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Abstract 

Trainability is important in elite sport and in recreational physical activity and the wide range 

for response to training is largely dependent on genotype. In this study, we compare a newly 

developed rat model system selectively bred for low and high gain in running distance from 

aerobic training to test whether genetic segregation for trainability associates with differences 

in factors associated with mitochondrial biogenesis. Low response trainer (LRT) and high 

response trainer (HRT) rats from generation 11 of artificial selection were trained five times a 

week, 30 min per day for three months at 70% VO2max to study the mitochondrial molecular 

background of trainability. As expected, we found significant differential for the gain in 

running distance between LRT and HRT groups as a result of training. However, the changes 

in VO2max, COX 4,redox homeostasis associated markers (ROS), silent mating-type 

information regulation 2 homolog (SIRT1), NAD
+
/NADH ratio, proteasome (R2 subunit), and 

mitochondrial network related proteins such as mitochondrial fission protein 1 (Fis1), and 

mitochondrial fusion protein (Mfn1) suggest that these markers are not strongly involved in 

the differences in trainability between LRT and HRT. On the other hand, according to our 

results, we discovered that differences in basal activity of AMP-activated protein kinase alpha 

(AMPK), and differential changes in aerobic exercise-induced responses of citrate synthase, 

carbonylated protein, peroxisome proliferator-activated receptor gamma coactivator-1α 

(PGC1-α), nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (TFAM), 

and Lon protease limits trainability between these selected lines. From this we conclude that 

mitochondrial biogenesis associated factors adapt differently to aerobic exercise training in 

training sensitive and training resistant rats. 
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Introduction 

Clinically, exercise capacity, measured by either maximal oxygen uptake (VO2max) or a 

treadmill running test to exhaustion is a strong predictor of morbidity and survivability. 

Indeed, studies show that regular aerobic exercise leads to enhanced VO2max and increases 

the mean lifespan of laboratory animals [11,14,41] and humans [26,38,42]. However, 

VO2max is not the only indicator of increased aerobic performance [39]; the adaptive capacity 

of skeletal muscle to endurance exercise appears to be crucial [16]. Indeed, the quality and 

quantity of the skeletal muscle mitochondrial network, mitochondrial biogenesis, and the 

activity of oxidative enzymes are also highly recognized as limiting factors of aerobic 

endurance capacity [2,15]. 

 

Studies within twins and families demonstrate that aerobic trainability is a highly heritable 

trait [3,5,10,24,39]. Recently an animal model system was developed via artificial selective 

breeding, which permits researchers to study the inherited components of low and high 

trainability in rats [19]. This model was set up using a genetically heterogeneous rat 

population (N/NIH stock) to develop lines named low response trainers (LRT) and high 

response trainers (HRT) [19]. Selection was based on the change in maximal running distance 

evaluated by a treadmill-running test to exhaustion. In the untrained condition, LRT and HRT 

rats are similar for exercise capacity. However after receiving 8 weeks of a standard amount 

of endurance training, HRT rats improve on average by 200 meters for distance run whereas 

those bred as LRT failed to improve and on average, declined in running capacity by -65 

meters [19]. A recent study by Lessard et al. [23] showed that skeletal muscle mitochondrial 

capacity was similar between LRT and HRT in the sedentary state and that LRT produced 

normal increases in mitochondrial density and function in response to moderate intensity 

endurance training. Nonetheless, significant differences were noted for exercise-induced 
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angiogenesis and transforming growth factor β signaling in skeletal muscle. Moreover, this 

study assessed skeletal muscle gene expression and showed that the LRT and HRT differ in 

their transcriptional responses to the same acute bout of exercise. The differentially expressed 

genes belonged mostly to biologically functional categories of gene expression, development, 

cell-cycle regulation, cellular growth, proliferation, and movement. 

 

Based on the above evidence that skeletal muscle remodeling response may be partly 

responsible for differences in the adaptive exercise response, the purpose of this study was to 

test the hypothesis that impaired mitochondrial biogenesis contributes to the differential in 

training response between these two selectively bred lines. Here, we trained LRT and HRT 

rats for 3 months using a relative training protocol where each LRT and HRT rat trained five 

days a week at 70% VO2max. We find HRT rats set against LRT rats demonstrated a 

significantly greater gain in aerobic running performance (distance) compared to the 

accompanying changes in VO2max. We measured a panel of 14 different molecular factors 

crucial for skeletal muscle mitochondrial biogenesis including: reactive oxygen species 

(ROS), NAD
+
/NADH ratio, mitochondrial proteins (COX-4, citrate synthase, Lon 

proteasome), transcription co-factors (PGC1-α, TFAM, NRF1), energy sensing proteins 

(AMPK, SIRT1), and the regulators of mitochondrial fission (Fis1) and fusion (Mfs1), to 

determine whether mitochondrial biogenesis interferes with trainability. 

 

Methods 

Animals and exercise protocol 

Low response trainers (LRT) and high response trainers (HRT) were developed by selective 

breeding and are maintained as a contrasting animal model system at the University of 

Michigan by Koch and Britton [19]. Twenty-seven male rats from the 11
th 

generation of 
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selection, 13 LRT and 14 HRT, were studied. Animals were cared for according to the 

guiding Principles for the Care and Use of Animals based upon the Helsinki Declaration, 

1964. Animals,  12 months of age at the beginning of the study, were divided into control 

LRT (LRTC) (n=6), exercised LRT (LRTE) (n=7), control HRT (HRTC) (n=6), and exercised 

HRT (HRTE) (n=8) groups. 

 

Both control and exercised groups were introduced to running on a motor driven treadmill 

(Columbus Inst. Columbus, Ohio) for five days for ten min per day. For each introduction 

session, the treadmill incline was set at 5% and speed was gradually increased from 8 

m/min to 23 m/min. The exercised groups then trained five times a week, 30 min per day 

for three months at 70% of their VO2max, as described previously [12]. During the testing, 

running distance and body weight were also measured. 

 

VO2max was measured for each animal, using three criteria: (i) no change in VO2when 

speed was increased, (ii)rats no longer kept their position on the treadmill, and (iii) 

respiratory quotient (RQ = VCO2/VO2) > 1. Based on the level of VO2max, a treadmill 

speed corresponding to 70% VO2max was determined and used for daily training. VO2max 

was measured every second week and running speed was adjusted accordingly. The total 

training period lasted 12 weeks. 

 

The animals were sacrificed two days after the last exercise session to avoid the metabolic 

effects of the final exercise session. The gastrocnemius muscle was quickly excised, weighed, 

frozen in liquid nitrogen, and stored at -80 °C degree. A section of tissue samples was 

homogenized in a 10 vol homogenization buffer containing: 137mM NaCl, 20 mM Tris-HCl 
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pH8.0, 2% NP 40, 10% glycerol and protease inhibitors (PMSF, aprotinin, leupeptin, 

orthovanadate). The protein levels were measured using BCA methods. 

 

Assays 

 

Measurements of reactive oxygen species (ROS) 

The overall ROS generation was determined using modifications of the 

dichlorodihydrofluoresceindiacetate (H2DCFDA) staining method [34]. In brief, the 

H2DCFDA (Invitrogen-Molecular Probes #D399) was dissolved at a concentration of 12.5 

mM in ethanol and kept at -80 °C in the dark. The solution was freshly diluted with potassium 

phosphate buffer to 125 μM before use. In the fluorescence reaction 152 µM/well potassium 

phosphate buffer (pH 7.4) was filled to the 96-well black microplate, than 8 µl diluted tissue 

homogenate and 40 µl 125 µM dye were added to achieve a final concentration of 25 μM. The 

change in fluorescence intensity was monitored every five minutes for 30 minutes with 

excitation and emission wavelengths set at 485 nm and 538 nm (FluoroskanAscent FL). The 

fluorescence intensity unit was normalized with the protein content and expressed in relative 

unit production per minute. 

 

Detection of carbonylated proteins and citrate synthase activity 

Changes in oxidized protein levels were determined using an Oxyblot Kit 

(Chemicon/Millipore, S7150) according to the manufacturer's recommendations. Briefly, 

proteins were derivatized with 4-dinitrophenylhydrazine (DNPH) for 15 min followed by 

incubation at room temperature with a neutralization buffer (Chemicon/Millipore). 

Derivatized proteins were electrophoresed on a 10% SDS-PAGE and blotted on PVDF 

membranes. Blots were blocked with 5% non-fat dry milk (blocking buffer) in Dulbecco's 
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PBS containing 0.05% Tween 20 (PBS-T) for three h and incubated with anti-DNP primary 

antibody (1:150) (Chemicon/Millipore) overnight at 4 °C. After three washes with PBS-T, 

membranes were incubated for oneh at room temperature with HRP-conjugated secondary 

antibodies (1:300)(Chemicon/Millipore). Immuno complexes were visualized by an HRP plus 

reagent (Super Signal West Pico Chemiluminescent Substrate, Thermo Scientific #34080). 

Activity of citrate synthase (CS) was measured as described previously [35]. 

 

Measurement of NAD
+
/NADH levels 

Proteins were filtered through a 10 kD Microcon filter and applied to a NAD
+
/NADH 

Quantification kit (Bio Vision, K337-100) according to the given protocol. First, total NAD
+
 

level was measured, then NAD
+
 was decomposed by heating to 60 °C for 30 min, then cooled 

on ice and transferred to the microplate. Next, a 10 μl NADH developer was added to each 

well, mixed, and the optical density read at 450 nm every 30 min for five h. The NAD
+
 levels 

were calculated according to the manufacturer's directions. 

 

Western blots 

Proteins were electrophoresed on 8-12% v/v polyacrylamide SDS-PAGE gels. Proteins were 

electrotransferred onto PVDF membranes. The membranes were subsequently washed, and 

after blocking, PVDF membranes were incubated at 4°C with antibodies (1:1000 #sc-69359 

Santa Cruz COX-4, 1:150 S7150 Chemicon anti-DNPH, 1:1000 #2459 Cell Signaling 

PSMA6, 1:500 LonP1, 1:5000 #ab87253 Abcam HSP78, 1:1400 #2532S Cell Signaling 

AMPKα, 1:500 #2535S Cell Signaling pAMPKα, 1:500 #07-131 Millipore, Upstate SIRT1, 

1:500, sc-13067 Santa Cruz PGC1-α, 1:1000 #sc-30963 Santa Cruz TFAM, 1:1000 #sc-33771 

Santa Cruz NRF-1, 1:500 #sc-98900 Santa Cruz Fis1, 1:3000 #50330 Santa Cruz Mfn1, 

1:15000 #T6199 Sigma α-tubulin). After incubation with primary antibodies, membranes 
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were washed 3x10 minutes in TBS-Tween-20 (TBS-T) and incubated with horseradish 

peroxidase (HRP) – conjugated secondary antibodies at 4°C in one hour. After incubation 

with primary antibodies, membranes were washed in TBS-T and incubated with HRP-

conjugated secondary antibodies. After incubation with a secondary antibody, membranes 

were repeatedly washed. Membranes were incubated with an HRP plus reagent (Super Signal 

West Pico Chemiluminescent Substrate, Thermo Scientific #34080) and protein bands were 

visualized on X-ray films. The bands were quantified by ImageJ software, and normalized to 

α-tubulin, which served as an internal control. 

 

Real time quantitative RT-PCR  

 

The mRNA levels of AMPK (PRKAA1) were measured as described earlier [32]. In brief, 

total RNA from skeletal muscle samples (~30 mg) was extracted with NucleoSpin
®

 

RNA/Protein (Macherey-Nagel, Düren, Germany) according to the manufacturer’s 

protocol. Analyses of the real-time quantitative PCR data were performed using the 

comparative threshold cycle [Ct] method as suggested by Applied Biosystems (User 

Bulletin #2). The following primers were used for AMPK:  

Forward: 5’-GACTGGACATAAAGTTGCTGTGA-3’ 23,  

Reverse: 5-’GGATTTTCCCGACCACGTC-3’ 19 

The expression of mRNA of AMPKα was normalised to beta-actin [32].  

 

Statistical analysis 

The results were compared with a Kruskal-Wallis analysis of variance (ANOVA) followed by 

Tukey’s post hoc test. Significance levels are reported for p < 0.05 and p < 0.01. 
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Results 

The body mass of the LRTE group decreased after the training period (p<0.05) compared to 

LRTC group (422.14±15.19g vs. 474.00±14.10g), and a similar change was observed between 

HRTE vs. HRTC groups (410.63±9.52g vs. 471.00±12.88g).Before exercise training, 

maximal oxygen consumption (VO2max) was similar between all four experimental groups – 

LRTC, LRTE, HRTC, and HRTE,– and was on average ~ 65 ± 7.5 ml/kg/min. Aerobic 

exercise training significantly increased VO2max in both LRTE and HRTE groups (p<0.05). 

However, the increase was more enhanced in HRTE animals (p<0.01) compared to LRTE 

(p<0.05) during the final weeks of training (FIG. 1A). The running distance measured during 

the VO2max test was similar between the four experimental groups before training and 

increased with significantly in the trained groups. However, there was a significant 

differential for the change in running distance between LRTE and HRTE groups. HRTE 

groups ran more than 20% longer than LRTE animals during the final treadmill running test 

(FIG. 1B). 

 

The mitochondrial content, evaluated by COX-4 levels increased significantly between the 

control and exercised groups for both the LRT and HRT rats (FIG. 1C).However, the activity 

of citrate synthase (CS) increased only in the HRTE group resulting in significant differences 

between the HRTC vs. HRTE and LRTE vs. HRTE groups (p<0.05, FIG. 1D). Interestingly, 

the activity of CS was significantly lower in exercised LRT rats compared to control LRT 

rats. 

 

The levels of reactive oxygen species (ROS) were evaluated and indicated  significantly 

lower levels in HRT rats compared to the LRT rats in the control condition (14% difference 

between HRTC vs. LRTC) (FIG. 2A). Exercise training tended to increase the levels of 
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ROS for both LRT and HRT. Consistent with ROS levels, the NAD
+
/NADH ratio was 

higher in the HRTC group than in the LRTC group (FIG. 2B). Protein carbonyls were 

measured to assess the modifications of proteins due to exercise-induced oxidative stress  

and the data showed a significant increase in the HRTE group whereas the LRTE group 

was unchanged (FIG. 2C). Content of the main protein degrading enzymes were evaluated 

and showed that exercise training induced the R2 subunit of proteasome in both LRTE and 

HRTE groups (FIG. 3A), while the induction of mitochondria located Lon proteasome 

occurred only in the HRTE group (FIG. 3B). The mitochondrial chaperone HSP78 content 

did not change significantly (FIG. 3C) between any of the four groups tested. 

 

The activity of AMPK, a critical mediator of skeletal muscle adaptations with training, was 

measured by the ratio pAMPK/AMPK, and was found to be significantly elevated in the 

HRTC group only (FIG. 4A-B). SIRT1 is a sensitive marker of metabolic stress and the 

data revealed that although not different in control conditions (LRTC vs. HRTC), exercise 

training increased SIRT1 content in both LRTE and HRTE groups (FIG. 4C). 

 

The content of PGC1-α, known to be elevated in response to exercise training was 

increased only in the HRTE group (FIG. 5A). PGC1-α content was unchanged between 

LRTC and LRTE groups. PGC1-α can regulate both TFAM and NRF1 levels. Similar to the 

pattern for PGC1-α, NRF1 increased only in HRTE group (FIG. 5B) but there was no 

difference in content between LRTC and LRTE groups. The TFAM levels were 

significantly lower in the LRTE group compared to LRTC group (FIG. 5C). In case of HRT 

animals, exercise training increased the levels of TFAM (FIG. 5C). The quality control of 

the mitochondria is partly regulated by fission and fusion. The mitochondrial fission  

protein(Fis1) levels of HRTC group was lower than LRTC group (FIG. 5D) and was 
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induced by exercise training in both LRT and HRT rats (p=0.045). Alternately, the 

Mitofusin-1 (Mfn1) contents were not different in control conditions but decreased 

significantly with exercise training in both experimental groups (FIG. 5E). 

 

Discussion 

Trainability is a critical issue in high level sport, but it could be also important for the health 

benefits of daily physical activity. A complex mixture of gene-environment interactions 

contributes to the large range in training-induced adaptations and creates a considerable 

challenge for identifying the mechanistic connection between exercise capacity and human 

health. Here we used a contrasting rat model system, which was developed by artificial 

selective breeding to segregate animals into lines of low and high training response, thus 

allowing us to study trainability in an unbiased mechanistic way. 

Before training, there is no significant differences for VO2max or running distance in rats 

selected for low versus high response to training, which suggests trainability is not strongly 

dependent upon baseline VO2max [4]. The differences in response to aerobic exercise training 

between the LRT and HRT was greater for running distance compared to VO2max, indicating 

the limited trainability of VO2max reported previously in human studies [40,39,17]. Further it 

supports data from humans demonstrating that training adaptations for improvement in 

aerobic performance and aerobic capacity can be uncoupled [36]. 

 

The mitochondrial network is crucial for coping with the metabolic challenge provided by 

physical exercise. The pioneering study of Holloszy showed that exercise training increases 

the activity of a number of mitochondrial enzymes and the content of mitochondria [13]. 

Davies and coworkers proposed that ROS could play a role in the biogenesis of 

mitochondria as a response to exercise training [8]. Indeed ROS are involved in a wide 
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range of signaling processes and redox homeostasis is closely linked to cellular metabolism 

[37]. In this study, we found an inverse relationship between ROS levels and NAD
+
/NADH 

ratio in control versus trained rats selectively bred for high response to training (i.e., HRTC 

and HRTE groups), suggesting controlled redox homeostasis. This expected relationship 

was missing in LRT groups. On the other hand, significant differences were not found for 

COX-4 levels suggesting that the possible differences in redox balance did not significantly 

affect the rate of mitochondrial biogenesis. 

We have observed a significant increase in the levels of carbonylated proteins in HRTC rats 

compared to LRTC animals. Significant degree of protein carbonylation used as a marker of 

oxidative damage of proteins, however moderate degree of carbonylation could be 

associated with the degree of protein turnover [36]. The ROS levels were apprised by 

H2DCFDA staining which showed no difference between HRTC and LRTC groups. The 

degradation of proteins was evaluated by the contents of R2 subunit of proteasome and Lon 

protease, indeed regular exercise can elevate the levels of these housekeeping proteins. This 

is an important process because oxidative modification of proteins results in loss of function 

[33,30]. The lack of differences between LRT and HRT groups on proteasome induction 

could indicate that the housekeeping of aberrant proteins in the cytosol maybe independent 

from trainability. However, this was not the case for mitochondrial degradation of oxidized 

proteins, since Lon was induced only in HRTE groups. The Lon levels tend to be lower in 

LRTC than in HRTC rats (p=0.22), which might explain the differences in carbonylated 

proteins in these groups. However, based on our earlier finding that aging down-regulates 

Lon in skeletal muscle, and exercise can attenuate this effect and in turn, increase endurance 

performance [20]. Therefore, it cannot be ruled out that the housekeeping role of Lon 

protease influences trainability. 
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The activity of AMP-dependent protein kinase activity (AMPK) is an important signaling 

molecule for endurance exercise activity, and stimulating AMPK via AICAR 

administration has been shown to enhance aerobic performance [27]. Interestingly enough, 

we found in non-trained control conditions that the HRT rats have significantly higher 

activity of AMPK than LRT rats suggesting a greater potential for metabolic-

responsiveness. Therefore, it cannot be ruled out that high inherent levels of AMPK 

activity provide a favorable metabolic base for high trainability to aerobic exercise. We did 

not find significant differences at the mRNA levels of AMPK among the groups, but the 

variation between mRNA and protein levels is not very surprising, due to the degradation of 

mRNA, impaired transcription, regulation by miRNA, or altered degradation of proteins. A 

study by Lessard and co-workers [23], reported that AMPK was normally activated by an 

acute bout of exercise in both LRT and HRT and unlikely to be related to the differential 

for exercise-induced adaptation response [1]. The decreased AMPK activities in LRT along 

with a reduction in citrate synthase in response to training suggest that, mitochondria-

associated factors could be important for trainability. Indeed, a reduction of the beta 

subunits of AMPK in skeletal muscle can results in impaired exercise tolerance without 

significant alteration of mitochondrial contents or sugar metabolism [22].  

 

We also found that exercise training induced SIRT1 in both low and high response trainers 

suggesting that the differential in trainability between LRT and HRT is independent from 

SIRT1 activity. Of interest is the finding that the PGC1-α content increased only in HRTE 

group. Currently there are conflicting data on the involvement of SIRT1 on the activation of 

PGC1-α. Some reports [28,31] including a recent paper from Holloszy’s group [11]suggest 

that deacetylation of PGC1-α inhibits the activity of SIRT1 and mitochondrial biogenesis, 

while other papers indicate that SIRT1 mediated deacetylation activates PGC1-α  [9,21,6]. 
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The aim of the present investigation was to study the idea that mitochondrial biogenesis may 

contribute to the differential in response to training. PGC1-α, NRF1 and TFAM regulate 

mitochondrial biogenesis. As described above, PGC1-α was increased in the high responsive 

HRT group but not the low responsive LRT group in response to exercise training. TFAM 

levels decreased with exercise training in LRT animals and increased in the HRT group. 

TFAM has been linked to higher aerobic endurance [29] which we also measured to be 

greater in HRTE groups. The adverse training response of TFAM in LRT compared to HRT, 

therefore, puts this protein on the list of potentially limiting factors for exercise resistance. 

Moreover, the change of Lon content paralleled TFAM levels. Lon protease is involved in the 

stability, replication, transcription and translation of proteins, and targets TFAM, 

steroidogenic acute regulatory protein (StAR), and aconitase for degradation [25]. In addition, 

NRF1 pattern was also similar to the pattern for PGC1-α; NRF1was induced with training in 

HRT rats but not in LRT rats. Hence, downstream response elements of PGC1-α increased 

only in those animals that showed sensitivity to aerobic training. 

 

In conclusion, these rat models of low response trainers (LRT) and high response trainers 

(HRT) represent the first heterogeneous substrate that can serve as reagents towards 

understanding the molecular networks responsible for variation in trainability [19]. Our data 

suggest: 1) Baseline levels of VO2max do not strongly affect the adaptive response to aerobic 

exercise training. 2) Exercise induced changes in redox balance are not strong limiting factors 

of differential for trainability, and 3) AMPK activity, citrate synthase, carbonylated protein, 

NRF1, PGC1-α, TFAM and Lon protease response to aerobic exercise training are associated 

with trainability. Compared to inbred animal models, in which essentially all loci are fixed, 

outbred selected lines maintain genetic complexity, thus permitting unique combinations of 
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allelic variants at multiple interacting loci to be enriched differentially by selection pressure 

[7]. For translational purposes, the production of low and high selected lines seemingly 

segregate response elements for mitochondrial biogenesis and thus provides unbiased 

evidence in support of a hypothesis that growth and remodeling features are responsible for 

differential gains from training [18,39] but does not provide proof at the level of cause and 

effect [18]. 
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Figure legends: 

 

Fig. 1: Maximal oxygen uptake and mitochondrial content 

The VO2max (A) and the running distance (B) during VO2max testing were measured every 

second week during the training period and the intensity was adjusted to 70% of 

VO2max. The mitochondrial biogenesis was appraised by the COX-4 content (C) and 

the adaptation to exercise training byCitrate Synthase (CS) activity (D).  Low response 

trainers control LRT (LRTC) (n=6), exercised LRT (LRTE) (n=7), high response 

trainers control HRT (HRTC) (n=6) and exercised HRT (HRTE) (n=8) groups.* 

p<0.05 HRTC vs HRTE** p<0.01 HRTC vs HRTE + p<0.05 LRTC vs LRTE++ 

p<0.01 LRTC vs LRTE.Δ p<0.05 LRTE vs HRTE 

 

 

Fig. 2.Oxidative stress markers 

The measurements of the ROS levels were done by fluorescent detection of H2DCFDA 

(A).The ratio of NAD
+
/NADH was used to evaluate the redox balance (B), while the 

carbonyl group levels indicate the oxidative modification of proteins (C, D). Low 

response trainers control LRT (LRTC) (n=6), exercised LRT (LRTE) (n=7), high 

response trainers control HRT (HRTC) (n=6) and exercised HRT (HRTE) (n=8) 

groups, * p<0.05 HRTC vs HRTE ** p<0.05 HRTC vs HRTE + p<0.05 LRTC vs 

LRTE++ p<0.05 LRTC vs LRTE.Δ p<0.05 LRTE vs HRTE 

 

 

Fig. 3.Quality control of proteins 

The R2 subunit of proteasome (A) mitochondrial Lon Protease (B) and the HSP87 (C) protein 

content were measured by immunoblot method. Low response trainers control LRT 

(LRTC) (n=6), exercised LRT (LRTE) (n=7), high response trainers control HRT 

(HRTC) (n=6) and exercised HRT (HRTE) (n=8) groups, * p<0.05 

 

Fig. 4.Metabolic markers 

The mRNA levels of AMPK were assessed by RT-PCR (A), while activity of AMPK was 

appraised by the pAMPK/AMPK ratio (B). SIRT1 content was measured by 

immunoblots (C). Low response trainers control LRT (LRTC) (n=6), exercised LRT 
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(LRTE) (n=7), high response trainers control HRT (HRTC) (n=6) and exercised HRT 

(HRTE) (n=8) groups, * p<0.05 

 

Fig. 5: Mitochondrial biogenesis associated transcription factors 

Mitochondrial biogenesis-associated transcription factors, such as PGC1-α(A), NRF1 (B), 

TFAM (C) and mitochondrial fission Fis1 (D) and fusion Mfn1 (E) proteins were 

measured. Low response trainers control LRT (LRTC) (n=6), exercised LRT (LRTE) 

(n=7), high response trainers control HRT (HRTC) (n=6) and exercised HRT (HRTE) 

(n=8) groups, * p<0.05 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Fig.1. Maximal oxygen uptake (a), Running distance (b), COX-4 levels (c) and citrate synthase (d) 

(a) (b) 

(c) (d) 

Figure



Fig.2. H2DCFDA (with 100 uM H2O2) (a), NAD+/NADH ratio (b), Carbonylated protein  (c) 

(a) (b) 

(c) 



Fig. 3. Proteasome  (R2 subunit) (a), LonP  (b) and HSP78 (c) 
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Fig. 4. mRNA levels  of AMPK (a) pAMPK/AMPK ratio (b) and SIRT1 (c) 
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Fig. 5. PGC1-α (a), NRF-1 (b), TFAM (c), Fis1 (d), Mfn1 (e) 
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