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Abstract Bike-sharing services provide easy access to environmentally-friendly mobility reducing

congestion in urban areas. Increasing demand requires highly service planning methods based on

bike-sharing user behavior. Negative Binomial, Poisson Regression, and Time Series models were

elaborated considering the weather to reveal the differences between the members, occasional users,

and visitor bike-sharing user groups. The negative Binomial approach is found to be superior to

Poisson. Weather effects were varied in their influence on bike-sharing user classifications. In gen-

eral, good weather conditions lead to more usage of bike-sharing. Weekends attract more occa-

sional users and visitors than weekdays. In time series models, the seasonal trend of bike-sharing

trips conducted by members was predicted without weather impact. According to the comparison,

Random Forest performed better than SARIMA when the number of observations was low. Visi-

tors are more influenced by temperature, wind and type of day. Occasional users are more subjected

to precipitation. For members, it is found that the temperature, type of day are the most significant

factors. The least factors for all are varied as well: precipitation for visitors, humidity for occasional

users, precipitation and wind for members. The results help decision-makers predict the daily usage

of bike-sharing for various user groups.
� 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Cycling is one of the most important elements of sustainable
mobility for its numerous advantages, including its zero-
emission status, low land use, and positive impact on general

health [32]. The rising interest in cycling attracts more users
to bike-sharing systems as well. Besides health and environ-
mental benefits, transition to bike-sharing was also propelled

by the COVID pandemic because many people found it as
an adequate alternative of public transport to avoid virus
transmission [49]. As more people are using bike-sharing new
issues related to capacity planning arise. Namely, better

understanding of user behavior helps operation planning and
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facilitates high capacity utilization. Previously, the fluctuation
and the wide variety of demand were found to be the among
the biggest challenges of bike-sharing system operators [50].

Thus, we focus on the various user groups’ usage pattern of
using bike-sharing systems throughout time. The user groups
were considered to reveal the different impacts of weather

and temporal variables on their travel behavior. The analysis
is conducted based on several statistical methods. Count mod-
els (Negative Binomial Regression Model and Poisson Regres-

sion), Time Series model (Seasonal Auto-Regressive Integrated
Moving Average), and Data Mining Techniques (Random
Forest) have been used and compared. The novelty of our
research is that per our knowledge no research has examined

the effects of weather conditions on various bike-sharing
groups, as well as, none compared the detailed performance
of the above methods in bike-sharing use prediction consider-

ing different user groups. The need of such comparison is to
find the best-fit method for each user category.

The structure of the paper is as follows: after a brief litera-

ture review, a description of the methodology and data set can
be found in Section 2. Results and discussion are presented in
section 3. Finally, conclusions are drawn, and future research

trends are identified.

2. Literature review

Recently, traffic congestion and air pollution led to a rise of
interest in eco-friendly transportation [23,57,11]. Thus, Bike-
sharing (BS) has a good impact on economics, transportation,
health, and enhances rider safety by raising driver awareness as

well as helps tourists to explore and visit attractions
[41,33,58,57,7] found that many visitors who use bike-sharing
are cyclists who are unable to transfer their vehicles to their

destination and prefer public transportation and bike-
sharing. Thus, bikers can use bike-sharing to connect to public
transit at a reduced cost [64].

Several review papers [26,23] investigated factors affecting
bike-sharing demand, such as weather, built environment
[27], land use, public transportation, spatial aspects [31],

socio-demographics [9], temporal factors, and safety. Research
on bike user characteristics was conducted using different
approaches. For example, Maas et al. [39] used the Ordinary
Least Square (OLS) regression model to reveal bike-sharing’s

spatial and temporal characteristics use in Limassol, Cyprus.
Faghih-Imani et al. [24] explored the BS use temporality
between April and August 2012 in Montreal, Canada, using

a multilevel statistical modeling technique. Noland et al. [42]
provided a set of Bayesian regression seasonal trip generation
models for New York City bike-sharing stations. It was found

that the most weather-sensitive occasional users had lower
usage than regular users. El-Assi et al. [22] applied a dis-
tributed lag model. The results showed that members used
the bike share system 60 % more on weekdays than on week-

ends. Using multilevel modeling, [46] found that precipitation
affects bike ridership negatively. The findings also show that
people cycle 25 % more on weekdays than on weekends. Using

the autoregressive negative binomial time series model, it has
been observed that people use BS more in good weather [16].
In contrast, bicycle use declines on weekends, indicating a sig-

nificant share of work motivated trips. Close to our aims,
Turoń et al. [51] carried out a statistical analysis using data
acquired in 2017 and 2018 in Hungary. The results support
predicting seasonal demand and estimating the attractiveness
of individual docking stations. The main difference between

our research and Turon et al. article is that the authors used
monthly and yearly observations trends without investigating
weather conditions. Moreover, Földes and Csiszar [28] noted

the need for further studies related to bike-sharing availability,
usage, navigation, and payment.

Thus, we categorized the studies based on their focus into

the following groups: temporal and weather conditions, count
(Poisson and Negative Binomial), ARIMA, and data mining
techniques (Random Forest) models.

2.1. Count models

Several articles elaborated count models to reveal the relation-
ship between the demand and weather conditions. A four-year

study [37] used the Negative Binomial (NB) model. Research-
ers found that fewer trips were made on weekends, public hol-
idays, and during summer semesters, while the number of rides

was positively correlated to the daily temperature. However,
user groups were not analyzed. Similarly, Younes et al. [63]
used a log-level Poisson model to analyze changes in demand

on weekends and weekdays separately in Washington DC,
US. Higher temperature and better visibility have a substantial
and positive effect on bike-sharing trips, while wind speed has
a significant negative impact. In Daejeon, South Korea, Kim

[35] indicated that high temperature and non-working days
have a negative impact on the demand. For the San Francisco
Bay Area Bike Share System, Ashqar et al. [3] used a Poisson

regression model (PRM) and the Negative Binomial regression
model (NBRM) to predict the number of bikes in the network.
The time of day, temperature, and humidity level were found

to be significant count predictors. User groups, pressure, and
solar radiation were not considered. Others used this approach
to reveal the impact of socioeconomic and land-use character-

istics on BS [40]. Age, income, education, transit stops, hub
locations, offices, schools, trails, and sidewalk facilities were
significant geographical variables in Poisson model, but the
weather was not investigated. Finally, in Cologne, Germany,

Schimohr and Scheiner [45] investigated the space–time pat-
terns of bike-sharing utilization using Poisson regression and
found that demand is the lowest on Sundays.

2.2. ARIMA models

Research on bike-sharing using ARIMA method was con-

ducted with various objectives. Cho et al. [18] studied the con-
nection of public transportation to BS. The results implied that
the bike-sharing demand is higher at bus stops than at subway

stations. ARIMA was also used to determine how the built
environment affects bike ridership in Houston [5]. It was found
that the trips were two times greater in numbers on weekends
than on weekdays. Temperature and wind did not affect the

daily average trip counts. However, precipitation reduced the
average number of trips. ARIMA was found to be a good pre-
dictor of bike-sharing demand in small areas according to a

comparison with machine learning-based models [54,59,36].
Feng et al. [25] estimated bike availability at bike stations
based on historical data using ARIMA and Markov queueing

approaches. ARIMA was better in the performance of estima-



Fig. 1 Flowchart of the methodology.
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tion. Dias et al. [21] forecasted the bike availability in the BS
stations in Barcelona. The authors employed publicly available
data, such as the weather forecast, to categorize the state of the

stations using the Random Forest algorithm. Yoon et al. [62]
proposed a personal journey adviser for BS users to assist nav-
igation in cities. In terms of trip time, the authors modeled the

behavior of real mobile bikers using ARIMA.

2.3. Data mining models

Ashqar et al. [3] used the Random Forest to anticipate bike
counts in San Francisco Bay Area Bike Share stations. Time,
temperature, and humidity were found to be the most signifi-

cant count predictors using Random Forest. In the same line,
Sathishkumar and Cho [52,53] predicted the hourly rental bike
demand in Seoul Public Park. Temperature outperformed
other weather variables like humidity, wind, visibility, dew

point, solar radiation, snowfall, and rainfall. Moreover,
Sathishkumar and Cho [52,53] used the same method of ran-
dom forest in addition to the linear regression for the Capital

Bike share program in Washington, D.C. The findings indi-
cated that the descending order of impact variables are temper-
ature, time, humidity, rain, and wind. In Europe, Ruffieux

et al. [44] predicted bike and space availability at bike-
sharing stations in real-time based on Random Forest algo-
rithms and Convolutional Neural Networks. Again, the tem-
perature was on the top, then wind, humidity, and type of

the day. Lathia et al. [38] noted that bike usage varies signifi-
cantly according to the time of day, the day of the week, and
the type of day, such as holidays using data mining approach.

In summary, most of the previous studies focused on over-
all bike-sharing users as one group, influenced by temperature,
and type of the day. Thus, it is important to conduct a study

that focuses on good predictions and comparisons of the var-
ious categories, which is missing. Moreover, no research com-
pared count models, ARIMA, and Random Forest, the main

research gap. In this study, the bike-sharing demand is mod-
eled based on the weather and temporal variables. Further-
more, the performance of the models is compared.

3. Methodology

This section elaborates on the count models (NBRM and
PRM), Time series model (ARIMA), and Random Forest

model. The flowchart of the methodology, is given in Fig. 1.

3.1. NBRM and PRM

NBRM and PRM were elaborated to predict the discrete num-
ber of bikes in use and daily trips based on historical data.
NBRM is applied if the dependent variable has a negative

binomial distribution, and the variance does not equal the
mean value. Similarly, PRM used if the dependent variable
has a Poisson distribution, a specific negative binomial distri-

bution where the variance equals the mean value. Accordingly,
PRM includes one less parameter [60]. Equation (1) expresses
the count models. Nowadays, PRM is the most commonly
used method for count data modeling [48,43,65]. Further

information on NBRM and PRM can be obtained in the liter-
ature [12].
logðYÞ ¼ b0 þ
Xn

i¼1

biXi ð1Þ

Where:
Y : Bike counts or trips.
b0: Constant.

bi: Independent variable parameter.
Xi: Independent variables, including precipitation, wind

speed, solar radiation, pressure, humidity, and temperature.

To evaluate the fitness of the models, we have applied the
following common criteria to the data set [2]:

� Bayesian Information Criterion (BIC):
� The Akaike Information Criterion (AIC), and
� Likelihood Ratio (LR) test.

BIC and AIC consider the model fitness and the number of
parameters. The only difference is, BIC considers the number
of observations [65,4]. In general, the model with the lowest

BIC and AIC is preferred [56,17]. LR test concentrates on
the improvement concerning likelihood value. The higher the
likelihood, the better is the fit of the model.



Table 1 Average Values of Daily Usage and Trips.

User groups Average daily bikes used

(bikes/day)

Average daily trips

(trips/day)

Visitor (V) 20.9 52.6

Occasional (O) 9.6 17.6

Member (M) 167.4 1084.1

Irregular

(V + O)

30.5 70.2

All Users

(V + O + M)

189.5 1140.8
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3.2. ARIMA model

Autoregressive Integrated Moving Average (ARIMA) models
forecast time series considering periodicity and seasonality
based on equally spaced univariate time series data, transfer

function data, and intervention data. Because ARIMA was
the most representative model in the time-series domain, many
studies in the transportation field used it as a baseline. In this
study, we applied the Seasonal ARIMA (SARIMA) on a

weekly basis to consider weekly differences that may cause bias
in regression models. The simplified notation for seasonal
ARIMA is SARIMA (p,d,q)(P,D,Q), which is expressed in

equation (2):

ð1� b1Yt�1 þ b2Yt�2 þ � � � þ bPYt�PÞð1þ b1Yt�1

þ b2Yt�2 þ � � � þ bpYt�pÞð1� dYt�1Þð1�DYt�1ÞYt

¼ aþ ð1� ½03B8�1Yt�1 þ h2Yt�2 þ � � � þ hQYt�QÞ
� ð1þ ½03B8�1Yt�1 þ h2Yt�2 þ � � � þ hqYt�qÞet

þ
Xn

1

un ð2Þ

Where:

Yt = dependent variables, which is daily bike counts or
trips;

Xn = independent variables, including precipitation, wind

speed, solar radiation, pressure, humidity and temperature;
et= Yt � Yt�1;
a = constant;
b = coefficient in AR; h= coefficient in MA.

p = the order of the AR; P = the order of the AR-
Seasonal;

q = the order of the MA; Q = the order of the MA-

Seasonal;
d = non-seasonal difference; D = seasonal difference.
un = coefficient of independent variables.

3.3. Random Forest

The Random Forests (RF) approach is one of the top ensem-

ble learning algorithms [8]. This methodology effectively deals
with the enormous complexity of the input data and non-
linearity aspects. However, because it recognizes the signifi-
cance of each component, the random forest method is an

extremely powerful tool for reducing dimensionality in any cir-
cumstance [15,1]. Random forest outperforms decision tree in
terms of accuracy because of the use of Massive Numbers, yet

it is more difficult to over fit than decision tree. Random for-
ests can rank the impact of variables in a regression or classi-
fication problem more accurately than conventional methods.

The improvement in the split-criterion at each split in each tree
is the important measure given to the splitting variable. This
measure is aggregated over all the trees in the forest separately

for each variable [8,29].

3.4. Data set

Despite the strong interest in BS, only a few studies focus on

bike-sharing-related issues in Central and Eastern Europe [7].
Thus, Budapest is taken as a case study. After five million peo-
ple received at least one dose of a COVID-19 vaccination,
Hungarian authorities removed most of the country’s
COVID-19-related internal restrictions on 24 May 2021. Thus,
our study focuses on the post-COVID era between June and

October 2021 to minimize the effect of the pandemic. Studies
[10,6] have found that the negative effects of the pandemic
on the cycling were limited in Hungary, which means that bik-

ers continued their increasing travel behavior. Therefore, the
results are still relevant after the pandemic.

The dataset consists of BS use and weather conditions. A

station-based BS operator gave BS use data. It has approxi-
mately 200 stations and bikes. The stations are in Budapest’s
downtown area and cover about 17 km2. The data include
the average number of daily bikes used of bike-sharing service

and average daily trips of bike-sharing service per user group
and day. The following user groups were distinguished:

� Visitors: people with foreign phone numbers and without
monthly membership,

� Occasional users: people with local phone numbers and

without monthly membership,
� Members: people with local phone numbers and monthly
membership.

� Irregular users: Visitors + Occasional users.
� All users: Members + Irregular users.

Visitors and occasional members together are irregular

users. The average values of these attributes are shown in
Table 1.

Weather data contained temperature, humidity, pressure,

wind speed, precipitation, and solar radiation. The weather
conditions between June and October 2021 are summarized
in Table 2.

To depict the trend of daily usage and trip of bike-sharing,
see Figs. 2 and 3. We notice that the daily trips of bike-sharing
service are increasing by time, while the number of bikes usage

is decreasing. This means that people use bike-sharing more
frequently but with less bikes. One possible reason for the
increase in daily trips could be increasing traffic after COVID,
due to home office individuals’ trip occur within a more limited

space that fits cycling [55], lower attractiveness of public trans-
port due to COVID, or more people become aware of and
interested in sustainable transportation. The decrease in bikes

used could be attributed to a number of factors such as
changes in user preferences, e.g. longer trips distances, or
increase in number of couriers that usually use limited bikes

in their daily rides which affect the average bike usage. The
trend-line of bike-sharing trips (Fig. 2) is increasing by time.
We used 1-week (7 days-period) moving average for better rep-



Table 2 Average, Standard Deviation, Minimum, and Maximum Vales of Weather Parameters.

Weather Parameter Average Value Standard Deviation Minimum Maximum

Precipitation 1.11 mm 0.31 mm 0.00 mm 33.5 mm

Temperature 19.4 �C 5.9 �C 6.0 �C 33.0 �C
Humidity 65.1 % 9.1 % 45 % 93 %

Solar Radiation 13.8 h 1.9 h 10.0 h 16.0 h

Pressure 1017.14 hpa 0.42 hpa 1005 hpa 1033 hpa

Wind Speed 6.8 km/hour 2.6 km/hour 3 km/hour 16 km/hour

Fig. 2 Number of Bike-sharing Trips between June and October 2021.

Fig. 3 Number of Bikes used in Bike-sharing service between June and October 2021.
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resentation of the data. There are two observed peaks that

could be explained as follows: the first in August were the
weather is becoming better for tourists and occasional users,
and the second in October were the weather is fluctuating

and the couriers (e.g. food delivery) are working more with
increased trips. On the other hand, as the bikes used are
decreasing (Fig. 3, this is also explained by the same reasons
above; more visitors with limited trips per bike daily in August
(2.2 trips per bike), and more members with several trips using

limited bikes daily in October (6.5 trips per bike).

4. Results and discussion

BIC, AIC, and Likelihood comparisons between NBRM and
PRM were carried out. After getting the best-fit model, counts
and trips are estimated through significant independent vari-
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ables of weather conditions and weekdays/weekends. SAR-
IMA models are developed based on AIC results and esti-
mated independent variables for the time-series model.

4.1. Evaluation of distribution

The bike-sharing use data shows overdispersion and is closer

to negative binomial distribution than to the Poisson distribu-
tion (Table 3 and Table 4) for lower BIC and AIC, and higher
likelihood values [61]. Thus, the Negative Binomial model is

chosen to estimate the number of bikes used and trips.

4.2. Parameter calculation using count models

The bi parameters were calculated (equation (1). It was found
that day type, and weather conditions have different impacts
on user groups. The demand is higher on weekends than week-
days for occasional users and visitors. On the other hand, there

is a drop in bike-sharing use for members, which is a line with
[24,22]. Precipitation significantly affects only occasional users,
which is explained by their choice of cycling that is somehow

optional, and they have several transportation alternatives.
This is in line with previous findings that occasional users
are more sensitive than other users to precipitation [13]. Pres-

sure and wind speed have negative impact on BS use in all user
groups, which is supported by the findings of Zhou et al. [66]
who found them to be unpleasant for bike-sharing users.
Humidity only negatively affects members negatively and is

not significant for other groups. The temperature has different
impacts, as it is not significant for occasional users, positively
affects visitors coming to the city, and negatively affects mem-

bers. The positive effect of the temperature on visitors may be
because tourists come to Budapest when the weather is good.
At the same time, members do not prefer hot weather. Finally,

the longer hours of sunshine lead to higher demand for occa-
sional users and members, and lower demand for visitors. As
Caulfield et al. [14] investigated, increasing hours of sunshine

leads to more trips and bike-sharing usage. In general, good
weather conditions, including pressure, wind speed, and
humidity, positively impact BS use (Table 5).

It was found that day type has the same effect on the num-

ber of bikes used and trips. Precipitation is not significant for
visitors, has a negative impact on occasional users, which is
expected, and positively impacts members (Table 6). This indi-

cates more trips of members on rainy days, which could be
explained by the increased road congestion and demand for
delivery services because many members are couriers. The tem-

perature effect is varied. Pressure, wind speed, and solar radi-
ation have a negative impact on trips. Finally, humidity is not
Table 3 Comparison between Poisson and Negative Binomial Mod

Bike Counts BIC AIC

(P) (NB) (P)

Visitor 1212.41 1058.97 1188

Occasional 820.25 809.75 796

Member 1329.24 1320.66 1305

Irregular 1233.08 1108.53 1208

All 1331.33 1327.41 1307
significant for irregular users but has a negative impact on the
members. Contrary to our results, Noland et al. [42] found that
occasional trips are not sensitive to weather conditions. It may

be because only a smaller range of weather conditions was
observed during a shorter period (1 month). Compared to
[16], this research shows similar findings in wind speed and

the opposite for precipitation and temperature. Rainy day trips
could be explained by courier members. Christie and Ward [19]
conducted a study on the courier behavior and found that

rainy days are popular among couriers due to several benefits
such as incentives, tips, bonuses, etc. In addition, the low tem-
perature range may explain the negligible effect of the temper-
ature during the observed period compared to the high

temperature range in Toronto.

4.3. SARIMA models

The automatic function was used to achieve high goodness of
fit. The function finds all possible models and chooses the best
model along with the normalized Bayesian information criteria

(NBIC). Ljung-Box (LB) statistic test was used to determine
model fitness. Models with an LB significance value of more
than 0.05 were considered suitable [34]. Tables 7 and 8 show

the best-fit combination of (p,d,q)(P,D,Q) with normalized
Bayesian information criteria as well as Ljung-Box test for
both the number of bikes used and trips models for different
user classifications.

As shown in Appendix 1, precipitation impacts occasional
users only for the number of bikes used and trips. Wind speed
has an impact on bikes used by visitors, while humidity influ-

ences their trips as well. The temperature and pressure affect
members’ trips. Finally, solar radiation has an impact on the
overall bike-sharing trips. Moreover, only three models do

not have weather parameters, which means they depend only
on time seasonal effects without including exogenous variables
(weather conditions). These models are bikes in use by mem-

bers and all users and irregular trips. The latter predicts irreg-
ular users’ trips with a temporal trend influenced by a lag of
three days (p = 3). Namely, visitors’ and occasional users’
trips are affected by the trips in the previous three days. A

detailed description of the AR, and MA parameters are given
in Appendix 1.

4.4. Random Forest models

The suggested RF model design involves two parameters: the
number of trees (N) and the number of randomly selected vari-

ables [47]. As further trees are added in the model, the predic-
tion performance of RF is improved. On the other hand,
els for Bike-sharing Counts.

Likelihood

(NB) (P) (NB)

.16 1031.69 �586.08 �506.85

.01 782.48 �390.00 �382.24

.00 1293.39 �644.50 �637.69

.84 1081.26 �596.42 �531.63

.09 1300.14 �645.55 �641.07



Table 4 Comparison between Poisson and Negative Binomial Models for Bike-sharing Trips.

Trips (P) (NB) (P) (NB) (P) (NB)

Visitor 2850.31 1422.71 2826.07 1395.44 �1405.03 �688.72

Occasional 1494.86 1071.68 1470.61 1044.41 �727.31 �513.20

Member 6830.95 2089.54 6806.70 2062.26 �3395.35 �1022.13

Irregular 2769.21 1462.00 2744.97 1434.73 �1364.49 �708.36

All 6719.26 2094.04 6695.01 2066.76 �3339.51 �1024.38

Table 5 Calculated Parameters for Bike-sharing Counts.

Constant Weekday Temp Precipitation Pressure Wind Humidity Solar Radiation

Visitor 5.051 �0.364 0.037 N.S.* �0.012 �0.028 N.S. �0.181

Occasional 1.831 �0.641 N.S. �0.248 �0.026 �0.028 N.S. 0.117

Member 4.577 0.114 �0.01 N.S. �0.005 �0.004 �0.003 0.067

Irregular 4.712 �0.449 0.019 N.S. �0.017 �0.027 N.S. �0.084

All 4.969 0.041 �0.007 N.S. �0.006 �0.007 �0.003 0.049

*N.S.: Not Significant.

Table 6 Calculated Parameters for Bike-sharing Trips.

Constant Day Temp Precipitation Pressure Wind Humidity Solar Radiation

Visitor 6.172 �0.332 0.056 N.S. �0.007 �0.025 N.S. �0.23

Occasional 2.314 �0.77 N.S. �0.298 �0.024 �0.015 N.S. 0.094

Member 7.64 0.103 �0.002 0.019 �0.002 �0.007 �0.002 �0.036

Irregular 5.831 �0.435 0.04 �0.044 �0.011 �0.022 N.S. �0.148

All 7.752 0.073 N.S. 0.016 �0.002 �0.008 �0.002 �0.042

Table 7 Goodness of Fit for SARIMA, Bike-sharing Count.

Count (p,d,q) (P,D,Q) NBIC Ljung-Box

Visitor (0,1,1) (0,1,1) 3.86 0.576

Occasional (0,1,1) (1,1,0) 2.77 0.257

Member (0,0,1) (1,0,1) 5.756 0.112

Irregular (0,1,1) (0,1,1) 4.213 0.585

All (0,1,1) (1,0,1) 5.878 0.368

Table 8 Goodness of Fit for SARIMA, Bike-sharing Trips.

Trips (p,d,q) (P,D,Q) NBIC Ljung-Box

Visitor (0,0,1) (0,1,1) 6.279 0.333

Occasional (0,0,0) (1,0,1) 4.67 0.873

Member (0,0,6) (0,0,0) 10.675 0.110

Irregular (3,1,0) (0,1,1) 6.639 0.129

All (0,0,6) (0,0,0) 10.710 0.165

Investigating the temporal differences among bike-sharing users through comparative analysis 7
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increasing the number of trees in the model increases the mod-
el’s run time. Namely, a small number of trees (N) saves calcu-
lation time, but the goodness of RF prediction decreases.

Therefore, several computation tests are performed in this
study to optimize N. Predicting accuracy doesn’t improve sig-
nificantly if N is equal to or greater than 150. Since the calcu-

lation time was acceptable, the optimal N was set to be 150,
and it was used for each RF model development. Performance
evaluation and testing are carried out with the various (M)

combinations [52,53,30].
Fig. 4 shows the variable importance results of the RF

models of booking numbers trained for visitors, occasional,
irregular, members, and all users. The top three influential

variables for irregular users are temperature, solar radiation,
and day type. Precipitation is ranked as the least influential
variable. The top three influential variables for the members

and all users are temperature, solar radiation, and humidity,
while the least ranked is precipitation. These results indicate
the high importance of temperature and low importance of
Fig. 4 Variables Importance of Bike-sha

Table 9 RMSE comparisons among the models for the bike-sharin

Group/Model NBRM SARI

Training Set Test Set Train

Visitors 4.98 5.20 4.42

Occasional 2.22 2.41 2.55

Member 15.76 14.98 15.59

Irregular 5.98 6.54 5.42

All 16.24 16.23 16.11

Table 10 RMSE comparisons among the models for the bike-shar

Group/Model NBRM SARI

Training Set Test Set Train

Visitors 19.59 20.10 17.5

Occasional 5.35 5.91 5.5

Member 199.12 202.33 194.2

Irregular 23.87 23.52 23.8

All 201.96 200.78 198.1
precipitation. No significant difference was found between
bikes used and trip models. These results are in line with other
research that used the tree techniques to investigate the bike-

sharing usage. For example, Jaber and Csonka [30] found that
irregular users are influenced mostly by temperature and type
of the day in Hungary, Collini et al. [20] found that type of the

day and temperature are the most important factor affecting
bike-sharing trips in Canada. Sathishkumar and Cho [52,53]
resulted that humidity and temperature are the most influenc-

ing variables on the bike-sharing usage in Korea.
Compared to other studies, temperature, time, and humid-

ity were the most influential variable in the research of
[3,52,44] Day type was consistent with [44]. Precipitation was

not significant in any of these studies as well.

4.5. Models validation and comparison

For the validation purposes, we have compared our models
with other predicted data that have not beed used for the esti-
ring Usage under Weather Conditions.

g usage.

MA RF

ing Set Test Set Training Set Test Set

4.36 3.89 4.21

2.68 2.15 2.37

16.81 18.65 18.02

5.23 5.27 6.19

16.98 17.69 17.50

ing trips.

MA RF

ing Set Test Set Training Set Test Set

7 16.74 15.25 17.66

1 6.02 5.43 5.91

4 192.15 198.67 195.72

1 24.62 20.57 21.44

5 199.45 202.91 201.36
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mation. This data is for November and Decemeber 2021. The
Root Mean Square Error (RMSE) has been used for the com-
parison as metric for performance assessment as shown in

equation (3), where Ai is the actual value, Pi is the predicted
value, and n is the total number of cases (days). The results
are shown in the Tables 9 and 10.

RMSE ¼
ffiffiffi
1

n

r Xn

i¼1
Ai � Pið Þ2 ð3Þ

At first, it is observed that the RMSE of the training sets

and test sets is close among all the models. The small difference
between the two RMSE values indicates the small produced
training error and the high correlation between the trained

and predicted data, thus acceptable performance of the trained
models. Also, we noticed that the performance of the models is
close among them for each user group. There are no major dif-

ferences that make a bias towards such a model. With more
focusing on the RMSE results, we can say that the NBRM is
better in the case of occasional users. Random forest models

performed better in the case of irregular users, while SARIMA
performed better for members or all users as one group.

5. Conclusions

This study investigates comparisons among count, time-series
models, and data mining techniques in studying the weather
and temporal variable impacts on various bike-sharing user

groups. The negative Binomial approach was found to be
superior to Poisson, thus it is used for parameter estimation.
Weather conditions have a different effect on the user groups.

In general, good weather generates higher demand for bike-
sharing. Weekends attract more irregular users. Members’
bike-sharing use was predicted for an extended period neglect-

ing weather impact, as well as irregular trips of bike-sharing.
The top influential variables are temperature, solar radiation,
day type and humidity, while the least influential is precipita-

tion. The analyzed period was 5 months, which affects the
range of observed weather conditions (e.g., the temperature
was between 6 and 31 �C). It was found that when the number
of observations increases, the predictions are more accurate,

and SARIMA performs better. While, for limited observations
such as in irregular users, RF and NBRM performed better.
We found similarities and differences between the models by

exploring each group by itself. In common, it is found that vis-
itors are more influenced by temperature, wind and type of
day. Occasional users are more subjected to precipitation.

For members, it is found that the temperature, type of day
are the most significant factors. The least factors for all are
varied as well: precipitation for visitors, humidity for occa-
sional users, precipitation and wind for members. Comparing

the investigated models with each other, it is found that they
varied across each bike-sharing group. Time series models
(SARIMA) performed better for members whom are continu-
ous users, while the tree techniques (Random Forest) per-

formed better for occasional users and visitors. Furthermore,
the characteristics of the models confirm the results. Therefore,
SARIMA is better for continuous events which is similar to the

members usage.
Given that weather conditions affect various user groups

differently, various targeted marketing strategies are needed

to promote year-round bike-sharing use. For example, during
rainy conditions, policymakers could promote bike-sharing
services to occasional users. As the study found that the accu-
racy of predictions increased with the number of observations.

It is recommended to consider increasing the availability of
data on bike-sharing usage to improve the accuracy of predic-
tions and enhance the effectiveness of bike-sharing services.

Furthermore, it is recommended to consider weather condi-
tions in bike-sharing service planning and ensure that the ser-
vices meet the demand during different weather conditions.

For example, policymakers could consider increasing the num-
ber of bikes during good weather conditions or providing shel-
tered bike stations to protect bikes from precipitation.

The main limitations of our study that we were not able to
conduct a whole year analysis due to data availability, which
could be invistagetd in the future. This is needed to gain a com-
prehensive understanding of factors affecting bike-sharing

usage and develop more effective policies. These findings pro-
vide several options for researchers to predict bike sharing
usage and trips for different user groups and enrich the empir-

ical modeling-based daily usage prediction. In addition, this
research study helps operators and decision-makers to expect
the future demand on bike-sharing within forecasted weather.

Future research will focus on spatial distribution, and could
investigate the impact of bike-sharing infrastructure, such as
the number and location of bike stations, on bike-sharing

usage. Also, future research could investigate the impact of
socio-demographic factors, such as age, gender, and income,
on bike-sharing usage, as well as new artificial neural networks
models could support a more comprehensive comparison.
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Appendix A:.

� Bike-sharing Booking Counts SARIMA Models:
(p,d,q)
 (P,D,Q)
 MA
 AR Seasonal
 Precipitation
Occasional

(No Transformations)
(0,1,1)
 (1,1,0)
 Lag 1: 0.911
 Lag 1: �0.539 (1)
 �1.6
(p,d,q)
 (P,D,Q)
 MA
 MA Seasonal
 Wind
 Humidity
Visitors

(Square Root Transformation)
(0,1,1)
 (0,1,1)
 Lag 1: 0.795
 Lag 1: 0.832
 �0.06
 �0.022
(p,d,q)
 (P,D,Q)
 Constant
 MA
 AR Seasonal
 MA Seasonal
Member (No Transformations)
 (0,0,1)
 (1,0,1)
 201.012
 Lag 1: �0.352
 Lag 1: 0.999
 Lag 1: 0.977
(p,d,q)
 (P,D,Q)
 MA
 MA Seasonal
 Wind
Irregular (No Transformations)
 (0,1,1)
 (0,1,1)
 Lag 1: 0.874
 Lag 1: 0.822
 �0.601
(p,d,q)
 (P,D,Q)
 MA
 AR Seasonal
 MA Seasonal
All (No Transformations)
 (0,1,1)
 (1,0,1)
 Lag 1: 0.926
 Lag 1: 0.997
 Lag 1: 0.978
� Bike-sharing Trips SARIMA Models
(p,d,q)
 (P,D,Q)
 Constant
 AR Seasonal
 MA Seasonal
 Precipitation
Occasional

(Square Root Transformation)
(0,0,0)
 (1,0,1)
 3.822
 Lag 1: 0.999
 Lag 1: 0.971
 �0.689
(p,d,q)
 (P,D,Q)
 MA
 MA Seasonal
 Humidity
Visitor (No Transformations)
 (0,0,1)
 (0,1,1)
 Lag 1: �0.183
 Lag 1: 0.790
 �0.564
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(p,d,q)
 (P,D,Q)
 Constant
 MA
 Temp
 Press
Member (No Transformations)
 (0,0,6)
 (0,0,0)
 10910.86
 Lag 6: �0.240
 �20.14
 �9.266
(p,d,q)
 (P,D,Q)
 AR
 MA Seasonal
Irregular (No Transformations)
 (3,1,0)
 (0,1,1)
 Lag 1: �0.642

Lag 2: �0.415

Lag 3: �0.296
Lag 1: 0.832 (1)
(p,d,q)
 (P,D,Q)
 Constant
 MA
 Sun Hour
All (No Transformations)
 (0,0,6)
 (0,0,0)
 1611.807
 Lag 6: �0.173
 �34.667
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MCDM approach for the evaluation of bike-share stations, J.

Clean. Prod. 201 (November 2018) (2018) 49–60, https://doi.org/

10.1016/j.jclepro.2018.08.033.

[34] M.M. Kifle, T.T. Teklemariam, A.M. Teweldeberhan, E.H.

Tesfamariam, A.K. Andegiorgish, E.A. Kidane, Malaria risk

stratification and modeling the effect of rainfall on malaria

incidence in Eritrea, J. Environ. Public Health 2019 (2019) 11,

https://doi.org/10.1155/2019/7314129.

[35] K. Kim, Investigation on the effects of weather and calendar

events on bike-sharing according to the trip patterns of bike

rentals of stations, J. Transp. Geogr. 66 (January 2018) (2018)

309–320, https://doi.org/10.1016/j.jtrangeo.2018.01.001.

[36] T.S. Kim, W.K. Lee, S.Y. Sohn, Graph convolutional network

approach applied to predict hourly bike-sharing demands

considering spatial, temporal, and global effects, PLoS ONE

14 (9) (2019), https://doi.org/10.1371/journal.pone.0220782.

[37] B. Kutela, H. Teng, The influence of campus characteristics,

temporal factors, and weather events on campuses-related daily

bike-share trips, J. Transp. Geogr. 78 (June 2019) (2019) 160–

169, https://doi.org/10.1016/j.jtrangeo.2019.06.002.
[38] N. Lathia, S. Ahmed, L. Capra, Measuring the impact of

opening the London shared bicycle scheme to casual users,

Transp. Res. Part C: Emerg. Technol. 22 (June 2012) (2012) 88–

102, https://doi.org/10.1016/j.trc.2011.12.004.

[39] S. Maas, P. Nikolaou, M. Attard, L. Dimitriou, Spatial and

temporal analysis of shared bicycle use in Limassol, Cyprus, J.

Transp. Geogr. 93 (May 2021) (2021), https://doi.org/10.1016/j.

jtrangeo.2021.103049 103049.

[40] S. Munira, I.N. Sener, A geographically weighted regression

model to examine the spatial variation of the socioeconomic and

land-use factors associated with Strava bike activity in Austin,

Texas, J. Transp. Geogr. 88 (October 2020) (2020), https://doi.

org/10.1016/j.jtrangeo.2020.102865 102865.

[41] E. Murphy, J. Usher, The role of bicycle-sharing in the city:

analysis of the Irish Experience, Int. J. Sustain. Transp. 9 (2)

(2012) 116–125, https://doi.org/10.1080/15568318.2012.748855.

[42] R.B. Noland, M.J. Smart, Z. Guo, Bikeshare trip generation in

New York City, Transp. Res. Part A: Policy Pract. 94

(December 2016) (2016) 164–181, https://doi.org/10.1016/

j.tra.2016.08.030.

[43] M.M. Orvin, M.R. Fatmi, S. Chowdhury, Taking another look

at cycling demand modeling: a comparison between two cities in

Canada and New Zealand, J. Transp. Geogr. 97 (December

2021) (2021), https://doi.org/10.1016/j.jtrangeo.2021.103220

103220.

[44] S. Ruffieux, N. Spycher, E. Mugellini, O.A. Khaled, Real-time

usage forecasting for bike-sharing systems: a study on random

forest and convolutional neural network applicability, in:

Intelligent Systems Conference (IntelliSys), IEEE, 2017, pp.

622–631, https://doi.org/10.1109/IntelliSys.2017.8324359.

[45] K. Schimohr, J. Scheiner, Spatial and temporal analysis of bike-

sharing use in Cologne taking into account a public transit

disruption, J. Transp. Geogr. 92 (April 2021) (2021), https://doi.

org/10.1016/j.jtrangeo.2021.103017 103017.

[46] D.M. Scott, C. Ciuro, What factors influence bike share

ridership? An investigation of Hamilton, Ontario’s bike share

hubs, Travel Behav. Soc. 16 (July 2019) (2019) 50–58, https://

doi.org/10.1016/j.tbs.2019.04.003.

[47] H. Sun, D. Gui, B. Yan, Y. Liu, W. Liao, Y. Zhu, N. Zhao,

Assessing the potential of random forest method for estimating

solar radiation using air pollution index, Energ. Conver.

Manage. 119 (July 2016) (2016) 121–129, https://doi.org/

10.1016/j.enconman.2016.04.051.

[48] M. Tabeshian, L. Kattan, Modeling nonmotorized travel

demand at intersections in Calgary, Canada: use of traffic

counts and geographic information system data, Transp. Res.

Rec.: J. Transp. Res. Board 2430 (1) (2014) 38–46, https://doi.

org/10.3141/2430-05.

[49] J.F. Teixeira, C. Silva, F.M. Sá, The role of bike sharing during
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