studies, SM dijet
and multijet events are generated using Herwig++ 2.6.3a with the CTEQ6L1 PDF set. Top quark pair
events are generated with the POWHEG-BOX-r2129 [69–71] event generator with the CT10 NLO PDF
set [72]. These events are then interfaced to PYTHIA 6.426 with the P2011C tune [73] and the same
CTEQ6L1 PDF set as Herwig++.

The tt̄ production cross-section is calculated at next-to-next-to-leading order (NNLO) in QCD including
resummation of next-to-next-to-leading logarithmic (NNLL) soft gluon terms with top++2.0 [74–79].
The value of the tt̄ cross-section is σtt̄ = 253+13

−15 pb.
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Figure 2: Cross-section for direct t̃t̃∗ pair production at the LHC centre-of-mass energy of
√

s = 8 TeV [63–65].
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4 Object definitions

The data are required to have satisfied criteria designed to reject events with significant contamination
from detector noise, non-collision beam backgrounds, cosmic rays, and other spurious effects. To re-
ject non-collision beam backgrounds and cosmic rays, events are required to contain a primary vertex
consistent with the LHC beamspot, reconstructed from at least two tracks with transverse momenta
ptrack

T > 400 MeV. If more than one vertex satisfies these criteria, the primary vertex is chosen as the
one with the highest

∑
tracks(p2

T).

The anti-kt algorithm [80], with a radius parameter of R = 0.4, is used for initial jet-finding using version 3
of FastJet [81]. The inputs to the jet reconstruction are three-dimensional topo-clusters [82]. This method
first clusters together topologically connected calorimeter cells and classifies these clusters as either elec-
tromagnetic or hadronic. The classification uses a local cluster weighting calibration scheme based on
cell-energy density and shower depth within the calorimeter [83]. Based on this classification, energy cor-
rections are applied which are derived from single-pion MC simulations. Dedicated hadronic corrections
are derived to account for the effects of differences in response to hadrons compared to electrons, signal
losses due to noise-suppression threshold effects, and energy lost in non-instrumented regions. The final
jet energy calibration is derived from MC simulation as a correction relating the calorimeter response
to the jet energy at generator level. In order to determine these corrections, the same jet definition used
in the reconstruction is applied to stable (with lifetimes greater than 10 ps) generator-level particles, ex-
cluding muons and neutrinos. A subtraction procedure is also applied in order to mitigate the effects of
pile-up [84]. Finally, the R = 0.4 jets are further calibrated with additional correction factors derived in
situ from a combination of γ+jet, Z+jet, and dijet-balance methods [83].

All jets reconstructed with the anti-kt algorithm using a radius parameter of R = 0.4 and a measured
pjet

T > 20 GeV are required to satisfy the quality criteria discussed in detail in Ref. [85]. These quality
criteria selections for jets are extended to prevent contamination from detector noise through several
detector-region-specific requirements. Jets contaminated by energy deposits due to noise in the forward
hadronic endcap calorimeter are rejected and jets in the central region (|η| < 2.0) that are at least 95%
contained within the EM calorimeter are required to not exhibit any electronic pulse shape anomalies [86].
Any event with a jet that fails these requirements is removed from the analysis.

Identification of jets containing b-hadrons (so-called b-jets) is achieved through the use of a multivariate
b-tagging algorithm referred to as MV1 [87]. This algorithm is based on an artificial neural-network
algorithm that exploits the impact parameters of charged-particle tracks, the parameters of reconstructed
secondary vertices, and the topology of b- and c-hadron decays inside an anti-kt R = 0.4 jet. A working
point corresponding to a 70% b-jet efficiency in simulated tt̄ events is used. The corresponding mis-
tag rates, defined as the fraction of jets originating from non-b-jets which are tagged by the b-tagging
algorithm in an inclusive jet sample, for light jets and c-jets are approximately 1% and 20%, respectively.
To account for differences with respect to data, data-derived corrections are applied to the MC simulation
for the identification efficiency of b-jets and the probability to mis-identify jets resulting from light-flavour
quarks, charm quarks, and gluons.

Initial jet-finding is extended using an approach called jet re-clustering [88]. This allows the use of larger-
radius jet algorithms while maintaining the calibrations and systematic uncertainties associated with the
input jet definition. Small-radius anti-kt R = 0.4 jets with pT > 20 GeV and |η| < 2.4 are used as input
without modification to an anti-kt R = 1.5 large-R jet algorithm, to identify the hadronic stop decays. The
small-R jets with pT < 50 GeV are required to have a jet vertex fraction (JVF) of at least 50%. After
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summing the pT of charged-particle tracks matched to a jet, the JVF is the fraction due to tracks from the
selected hard-scattering interaction and it provides a means by which to suppress jets from pile-up.

To further improve the background rejection, a splitting procedure is performed on each of the two lead-
ing large-R jets. After jet-finding, the constituents of these large-R jets – the anti-kt R = 0.4 input
objects – are processed separately by the Cambridge–Aachen (C/A) algorithm [89, 90], as implemented
in FastJet 3. The C/A algorithm performs pair-wise recombinations of proto-jets (the inputs to the jet
algorithm) purely based on their angular separation. Smaller-angle pairs are recombined first, thus the
final recombined pair typically has the largest separation. The C/A final clustering is then undone by one
step, such that there are two branches ”a” and ”b”. The following splitting criteria are then applied to the
branches ”a” and ”b” of each of the two leading large-R jets:

• Both branches carry appreciable pT relative to the large-R jet:

min[pT(a), pT(b)]
pT(large−R)

> 0.1. (1)

• The mass of each branch is small relative to its pT:

m(a)
pT(a)

< 0.3 and
m(b)
pT(b)

< 0.3. (2)

If either of the leading two large-R jets fails these selections, the event is discarded. This implementation
is identical to Ref. [38], which is derived from the diboson-jet tagger [91]. This approach differs somewhat
from that used in Ref. [92] in that no requirement is placed on the relative masses of the large-R and small-
R jets.

5 Trigger and offline event selections

Events must satisfy jet and HT selections applied in the trigger which require HT =
∑

pT > 500 GeV,
calculated as the sum of level-2 trigger jets within |η| < 3.2, and a leading jet within |η| < 3.2 with
pT > 145 GeV. This relatively low-threshold jet trigger came online part-way through the data-taking
period in 2012 and collected 17.4 fb−1 of data. The corresponding offline selections require events to
have at least one anti-kt R = 0.4 jet with pT > 175 GeV and |η| < 2.4, as well as HT > 650 GeV, where
the sum is over all anti-kt R = 0.4 jets with pT > 20 GeV, |η| < 2.4, and JVF > 0.5 if pT < 50 GeV.
The cumulative trigger selection efficiency is greater than 99% for these offline requirements. The offline
event preselection further requires that at least two large-R jets with pT > 200 GeV and mass > 20 GeV
be present in each event. These requirements select a range of phase space for low stop masses in which
the transverse momentum of the stops is often significantly greater than their mass.

The signal region (SR) is defined to suppress the large multijet background and to enhance the fraction
of events that contain large-R jets consistent with the production of stop pairs, with each stop decaying to
a light quark and a b-quark. Simulation studies indicate that three kinematic observables are particularly
useful for background discrimination:
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1. The mass asymmetry between the two leading large-R jets in the event (with masses m1 and m2,
respectively), defined as

A =
|m1 − m2|

m1 + m2
, (3)

differentiates signal from background since the two stop subjet-pair resonances are expected to be
of equal mass.

2. The (absolute value of the cosine of the) stop-pair production angle, | cos θ∗|, with respect to the
beam line in the centre-of-mass reference frame3 distinguishes between centrally produced massive
particles and high-mass forward-scattering events from QCD. It provides efficient discrimination
and does not exhibit significant variation with the stop mass.

3. In addition, a requirement on the subjets is applied to each of the leading large-R jets in the event.
The pT of each subjet a and b relative to the other is referred to as the subjet pT2/pT1, defined by

subjet pT2/pT1 =
min[pT(a), pT(b)]
max[pT(a), pT(b)]

. (4)

TheA, | cos θ∗|, and subjet pT2/pT1 variables provide good discrimination between signal and background
and are motivated by an ATLAS search for scalar gluons at

√
s = 7 TeV [93] as well as by Refs. [38,94].

In addition to the kinematic observables described above, b-tagging applied to anti-kt R = 0.4 jets provides
a very powerful discriminant for defining both the signal and the control regions, and one that is approx-
imately uncorrelated with the kinematic features discussed above. Using these kinematic observables and
the presence of at least two b-tagged jets per event, the signal region is defined by (for the leading two
large-R jets)

A < 0.1,

| cos θ∗| < 0.3, (5)

subjet pT2/pT1 > 0.3.

Distributions of the discriminating variables are shown in Figure 3. Insofar as the data points are dom-
inated by background in these plots, even in the case of a potential signal, the data points should be
understood to represent the background.

Following these selections, the distribution of the average mass of the leading two large-R jets, mjet
avg =

(mjet
1 + mjet

2 )/2, is used to search for an excess of events above the background prediction. The search is
done in regions of mjet

avg that are optimised to give the best significance. As shown in Figure 4, the stop
signal is expected as a peak that would appear on top of a smoothly falling background spectrum. A
Gaussian distribution is fitted to the stop signal mjet

avg peak. The mean of the fit, 〈mjet
avg〉, is consistent with

mt̃ in each case. The resolution of the mjet
avg peak is given approximately s/〈mjet

avg〉 ∼ 5−7% (where s is the
standard deviation of the fit), and has only a weak dependence on the stop mass in the range probed by this
analysis. Mass windows in mjet

avg are determined by taking into account the effect of jet energy scale (JES)
and jet energy resolution (JER) measurement uncertainties on the expected signal mjet

avg distribution and
the estimated background. The size of each mass window is defined to be equal to or larger than the full
width of the mjet

avg mass spectrum for the mt̃ model that best corresponds to that range. The definitions of

3 This scattering angle, θ∗, is formed by boosting the two stop large-R jets to the centre-of-mass frame and measuring the angle
of either stop large-R jet with respect to the beam line.
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Figure 3: Distributions of the discriminating variables for events in which the other three selections are applied
for each subfigure. The signal region is indicated with a red arrow. All distributions are normalised to unity.
Overflows are included in the last bin for subfigures (a) and (b). (a) Number of b-tags/event, n. (b) Large-R jet mass
asymmetry,A. (c) Stop-pair centre-of-mass frame production angle, | cos θ∗|. (d) Subjet pT2/pT1 for the leading jet
in each event.

these mass windows and the signal efficiency in each window are given in Table 1. Figure 4(a) shows the
mass windows overlaid on top of the signal mjet

avg distributions for a few stop masses. The efficiency of the
mass windows (relative to the SR cuts of Eq. (5)) varies from 79% at 100 GeV to 19% at 400 GeV. The
low efficiency at high mass is due to the fact that the decay products are often not fully contained in the
large-R jet, as can be seen in Figure 4(b). Figure 5 shows the product of acceptance and efficiency, after
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the SR cuts and mass windows, as a function of mt̃. The significantly lower acceptance times efficiency
for light stop masses in Figure 5 is almost entirely due to the efficiency of the trigger selections which
are for 100, 250, and 400 GeV stop masses 0.56%, 22%, and 96%, respectively. This low efficiency is
compensated by the large cross section for low stop masses retaining sensitivity to these mass values.
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Figure 4: Distributions of the average jet mass mjet
avg for signal samples with mt̃ = 100, 150, 200, 250, and 300 GeV,

in linear (a) and logarithmic (b) scales (solid lines). A Gaussian distribution is fitted to the mass peak of each sample
(dashed lines). The resolution, s/〈mjet

avg〉, is quoted for each stop mass value. The mass windows are highlighted
with the shaded rectangles in (a). The long tail peaking around mt̃/2 for high-mass stops shown in (b) is due to
events where not all stop decay products are clustered within the large-R jets.
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mt̃ [GeV] Window [GeV] Selection efficiency in mass window

100 [95, 115] 79 %

125 [115, 135] 77 %

150 [135, 165] 83 %

175 [165, 190] 72 %

200 [185, 210] 68 %

225 [210, 235] 56 %

250 [235, 265] 55 %

275 [260, 295] 49 %

300 [280, 315] 44 %

325 [305, 350] 30 %

350 [325, 370] 29 %

375 [345, 395] 25 %

400 [375, 420] 19 %

Table 1: Definition of the signal mass windows and selection efficiency in each window relative to the SR cuts of
Eq. (5).
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Figure 5: Total acceptance times efficiency (A × ε) of the SR cuts of Eq. (5), and SR cuts combined with the mass
window selection in Table 1, as a function of mt̃. The denominator of the efficiency (in %) is the total number of
events, i.e. the top row in Table 3.
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6 Background estimation

The estimation of the dominant SM multijet background in the signal region, including both the expected
number of events and the shape of the mjet

avg background spectrum, is performed directly from the data.
MC simulations are used to study the background estimation method itself and to assess the contribution
from tt̄ production. For the background estimation, additional kinematic regions are defined by inverting
the A and | cos θ∗| selections as shown in Table 2. These are labelled An, Bn, Cn, where n indicates
the number of b-tags (n = 0, = 1, ≥ 2). The signal region kinematic selection criteria of Eq. (5) are
comprised by the Dn requirements and summarised in the last row of Table 2, where S R ≡ D2 with n ≥ 2
b-tags, and D1 with n = 1 b-tag is a validation region. Signal event yields are summarised in Table 3 for
three stop masses.

Region A | cos θ∗| Subjet pT2/pT1 n

An ≥ 0.1 ≥ 0.3 > 0.3 = 0, = 1, ≥ 2

Bn < 0.1 ≥ 0.3 > 0.3 = 0, = 1, ≥ 2

Cn ≥ 0.1 < 0.3 > 0.3 = 0, = 1, ≥ 2

Dn < 0.1 < 0.3 > 0.3 = 0, = 1, ≥ 2

Table 2: Definitions of the kinematic regions defined by A, | cos θ∗|, subjet pT2/pT1, and the b-tag multiplicity
(n = 0, = 1, ≥ 2). The letters A, B, C, and D label theA and | cos θ∗| selections, whereas n indicates the number of
b-tags. D2 ≡ S R is the signal region of the analysis.

The method relies on the assumption that the shape of the mjet
avg spectrum is independent of the various

b-tagging selections, as Figure 6(a) indicates, in each of the kinematic regions (An, Bn, Cn, and Dn)
defined in Table 2. The advantage of the approach adopted here is that events with fewer than two b-
tagged jets can be used as control and validation regions for in situ studies of these kinematic regions. An
estimation of the normalisation and shape of the spectrum in the signal region D2 can therefore be tested
and validated using events with n = 1 as well as regions A (A ≥ 0.1, | cos θ∗| ≥ 0.3) and C (A ≥ 0.1,
| cos θ∗| < 0.3). Region B (A < 0.1, | cos θ∗| ≥ 0.3) is primarily used to evaluate shape differences in the
predicted mjet

avg spectra (see Section 7.2).

The A and | cos θ∗| variables are found to have a correlation coefficient of at most 1% in data events for
n = 0. In simulated multijet events, the correlation is also consistent with zero in events with n ≥ 2,
within the large statistical uncertainties. Consequently, the ratio of n ≥ 2 (or n = 1) to n = 0 in regions
A, B, and C should be approximately the same as the ratio in region D. The average jet mass spectrum,
mjet

avg, is compared across the various n selections for region A, as well as between each of the regions
in events with n = 0. These comparisons are shown in Figure 6 along with the ratio of the spectrum in
each region to that which most closely matches the final signal region in each figure (region D for n = 0
and n ≥ 2 for region A). The results demonstrate that the mjet

avg spectra in regions C and D are reliably
reproduced by regions A and B, respectively, as shown in Figure 6(b).

The potential for events from tt̄ production to contribute increases with the addition of b-tag-multiplicity
selections. Table 4 presents the number of events in the data and the contribution from tt̄, as determined
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Selection mt̃ = 100 GeV mt̃ = 250 GeV mt̃ = 400 GeV

Total events (9.72 ± 0.01) × 106 (9.54 ± 0.02) × 104 (6.202 ± 0.002) × 103

Jet + HT trigger (5.47 ± 0.08) × 104 (2.07 ± 0.01) × 104 (5.98 ± 0.02) × 103

Large-R jet tag (1.68 ± 0.04) × 104 (4.76 ± 0.06) × 103 (1.29 ± 0.01) × 103

n ≥ 2 (6.35 ± 0.23) × 103 (1.70 ± 0.03) × 103 515 ± 6

A2 416 ± 58 194 ± 11 68.7 ± 2.2

B2 639 ± 71 199 ± 11 33.3 ± 1.6

C2 419 ± 62 149 ± 9 71.2 ± 2.2

D2 711 ± 74 240 ± 12 41.5 ± 1.8

Table 3: The expected number of signal events in 17.4 fb−1 from MC simulation for each of the selections applied
to the n ≥ 2 region. Stop masses of mt̃ = 100 GeV, 250 GeV and 400 GeV are shown. The statistical uncertainty
of the MC simulation is shown for each selection. The jet + HT trigger selection includes the offline selection. The
large-R jet tag includes both the kinematic preselections and the splitting criteria defined by Eq. (1) and Eq. (2). No
selections are placed on the masses of the candidate stop jets. The region definitions of A2–D2 are summarised in
Table 2.

by MC simulation, in regions A, B, C, and D for n = 0, = 1, ≥ 2. The expected signal and tt̄ contributions
are also given for a few mass windows. The tt̄ contribution is at the few per mille level in the events with
n = 0. Contributions rise slightly in events with n = 1 to a maximum of . 4% in region D1. Lastly,
regions A2 and C2 (A ≥ 0.1) have a maximum tt̄ contribution of around . 10%. Consequently, when
validating the method and in the final background estimate, the contribution from tt̄ is subtracted in each
of the regions. The corrected total number of events in a given region is defined as NXn = Ndata

Xn − Ntt̄
Xn

and the corrected mjet
avg spectrum is defined as NXn,i = Ndata

Xn,i − Ntt̄
Xn,i, where i represents the ith bin of the

histogram (X = A, B,C, or D, and n refers to the number of b-tags). The two quantities are related by
NXn = ΣiNXn,i.

All regions used for the background estimation (A0, C0, D0, A2, and C2) exhibit potential signal con-
tribution of less than 10%. Region B2 (A < 0.1, | cos θ∗| ≥ 0.3) is not used to derive the background
estimate, since the expected signal contribution is much higher here than in A2 and C2 (for mt̃ = 100 GeV
the signal contribution is 50% in B2, compared with 2.2% in A2 and 8.2% in C2). The expected signal
contribution in the validation regions (n = 1) is only significant in B1 and D1 (both requireA < 0.1). Due
to this level of expected signal contribution, and the mjet

avg dependence of that contribution, the background
estimation procedure obtains the mjet

avg spectrum from the n = 0 regions for the final background spectrum
estimate. The background estimation procedure itself is summarised in the following steps:

1. The mjet
avg shape (ND0,i) and total number of events (ND0) are extracted from the D0 region.

2. A projection factor is derived between events with n = 0 and events with n ≥ 2 for the signal-
depleted regions A (A ≥ 0.1, | cos θ∗| ≥ 0.3) and C (A ≥ 0.1, | cos θ∗| < 0.3). As explained above,
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Figure 6: Shape comparisons of the mjet
avg spectrum for the data (a) in region A for events with n = 0, = 1, ≥ 2 and

(b) in regions A, B,C,D for events with n = 0. In each case, the lower panel shows the ratio of the spectrum in each
region to that which most closely matches the final signal region (n ≥ 2 for region A and region D for n = 0). Only
statistical uncertainties are shown.

the number of tt̄ events is subtracted in regions A0,C0, A2, and C2 before evaluating the projection
factor 〈kA,C〉2:

〈kA,C〉2 = (kA2 + kC2)/2, where kX2 =
NX2

NX0
, X = A,C. (6)

3. The projection factor is used to estimate the total number of events,

N
′

D2 = 〈kA,C〉2 × ND0 + Ntt̄
D2, (7)

and shape (bin-by-bin),
N′D2,i = 〈kA,C〉2 × ND0,i + Ntt̄

D2,i, (8)

in the signal region, D2 (where the contribution from tt̄ in D2 has been added).

This procedure is performed in the entire mass range and the mass windows are then defined from the
estimated background spectrum. The projection factors kA2 and kC2 are compatible at the level of about
4% (including the tt̄ subtraction as in Eq. (6)) and this difference is included as a systematic uncertainty
on the background estimate (see Section 7). The validity of the background estimation method can be
demonstrated in the n = 1 regions by deriving a projection factor analogously to Eq. (6) for n = 0 and
n = 1,

〈kA,C〉1 = (kA1 + kC1)/2. (9)

The expected number of events in the full range of D1 is then estimated by

N′D1 = 〈kA,C〉1 × ND0 + Ntt̄
D1

= 12400 ± 130. (10)
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Region Ndata Ntt̄ (± stat. ± syst.)
[95, 115] GeV [135, 165] GeV [165, 190] GeV [375, 420] GeV

NS
Ndata

Ntt̄
Ndata

NS
Ndata

Ntt̄
Ndata

NS
Ndata

Ntt̄
Ndata

NS
Ndata

Ntt̄
Ndata

n = 0

NA0 296 226 390 ± 10 +100
−95 0.21 % 0.27 % 0.048 % 0.14 % 0.019 % 0.072 % 0.11 % 0.037 %

NB0 115 671 176 ± 7 +50
−42 0.64 % 0.20 % 0.90 % 0.17 % 0.50 % 0.14 % 0.68 % 0.13 %

NC0 114 186 221 ± 8 +59
−52 0.42 % 0.39 % 0.088 % 0.20 % 0.020 % 0.093 % 0.24 % 0.18 %

ND0 44 749 110 ± 6 +27
−27 4.0 % 0.27 % 2.0 % 0.29 % 2.3 % 0.24 % 2.4 % 0. %

n = 1

NA1 79 604 1 110 ± 10 +190
−180 1.2 % 2.6 % 0.46 % 1.5 % 0.48 % 0.74 % 0.22 % 0.71 %

NB1 31 045 517 ± 11 +84
−83 14 % 1.9 % 9.7 % 2.3 % 8.0 % 1.9 % 10 % 0.089 %

NC1 32 163 620 ± 10 +110
−100 4.8 % 3.4 % 1.6 % 2.1 % 1.3 % 0.99 % 0.28 % 0.76 %

ND1 12 350 306 ± 8 +52
−45 29 % 2.3 % 31 % 3.6 % 21 % 3.7 % 43 % 0.000 10 %

n ≥ 2

NA2 22 259 1 050 ± 10 +190
−170 2.2 % 6.8 % 1.7 % 5.7 % 1.2 % 2.8 % 1.0 % 1.9 %

NB2 8 416 556 ± 10 +94
−86 50 % 7.2 % 29 % 10 % 24 % 8.8 % 26 % 0.24 %

NC2 9 384 570 ± 10 +100
−94 8.2 % 8.8 % 4.1 % 7.5 % 2.8 % 2.9 % 2.8 % 2.7 %

ND2 3 688 311 ± 7 +60
−47 120 % 8.4 % 73 % 14 % 72 % 11 % 160 % 0.51 %

Table 4: The observed event yields for 17.4 fb−1 in each of the regions for each b-tag multiplicity are shown, as
well as the expected fractional signal contribution for the mass windows (as defined in Table 1) corresponding to
mt̃ = 100, 150, 175, and 400 GeV, and the tt̄ contribution in the same mass windows. The tt̄ systematic uncertainties
include both the detector-level uncertainties and the theoretical uncertainties, as described in Section 7.

The same estimate for D2 gives

N′D2 = 〈kA,C〉2 × ND0 + Ntt̄
D2

= 3640+90
−80. (11)

In Eq. (10) and Eq. (11) the uncertainty quoted includes the statistical uncertainty and the uncertainties
related to the tt̄ estimate (see Section 7). These numbers should be compared with the observed numbers
of events in Table 4, 12350 in D1 and 3688 in D2. The observed numbers of events are consistent with
the estimated values.

7 Systematic uncertainties

Several sources of systematic uncertainty are considered when determining the estimated contributions
from signal and background. The background estimate uncertainties pertain primarily to the method itself.
The control and validation regions defined in Section 6 are used to evaluate the size of these uncertainties.
A description of the primary sources of uncertainty follows.
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7.1 b-jet-multiplicity mjet
avg shape uncertainty

Regions A (A ≥ 0.1, | cos θ∗| ≥ 0.3) and C (A ≥ 0.1, | cos θ∗| < 0.3) are used to directly compare the
shape of the mjet

avg spectrum in events with b-jet-multiplicities of n = 0 and n ≥ 2 (the tt̄-corrected mjet
avg

spectrum is used, as defined in Section 6). The b-jet-multiplicity mjet
avg shape systematic uncertainty is

calculated as the maximum of the bin-by-bin difference of region A2 compared to A0 (Figure 6(a)) and
C2 compared to C0,

σ
b−jet−multi. syst.
i = max

[
|1 − νA2,i/νA0,i|, |1 − νC2,i/νC0,i|

]
, (12)

where the normalised mjet
avg spectrum are defined as νXn,i = NXn,i/NXn (X = A,C). The expression in

Eq. (12) is then added in quadrature with the statistical uncertainty to form the total systematic uncer-
tainty for that particular bin. A fixed bin width of 50 GeV is used in order to reduce effects due to
statistical uncertainties. The size of the b-jet-multiplicity mjet

avg shape systematic uncertainty varies from
approximately 7–12% at low mjet

avg to 20% near mjet
avg ≈ 300 GeV, and to around 90% for mjet

avg ≈ 400 GeV.
The large systematic uncertainty in the high-mass tail is due to the low number of events in the n ≥ 2
regions. Figure 8 shows the b-jet-multiplicity mjet

avg shape systematic uncertainty as well as the total
systematic uncertainty when combined with the constant systematic uncertainty due to the 4% difference
between projection factors kA2 and kC2 mentioned in Section 6, and the background estimation mjet

avg shape
systematic uncertainty described below in Section 7.2.

7.2 Background estimation mjet
avg shape uncertainty

Events with n = 1 are used to test the validity of the background estimation method in data and to
derive a systematic uncertainty on the approach. Figure 7 shows several results of this test by comparing
three estimated spectra with the observed spectrum in each of the four regions. The estimated spectra of
Figure 7 are determined using projection factors,

kX1 = NX1/NX0, (13)

from events with n = 0 to those with n = 1, in each of the three regions X = A, B, and C in order to
determine the extent to which the prediction varies with each choice. Region D1 was used to validate
the systematic uncertainty derived from A1, B1, and C1. Because of the three projection factors (kA, kB,
and kC) there are three estimates (NY1′A,i, NY1′B,i, and NY1′C ,i) of the mjet

avg spectrum in each of the regions
Y1 = A1, B1, and C1. Thus, in total there are nine estimates of the actual spectra, these are written
succinctly as

NY1′X ,i = kX1 × NY0,i, where X = {A, B,C} and Y = {A, B,C}. (14)

These estimates provide a test of the shape compatibility as well as the overall normalisation of the
background estimate (the special cases NA1′A,i, NB1′B,i, and NC1′C ,i are normalised to the data by construction
and thus only provide a shape comparison of n = 1 and n = 0). A systematic uncertainty for the
background projection is then derived by taking, bin-by-bin, the largest deviation of the ratio of estimated
to actual yield from unity in the mjet

avg spectra in each of the regions A, B, and C according to

σ
bkg. syst.
i = max

X,Y

[
|1 − NY1′X ,i/NY1,i|

]
, (15)
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where NY1,i are the observed data points and NY1′X ,i are the estimated spectra defined by Eq. (14). A bin

width of 50 GeV is used, just as above with the b-jet multiplicity mjet
avg shape systematic uncertainty. This

is added in quadrature with the statistical uncertainty of that ratio in order to form the total systematic
uncertainty for that particular bin. The size of the background estimation mjet

avg shape systematic uncer-
tainty varies from less than 10% at low mjet

avg ≈ 100 GeV to 20% near mjet
avg ≈ 400 GeV. Figure 8 shows

the background estimation mjet
avg shape systematic uncertainty as well as the total systematic uncertainty

when combined with the two above-mentioned systematic uncertainties.
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Figure 7: The mjet
avg distribution is shown in four validation regions with n = 1. In each case the data (A1, B1, C1,

and D1) are compared to estimates based on projection factors derived between n = 0 and n = 1 in A, B, and C (see
Section 7.2).
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Figure 8: Systematic uncertainty for the data-driven multijet background estimation. The blue dashed line repres-
ents the background estimation systematic uncertainty estimated from comparisons of the predicted mjet

avg spectra in
regions A1, B1, and C1 to the actual spectra. The red dotted line represents the estimated systematic uncertainty
due to shape differences between events with n = 0 and n ≥ 2. The green line represents a systematic uncertainty
due to the level of compatibility of kA2 and kC2. Finally, the black line with a filled yellow area shows the com-
bined systematic uncertainty of all three contributions added in quadrature. The systematic uncertainty curves were
smoothed with a Gaussian filter of spread 20 GeV.

7.3 Background t t̄ contribution systematic uncertainty

Since POWHEG+PYTHIA MC simulation is used to determine the contribution from tt̄ events in the signal
region and each of the control regions, systematic uncertainties related to the MC simulation of the pro-
cess itself are included in the total systematic uncertainty for the background estimation. The theoretical
uncertainties include renormalisation and factorisation scale variations, parton distribution function un-
certainties, the choice of MC generator using comparisons with MC@NLO [95], the choice of parton shower
models using comparisons with Herwig [96], and initial- and final-state radiation (FSR) modelling un-
certainties. The size of the theoretical systematic uncertainties for tt̄ production vary from approximately
40% to 70% in the relevant kinematic regions and are dominated by the uncertainties from the MC gener-
ator and ISR/FSR variations. The detector-level uncertainties include the JES and JER uncertainties [83]
as well as the b-tagging efficiency and mistag-rate uncertainties [87]. Uncertainties associated with the
large-R jet mass scale and resolution are taken into account by the JES and JER uncertainties of the input
small-R jets [88].
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The size of the total tt̄ systematic uncertainty varies in the mass range mjet
avg = 100–200 GeV from ap-

proximately 50% to 80%. In the range mjet
avg = 300–400 GeV the tt̄ systematic uncertainties are of the

order of 100%, but the tt̄ background is completely negligible in this range. Lastly, an uncertainty of
2.8% is applied to the measured integrated luminosity of 17.4 fb−1 following the methodology described
in Ref. [97].

7.4 Signal systematic uncertainties

In addition to the systematic uncertainties associated with the background estimate, the MC simulation
of the signal model is subject to systematic uncertainties. Much like the contribution from tt̄, these
uncertainties include experimental uncertainties as well as theoretical uncertainties. The detector-level
uncertainties include the JES and JER uncertainties, and the b-tagging uncertainties as described for the
estimate of tt̄. The theoretical uncertainties include renormalisation and factorisation scale variations,
parton distribution function uncertainties, and ISR and FSR modelling uncertainties. The nominal signal
cross-section and its uncertainty are taken from an envelope of cross-section predictions using different
PDF sets and factorisation and renormalisation scales, as described in Ref. [66]. Each signal model is
varied according to these systematic uncertainties and the impact on the acceptance in each mass window
is then propagated to the final result. The largest contribution to the total signal systematic uncertainty
comes from the JES and b-tagging, both in the range 10–18%. The size of the theoretical uncertainty
grows from around 5% for low-mass stops to around 10% for higher-mass stops.

To evaluate the ISR/FSR systematic uncertainty, separate samples of t̃t̃∗ pair events are generated using
MadGraph +PYTHIA, and the rate of ISR/FSR production is varied. These are used to reweight the pT(t̃t̃∗)
distribution of the nominal signal samples to estimate the change in signal acceptance × efficiency. The
effect ranges from 0–17%, with the largest impact at high mt̃.

8 Results

Table 5 summarises the observed and expected number of events that fall within each of the optimised
mass windows in the signal region, D2. Figure 9 shows the observed mjet

avg distribution in the data, along
with the estimated background spectrum, including both the systematic and statistical uncertainties. No
excess over the background prediction is observed.

Model-independent upper limits at 95% confidence level (CL) on the number of beyond-the-SM (BSM)
events for each signal region are derived using the CLs prescription [98] and neglecting any possible con-
tribution in the control regions. Dividing these by the integrated luminosity of the data sample provides
upper limits on the visible BSM cross-section, σvis., which is defined as the product of acceptance (A),
reconstruction efficiency (ε), branching ratio (BR), and production cross-section (σprod.). This search
specifically targets low-mass t̃ → b̄s̄ decays, assuming 100% BR. The resulting limits on the number of
BSM events and on the visible signal cross-section are shown in Table 6. The significance of an excess
can be quantified by the probability (p0) that a background-only experiment has at least as many events
as observed. This p-value is also reported for each region in Table 6, where p0 = 1 − CLb and CLb is
the confidence level observed for the background-only hypothesis. The p-value is truncated at 0.5 for any
signal region where the observed number of events is less than the expected number.
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mt̃ [GeV] Window [GeV] Ndata-driven est.
B N tt̄ est.

B N tot. est.
B Nobs.

data NS

100 [95, 115] 465 ± 56 39 ± 26 504 ± 61 460 560 ± 140

125 [115, 135] 496 ± 49 68 ± 37 564 ± 61 555 570 ± 130

150 [135, 165] 680 ± 61 105 ± 49 785 ± 78 761 560 ± 110

175 [165, 190] 471 ± 46 63 ± 19 534 ± 50 583 421 ± 96

200 [185, 210] 395 ± 46 16.5 ± 9.6 412 ± 47 416 293 ± 50

225 [210, 235] 266 ± 37 2.4 ± 2.4 269 ± 37 283 178 ± 36

250 [235, 265] 176 ± 27 1.1 ± 1.1 177 ± 27 195 127 ± 29

275 [260, 295] 104 ± 19 0.59 ± 0.55 104 ± 19 96 71 ± 20

300 [280, 315] 69 ± 16 0.93 ± 0.29 70 ± 16 51 48 ± 10

325 [305, 350] 43 ± 14 0.73 ± 0.53 43 ± 14 44 29.4± 6.9

350 [325, 370] 26 ± 10 0.23 ± 0.15 26 ± 10 37 20.2± 4.3

375 [345, 395] 18.6 ± 9.8 0.076 ± 0.076 18.7± 9.8 22 12.6± 2.8

400 [375, 420] 9.5 ± 7.7 0.026 ± 0.026 9.5± 7.7 5 8.1± 1.8

Table 5: Summary of the observed number of events in the data and the estimated number of signal and background
events with total uncertainties (i.e. all listed uncertainties are the combined statistical and systematic uncertainties)
that fall within each of the optimised mass windows in region D2. The total number of estimated background events
in each window is the sum of the estimated background from the data-driven method and the tt̄ simulation. The
columns, from left to right indicate: Ndata-driven est.

B , the data-driven background estimate; N tt̄ est.
B , the background

contribution from tt̄; N tot. est.
B , the total estimated background; Nobs.

data , the number of observed events in the data; and
NS , the number of expected signal events.

Exclusion limits are set on the signal model of interest. A profile likelihood ratio combining Poisson
probabilities for signal and background is computed to determine the 95% CL for compatibility of the
data with the signal-plus-background hypothesis (CLs+b) [99]. A similar calculation is performed for the
background-only hypothesis (CLb). From the ratio of these two quantities, the confidence level for the
presence of signal (CLs) is determined [98]. Systematic uncertainties are treated as nuisance parameters
assuming Gaussian distributions and pseudo-experiments are used to evaluate the results. This procedure
is implemented using a software framework for statistical data analysis, HistFitter [100]. The observed
and expected 95% CL upper limits on the allowed cross-section are shown in Figure 10. For each sim-
ulated stop mass, the optimal mass window is chosen and the expected background yield is compared
to the observed number of events in the mass window. Any potential signal contribution in the control
regions from which the background estimates are derived is included as a systematic uncertainty on the
background estimate. The size of the potential signal contribution in the control regions is shown for a
few mass windows in Table 4. Stops with masses between 100 ≤ mt̃ ≤ 315 GeV are excluded at 95%
confidence level. All mass limits are quoted using the t̃t̃∗ signal production cross-section reduced by one
standard deviation of the theory uncertainties.
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Model-independent upper limits at 95% CL

Window [GeV] σvis. [fb] Observed NBSM Expected NBSM p0

[95, 115] 5.8 101 127 +50
−36 0.50

[115, 135] 7.0 122 128 +50
−36 0.50

[135, 165] 8.4 145 160 +40
−45 0.50

[165, 190] 8.4 146 109 +43
−31 0.19

[185, 210] 5.9 103 100 +39
−28 0.47

[210, 235] 5.1 89 79 +31
−22 0.36

[235, 265] 4.2 73 60 +24
−17 0.28

[260, 295] 2.2 38 43 +17
−12 0.50

[280, 315] 1.4 25 35 +14
−10 0.50

[305, 350] 1.7 30 30 +12
−8 0.49

[325, 370] 1.8 31.8 23.5 +9.4
−6.6 0.18

[345, 395] 1.4 23.8 21.4 +8.4
−6.0 0.38

[375, 420] 0.57 10.0 10.8 +3.2
−2.1 0.50

Table 6: Left to right: mass window range, 95% CL upper limits on the visible cross-section (σvis. = 〈A× ε ×BR×
σprod.〉) and on the number of signal events (Observed NBSM). The fourth column (Expected NBSM) shows the 95%
CL upper limit on the number of signal events, given the expected number (and ±1σ excursions on the expectation)
of background events. The last column indicates the discovery p-value, p0 = 1−CLb, where CLb is the confidence
level observed for the background-only hypothesis. The p-value is truncated at 0.5 for any mass window where the
observed number of events is less than the expected number.
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Figure 9: The observed mjet
avg spectrum in the signal region is shown as black points with statistical uncertainties.

Also shown is the total SM background estimate, and the separate contributions from the data-driven multijet and
MC tt̄ backgrounds. The red hatched band represents the combined statistical and systematic uncertainty on the
total SM background estimate. Signal mass spectra are shown with statistical uncertainties only. The bottom panel
shows the ratio of the data relative to the total SM background estimate.
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and the blue band indicates the ±1σ variations due to theoretical uncertainties on the signal production cross-
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calculated at NLO+NLL, whereas in the CDF paper the cross-section was calculated at NLO only.
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9 Conclusions

This paper presents a search for direct pair production of light top squarks, decaying via an R-parity-
violating coupling to b- and s-quarks. This leads to a final state characterised by two large-radius hadronic
jets that each contain both decay products of the top squark. The search uses 17.4 fb−1 of

√
s = 8 TeV

proton–proton collision data collected with the ATLAS detector at the LHC. No deviation from the back-
ground prediction is observed, and top squarks with masses between 100 and 315 GeV are excluded at
95% confidence level.
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