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Abstract. We investigate the following “epistemic” extensions of (frag-
ments of) first order logics: if ¢ is a formula, then ;¢ is also a formula,
where T is a fixed finite set. The intended meaning of s is “the "
agent (i'" participant of the model) knows ¢”. The main result of the
paper is Theorem 1: if L is such a fragment of first order logic whose
consequence relation is weakly decidable, then the consequence relation
of the epistemic extension of L remains weakly decidable, as well.

1 Introduction

Definition 1. Let L be a fragment of first order logic and let I be any finite set.
The set E, of elementary epistemic formulas over L is defined to be the smallest
set satisfying the following two stipulations:

e F; contains all formulas of L and

o foranyi € I and ¢ € Er, we have O;p € Formg 1(L) (that is, Er, is closed
for the operations O;, for any i € I).
In addition, Formg 1(L) is defined to be the set of all Boolean combinations of
Er.

The intended meaning of ;¢ is “the i*" agent (i** participant of the model)
knows ¢”, where ¢ is a formula that may also contain [J; operations.

Logics of epistemology has been studied intensively, for related investigations
we refer to [1], [2] and the references therein.

Our main aim is to provide semantics for the formulas Formg ;(L) in such a
way, that the consequence relation of our semantics remains decidable, whenever
the consequence relation of L is decidable. For a quite expressive fragment of
first order logic with (weakly) decidable consequence relation, we refer to [3].

To achieve our goal, we need further preparations. In Section 2 we are sum-
ming up the preliminaries and definitions we need, in Section 3 we present the
proofs.
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2 Technical Introduction

Our notation is standard, however, the following short list may help the reader.
Throughout N denotes the set of natural numbers. Let L be a logic. Then Formy,
and =1, denote respectively, the set of formulas of L and the consequence relation
of L (as usual, =1, also denotes the satisfaction relation of L). If A is a model
for L then Th(A) denotes the theory of A which is defined to be

Th(A) ={p € Formr : A=L ¢}.
Throughout, by Gédel numbering we mean an injective function
g: Formg (L) = N

such that both g and ¢g~! is computable. It is well known, that such a g func-
tion exists (in fact, there exists a primitive recursive such g with g=! primitive
recursive, as well). We do not specify g further, because below we will use the
fact only, that such a g exists (and we do not use the particular form, or further
properties of such a g).

Definition 2. Let ¢ € Formg 1(L). Then the tautological skeleton taut(p) is
defined inductively as follows.

if ¢ is a formula of L, then taut(y) = p;

taut(—)) = —taut(y);

taut(y A ) = taut(y) A taut(o);

taut(D;9)) = Z, where Z, is the n'" propositional variable and n is the
Gaédel-number of ;1.

In addition, if X C Formeg 1(L), then taut(X) is defined to be
taut(X) = {taut(p) : p € X }.

Remark 1. Tt is easy to see, that taut is a computable function, that is, there
exists an algorithm computing taut(y) from . Moreover, ¢ is also computable
from taut(p), because each propositional variable Z,, corresponds at most one
formula ¢ € Formg (L), namely, Z,, corresponds to that ¢ (if any) whose Godel
number is n.

Definition 3. Let X C Formg (L) and let i € I be fized. Then cl;(X) is
defined to be

ci(X) = {o, 00 : taut(X) Er, taut(p)}.

Definition 4. By an (&, I)-structure we mean a pair (A, f) where A is an L-
structure and f : I — P(Formg (L)) is a function, such that for any i € I

o If p € Formy and A =L ¢ then ¢ € f(i);

o cli(f(i)) = f(i).
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Definition 5. Let (A, f) be an (€, I)-structure and let k be an evaluation over
A. Then the satisfaction relation (A, f) l=¢. 1 @[k| is defined recursively on the
complezxity of ¢ € Formg 1(L) as follows.

for an atomic (first order) formula (A, f) Ec.r @lk] iff AE ¢[k];

A f) Eer —elk]l iff (A f) e olk];

AP e o AR iff (A F) e olk] and (A, £) e 4]

(A, f) e Jupplk] iff there exists an evaluation k' such that (A, f) e 1
[k'] and for any m # n we have k(m) = k'(m);

(A, f) ber Duglh] iff ¢ € £G).

Finally, (A, ) e, ¢ iff (A, ) Ee.L plk] for any evaluation k over A.

Using the notation of the previous definition, it is easy to see, that for a
first order formula ¢ € Form(L) the assertion (A, f) =¢ 1 ¢ is equivalent with

Al .
Definition 6. Let X' C Formg (L) and let ¢ € Formg 1(L). Then X =g 1 ¢
iff for any (€, I)-structure (A, f) the following holds:

if for all ¢ € X we have (A, f) e 1 ¥ then (A, f) Ee.L ¢

We say, that the consequence relation of a logic £ is weakly decidable iff there
exists an algorithm 7 whose input is a finite set X' C Form(L) and a formula
¢ € Form(L) and 7 always stops after a finite number of steps and provides a

correct answer for the question “X j: .
Our main result is as follows.

Theorem 1. Suppose the consequence relation =1 of L is weakly decidable.
Then [=¢.1, is also weakly decidable.

The rest of this paper is devoted to prove this theorem. To do so, we need
further preparations.

3 Proofs

Lemma 1. Assume, that the consequence relation =5, of L is decidable. Let
X C Formg (L) be a decidable subset of Formg (L) and let i € I be fized.
Then cl;(X) is a decidable subset of Formg r(L).

Proof. Clearly, if X is decidable, then so is taut(X) (because by Remark 1,
taut~! is computable and X is assumed to be decidable). Combining this with
the assumption, that the consequence relation =y, of L is decidable, the state-
ment follows immediately.

Now we will define a relation Ded and show, that this relation is decidable.
Finally, we show, that Ded and the consequence relation |=¢ 1 coincide, thus
the algorithm deciding Ded also witnesses, that the consequence relation =¢ r,
is weakly decidable.
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Definition 7. Let X C Formg (L) and let ¢ € Formg (L). Then
Dedy(X) ={y € Formy : X N Formy, =L ¥}.

Now suppose, that Ded,, has already been defined for somen € N. Then Ded,,11(X)
1s defined by recursion as follows.

Ded,(X) C Dedp i1 (X);

if o =0 then ¢ € Ded,1(X) iff ¥ € clj(Ded,,(X));

if o =~ then ¢ € Dedp1(X) iff ¥ & Dedp1(X);

if o =1 Ao then ¢ € Ded,+1(X) iff ¥ € Dedp4+1(X) and 0 € Ded,,11(X).

Finally, let
Ded(X) = | Ded,(X).

neN

Theorem 2. Assume, that the consequence relation =1, of L is weakly decid-
able. Let X C Formg (L) be a finite subset of Formg 1(L). Then Ded(X) is a
decidable subset of Formg r(L).

Proof. A simple inspection of Definition 7 together with Lemma 1 shows, that
Ded,,(X) is decidable for all n € N, in addition, (the Gédel number of) an
algorithm deciding Ded,,(X) may be computed from n. Moreover, ¢ € Ded(X)
iff € Ded, (X), where n is the number of all occurrences of [J-operations in ¢.
It follows, that Ded(X) is decidable, as desired.

Now we are ready to prove Theorem 1. We will split the proof into two parts.

Theorem 3. Assume, that the consequence relation =1, of L is weakly decidable.
Let X C Formg 1(L) be a finite subset of Forme (L) and let p € Formg 1(L).
Then

¢ € Ded(X) implies X g1 .

Proof. Suppose ¢ € Ded(X). Then there exists n € N such that ¢ € Ded,,(X).
So it is enough to show

(¥*) ¢ € Ded,(X) implies X ¢ ¢ and
(A, fY E X impies (Vi € I)Ded,(X) C f(i).

We apply induction on n. If n = 0, then (%) holds, obviously. Now assume,
that (%) holds for 0, ...,n; we shall show, that it remains true for n + 1. To do
so, let ¢ € Ded,11(X).

If ¢ € Formy, then, in fact, ¢ € Dedy(X), hence (x) follows for ¢ from the
n = 0 case.

If p = O;4, then, according to Definition 7, we have ¢ € cl;(Ded,(X)). By
induction, we have X |=¢ 1, Ded,(X). Assume (A, f) ¢ 1 X. It follows, that
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(A, f) Ee.L Ded,(X). So, again by induction, we have Ded,(X) C f(i). Com-
bining this with the second stipulation of Definition 4, we obtain (A, f) =¢ 1 .
This shows, that (x) remains true for ¢.

If o = =) or ¢ =¥ A p then (%) for ¢ may be derived from Definition 5 and
Definition 7 in the usual way.

This completes the induction, and we are done.

Now we prove the converse of Theorem 3.

Theorem 4. Assume, that the consequence relation |=r, of L is weakly decidable.
Let X C Formg 1(L) be a finite subset of Forme (L) and let ¢ € Formg 1(L).
Then

X Ee ¢ implies ¢ € Ded(X).

Proof. Assume, ¢ ¢ Ded(X); it is enough to show, that X F¢ 1 ¢. Do do
so, we shall construct an (£, I)-structure (A, f) such that (A, f) F=¢ 1 X but
<Aa f> %E,L P-

First we show, that X N Formy is consistent (in the sense of usual first
order logic). Indeed, if X N Formj, would be inconsistent, then it would follow,
that Dedy = Formy, consequently, we would have Ded(X) = Formg ;(L);
particularly we would have ¢ € Ded(X). Thus, there exists a first order structure
A such that A =;, X N Formy,.

Now, for any i € I, let f(i) = cl;y(Thr(A)). Clearly, (A, f) is an (&,I)-
structure. Observe, that for any ¢ € Formg (L) we have (A, f) Eecp ¢ iff
¢ € Ded(X). Particularly, (A, f) Ec.r X and (A, f) e, @, as desired.

Now we are ready to prove the main result of the paper which is a more
detailed version of Theorem 1.

Theorem 5. Suppose the consequence relation =y, of L is weakly decidable. Let
X C Formg (L) be a finite subset of Formg (L) and let ¢ € Formg 1(L).
Then we have

(1) X ¢, ¢ iff ¢ € Ded(X);
(2) =¢ 1. is weakly decidable, too.

Proof. Combining Theorems 3 and 4, (1) follows immediately. To prove (2) we
note, that according to (1), for any finite X C Formg ;(L) and ¢ € Formg 1(L)
we have X ¢ 1, ¢ iff ¢ € Ded(X). But, by Theorem 2 Ded(X) is decidable for
any decidable X (in addition, an algorithm deciding Ded(X) may be effectively
constructed from an algorithm deciding X).
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