
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 24 (2023), No. 2, pp. 635–651 DOI: 10.18514/MMN.2023.4032

QUALITATIVE STUDY FOR IMPULSIVE PANTOGRAPH
FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION VIA

ψ-HILFER DERIVATIVE

MOUSTAFA BEDDANI, HAMID BEDDANI, AND MICHAL FEČKAN
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Abstract. In this paper, we study the existence and stability of solutions for impulsive pantograph
fractional integro-differential equation via ψ-Hilfer fractional derivative in a appropriate Banach
space. Our approach is based on fixed point theorems of Darbo’s and Mönch via Kuratowski
measure of non-compactness. An example is given to illustrate our approach.
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1. INTRODUCTION

Fractional differential equations are one of the most successful and interesting
branches of mathematics. Its results can be used to prove some important properties
in many fields of science and engineering [18, 20, 22, 24].

Many effective theoretical studies published by several researchers which reside
on the result of existence, uniqueness and the stability for differential equations in-
volving a fractional derivative with various conditions, see [10, 11]. The class of
impulsive fractional differential equations is distinguished from others by the mod-
eling of phenomena which undergo distortions, in particular in the field of medicine
and physics, see for example [6].

In the book [13], Fečkan et al. found a revised formula for the solutions of an
impulsive differential equation involving the Caputo derivative. In the references
[4, 5, 8, 12], the authors are interested in the study of impulsive differential equations
involving the derivative of Riemann or that of Hilfer. One of the properties of solu-
tions is the stability in the sense of Hyers which is introduced in [16] by the study of
a question posed by Ulam.
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Recently, the stability in the sense of Ulam-Hyers and Ulam-Hyers-Rassias have
been studied by many researchers for certain differential problems considered, see
[1, 2, 23].

In view of the above considerations, we consider the following impulsive panto-
graph fractional integro-differential equation

(P)


HDα,β,ψ

t+k
y(t) = f (t,y(t),Iδ,ψ

t+k
y(σk(t))), t ∈ (tk, tk+1], k = 0, . . . ,m,

∆γ,ψy|tk = Jk(y(t−k )), k = 0, . . . ,m,

I
1−γ,ψ
c+ y(c+) = MΓ(γ),

where HDα,β,ψ

t+k
denote the left-sided ψ−Hilfer fractional derivative of order 0<α< 1

and of type β, 0 ≤ β ≤ 1, γ = α+ β(1−α), δ > 1− γ. The operator I
1−γ,ψ

t+k
de-

notes the left-sided ψ−Riemann-Liouville fractional integral of order ς ∈ {δ,1− γ},
f : (c,L]×E2 → E a function satisfying some specified conditions, tk, k = 0, . . . ,m
are pre-fixed points satisfying t0 = c < t1 ≤ ·· · ≤ tm < tm+1 = L and, Jk : E →
E, ∆γ,ψy|tk =

I1−γ,ψy(t+k )
Γ(γ) − y(t−k ), where y(t−k ) = limt−→t−k

y(t), k = 1, . . . ,m, M ∈ E,
σk(t) = tk + σ(t − tk),k = 0, . . . ,m with 0 < σ ≤ 1 and ψ ∈ C 1([c,L],R+) satis-
fies ψ′(t) > 0, for all t ∈ [c,L]. The ψ−Hilfer fractional derivative is in a general
form and in particular cases, it covers special cases. Pantograph equations arise in
electrodynamics [21]. Our conditions are also related of other systems mentioned
above, and in particular to the following recent papers. Initial value problems for
two different classes of implicit φ-Hilfer fractional pantograph differential equations
are considered in [3]. φ-Caputo differential inclusion boundary value problems are
studied in [7] supplemented with mixed integro-derivative conditions in the frame of
the φ-Riemann-Liouville operators. Nonlinear impulsive pantograph fractional BVPs
under Caputo proportional fractional derivative are investigated in [17]. The signi-
ficance of our impulsive and initial conditions in (P) compare with the above results
relies on the fact that they are nonlocal.

This paper is organized in the following way. In Section 2 we give some general
results and preliminaries, in Section 3, we show the existence results for the prob-
lem (P) based on fixed point theorems of Darbo’s and Mönch and in Section 4, we
present a result about the stability in the sense of Ulam-Hyers-Rassias of Problem
(P). Finally an illustrative example will be presented in Section 5.

2. PRELIMINARY RESULTS

In this section, we introduce some notation and technical results which are used
throughout this paper. Let I = [a,b], b > a and (E,‖ · ‖) be a Banach space. C (I,E)
be the space of continuous functions on I with the norm

‖u‖∞ = sup{‖u(t)‖, t ∈ I}.
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L1(I,E) is the space of E-valued Bochner integrable functions on I with the norm

‖h‖L1 =
∫ b

a
‖h(t)‖dt.

For all η > −1 and s,r ∈ [0,L] with r > s, we pose Nη,ψ(r,s) = (ψ(r)−ψ(s))η. We
consider the Banach spaces of functions

C1−γ,ψ([a,b]) = {y ∈ C ((a,b],E) : lim
t→a+

N1−γ,ψ(t,a)y(t)) exists and finite}.

A norm in this space is given by

‖y‖γ,ψ = sup
t∈[a,b]

N1−γ,ψ(t,a)‖y(t)‖,

and
PC1−γ,ψ([c,L]) =

{
y : (c,L]→ E : yk ∈ C1−γ,ψ([tk, tk+1],E)

with y(tk) = y(t−k ), for all k = 0, . . . ,m,
}
,

with the norm
‖y‖PCγ,ψ = max

k=0,...,m.
‖y‖γ,ψ,

where yk is the restriction of y to (tk, tk+1], k = 0, . . . ,m. Let us now give the definition
of the measure of non-compactness in the sense of Kuratowski and its properties. For
all G⊆ E, we denote by Sb(G) the set of all bounded subsets of G.

Definition 1 ([9,15]). Let D∈ Sb(E). The Kuratowski measure of non-compactness
ϑ of the subset D is defined as follows:

ϑ(D) = inf{e > 0 : Ω admits a finite cover by sets of diameter≤ e}.

Lemma 1 ([9, 15]). Let A,B ∈ Sb(E). The following properties hold:
(i1) ϑ(A) = 0 if and only if A is relatively compact,
(i2) ϑ(A) = ϑ(A), where A denotes the closure of A,
(i3) ϑ(A+B)≤ ϑ(A)+ϑ(B),
(i4) A⊂ B implies ϑ(A)≤ ϑ(B),
(i5) ϑ(a.A) = |a|.ϑ(A) for all a ∈ R,
(i6) ϑ({a}∪A) = ϑ(A) for all a ∈ E,
(i7) ϑ(A) = ϑ(Conv(A)), where Conv(A) is the smallest convex that contains A.

Lemma 2 ([15]). If D is a equicontinuous and bounded subset of C ([a,b],E), then
ϑ(D(.)) ∈ C ([a,b],R+)

ϑC (D) = max
t∈[a,b]

ϑ(D(t)), ϑ

({∫ b

a
w(t)dt : w ∈ D

})
≤

∫ b

a
ϑ(D(t))dt,

where D(t) = {w(t) : w ∈ D} and ϑC is the non-compactness measure on the space
C ([a,b],E).
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We denote by ϑk
γ,ψ and ϑγ,ψ the Kuratowski measures of non-compactness defined

respectively on C1−γ,ψ([tk, tk+1]), k = 0, . . . ,m and PC1−γ,ψ([c,L]).

Lemma 3 ([15]). For all bounded subset D of PC1−γ,ψ([c,L]), we have

ϑγ,ψ(D) = max
k=0,...,m

ϑ
k
γ,ψ(Dk),

where Dk is the restriction of D on (tk, tk+1].

Theorem 1 ([15]). Let ρ the Kuratowski measure of non-compactness on Banach
space E and G a closed, bounded and convex subset of E which contains the 0. Let
∆ be an operator from G to G, assume that ∆ is continuous and satisfied, for every
subset V of G, we have the following implication:

V = ∆(V )∪{0} or V = conv∆(V ) =⇒ ρ(V ) = 0.

Then the set {w ∈ G : ∆(w) = w} is nonempty.

Theorem 2 ([14]). Let ρ the Kuratowski measure of non-compactness on Banach
space E, G a nonempty, closed, bounded and convex subset of E and ∆ be an continu-
ous operator from G to G such that, for all nonempty subset V of G:

ρ(∆(V ))≤ ςρ(V ),

where 0≤ ς < 1. Then ∆ has a fixed point in G.

We begin with some definitions from the theory of fractional calculus.

Definition 2 ([18, 25]). Let ` be an integrable function defined on (a,b],
(i) the ψ-Riemann- Liouville fractional integral of order α > 0 of the function `

is defined by

I
α,ψ
a+ `(t) =

1
Γ(α)

∫ t

a
ψ
′(s)Nα−1,ψ(t,s)`(s)ds,

(ii) the ψ-Riemann- Liouville fractional derivative of order α > 0 of the function
` is defined by

RLDα,ψ
a+ h(t) =

1
Γ(n−α)

(
1

ψ′(t)
d
dt

)n(∫ t

a
ψ
′(s)Nn−α−1,ψ(t,s)`(s)ds

)
,

where Γ is the gamma function and n = [α] + 1 ([α] represents the integer
part of the real number α).

Definition 3 ([18, 25]). Let ψ ∈ C 1([a,b],E) a functions such that ψ′(t) > 0, for
all t ∈ [a,b]. The ψ-Hilfer fractional derivative of a function ` of order 0 < α < 1 and
type 0≤ β≤ 1 is given by

HDα,β,ψ
a+ `(t) = Iβ(1−α),ψ

(
1

ψ′(t)
d
dt

)
I(1−β)(1−α),ψ`(t) = I1−γ,ψRLDγ,ψ`(t),

where γ = α+β(1−α).
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Lemma 4 ([18]). Let α,ρ ∈ R∗+ and t > a. We have then

(i1) I
α,ψ
a+ Nρ−1,ψ(t,a) =

Γ(ρ)
Γ(α+ρ)Nα+ρ−1,ψ(t,a).

(i2) HDα,ρ,ψ
a+ Nρ−1,ψ(t,a) =

Γ(ρ)
Γ(ρ−α)Nρ−α−1,ψ(t,a),0 < α < 1, ρ > 1.

We consider the spaces

C γ

1−γ,ψ([a,b]) =
{

u ∈ C1−γ,ψ([a,b]), RLDγ

a+u ∈ C1−γ,ψ([a,b])
}
,

PCγ

1−γ,ψ([c,L]) =
{

u ∈ PC1−γ,ψ([c,L]) : RLDγ,ψ

t+k
uk ∈ C1−γ([tk, tk+1]), k = 0, . . . ,m

}
,

and

PCα,β
1−γ,ψ([c,L]) =

{
u ∈ PC1−γ,ψ([c,L]) : HDα,β,ψ

t+k
uk ∈ C1−γ([tk, tk+1]), k = 0, . . . ,m

}
.

Lemma 5 ([19]). Let 0<α< 1, 0≤ β≤ 1 and γ=α+β−αβ. If f ∈ C γ

1−γ
([a,b]),

then
I

γ,ψ
a+ Dγ,ψ

a+ f = I
α,ψ
a+ Dα,β,ψ

a+ f and Dγ,ψ
a+ I

α,ψ
a+ f = Dβ(1−α)

a+ f .

Lemma 6 ([19]). Let ω : (a,b]→ E be a function such that ω(.) ∈ C1−γ,ψ([a,b]).
Then, a function y ∈ C γ

1−γ,ψ([a,b]) is a solution of linear fractional differential prob-
lem: {

HDα,β,ψ
a+ y(t) = ω(t), 0 < α < 1, 0≤ β≤ 1;

I
1−γ,ψ
a+ y(a+) = ω0, γ = α+β−αβ.

if and only if y satisfies the following integral equation:

y(t) =
ω0Nγ−1,ψ(t,a)

Γ(γ)
+

1
Γ(α)

∫ t

a
ψ
′(s)Nα−1,ψ(t,s)ω(s)ds.

For any k ∈ {1, . . . ,m}, we define the constants Ξ
k−i
j=1Nγ−1,ψ(tk− j+1, tk− j),

i = 1, . . . ,k by

Ξ
k−i
j=1Nγ−1,ψ(tk− j+1, tk− j) =

{
1, i = k;
∏

k−i
j=1 Nγ−1,ψ(tk− j+1, tk− j), i = 1, . . . ,k−1,

we also put

T ∗ =
Γ(γ)

Γ(δ+ γ)
max

{
sup

t∈(tk,tk+1]

( Nγ−1,ψ(t, tk)
Nγ−1,ψ(σk(t), tk)

)
,k = 0, . . . ,m

}
and

Tη = max
{

1,Nη,ψ(tk+1, tk),k = k = 0, . . . ,m
}
, η >−1.

Lemma 7. Let f : (c,L]×E2→ E be a function such that f (.,y(.),Iδ,ψ
tk y(σk(.)))∈

C1−γ,ψ([tk, tk+1]) k = 0, . . . ,m, for all y∈PC1−γ,ψ([c,L]). If y∈PCγ

1−γ,ψ([c,L]). Then,



640 M. BEDDANI, H. BEDDANI, AND M. FEČKAN

y is a solution of Problem (P) if and only if y satisfies the following integral equation:

y(t)=



MNγ−1,ψ(t,c)+ 1
Γ(α)

∫ t
c ψ′(s)Nγ−1,ψ(t,s) f

(
s,y(s),Iδ,ψ

tk y(σk(s))
)
ds, if t ∈ I0,

Nγ−1,ψ(t, tk)
[
M ∏

k
i=1 Nγ−1,ψ(ti, ti−1)

+
k

∑
i=1

Ξ
k−i
j=1Nγ−1,ψ(tk− j+1, tk− j)Ji(y(t−i ))

+
k

∑
i=1

Ξ
k−i
j=1Nγ−1,ψ(tk− j+1, tk− j)I

α,ψ

t+i−1
f
(
ti,y(ti),I

δ,ψ
ti−1y(σti−1(ti))

)]
+ 1

Γ(α)

∫ t
tk ψ′(s)Nα−1,ψ(t,s) f

(
s,y(s),Iδ,ψ

tk y(σk(s))
)
ds, if t ∈ Ik,

(2.1)
where Ik = (tk, tk+1],k = 1, . . . ,m.

Proof. First, we prove the necessity. Let y ∈ PCγ

1−γ,ψ([c,L]) be a solution of (P).

If t ∈ (a, t1], we have HDα,β,ψ
t0 y(t) = f

(
t,y(t),Iδ,ψ

tk y(σk(t))
)
, from Lemma 6, we get

y(t) = MNγ−1,ψ(t,c)+
1

Γ(α)

∫ t

c
ψ
′(s)Nα−1,ψ(t,s) f

(
s,y(s),Iδ,ψ

tk y(σk(s))
)
ds.

If t ∈ (t1, t2], then, from Lemma 6, we get

y(t)=
I

1−γ,ψ

t+1
y(t+1 )

Γ(γ)
Nγ−1,ψ(t, t1)+

1
Γ(α)

∫ t

t1
ψ
′(s)Nα−1,ψ(t,s) f

(
s,y(s),Iδ,ψ

t1 y(σ1(s))
)
ds.

By using the condition
I

1−γ,ψ

t+1
y(t+1 )

Γ(γ) = y(t−1 )+ J1(y(t−1 )), we obtain

y(t) =
(
y(t1)+ J1(y(t−1 ))

)
Nγ−1,ψ(t, t1)

+
1

Γ(α)

∫ t

t1
ψ
′(s)Nα−1,ψ(t,s) f (s,y(s),Iδ,ψ

t1 y(σ1(s))
)
ds

=
[
J1(y(t−1 ))+MNγ−1,ψ(t1,a)+I

α,ψ
c+ f

(
t−1 ,y(t−1 ),I

δ,ψ
t0 y(σ1(t1))

)]
Nγ−1,ψ(t, t1)

+
1

Γ(α)

∫ t

t1
ψ
′(s)Nα−1,ψ(t,s) f

(
s,y(s),Iδ,ψ

t1 y(σ1(s))
)
ds.

If t ∈ (t2, t3], by utilizing Lemma 6 and the condition
I

1−γ,ψ

t+2
y(t+2 )

Γ(γ) = y(t−2 )+ J2(y(t−2 )),
we arrive

y(t) =
I

1−γ,ψ

t+2
y(t+2 )

Γ(γ)
Nγ−1,ψ(t, t2)

+
1

Γ(α)

∫ t

t2
ψ
′(s)Nα−1,ψ(t,s) f

(
s,y(s),Iδ,ψ

t2 y(σ2(s))
)
ds

=
(
J2(y(t−2 ))+ y(t−2 )

)
Nγ−1,ψ(t, t2)
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+
1

Γ(α)

∫ t

t2
ψ
′(s)Nα−1,ψ(t,s) f

(
s,y(s),Iδ,ψ

t2 y(σ2(s))
)
ds

= Nγ−1,ψ(t, t2)
[
MNγ−1,ψ(t1, t0)Nγ−1,ψ(t2, t1)+Nγ−1,ψ(t2, t1)J1(y(t−1 ))+ J2(y(t−2 ))

+ Nγ−1,ψ(t2, t1)Iα

c+ f
(
t−1 ,y(t−1 ),I

δ,ψ
t0 y(σ0(t1))

)
+I

α,ψ
t1 f

(
t−2 ,y(t−2 ),I

δ,ψ
t1 y(σ1(t2))

)]
+

1
Γ(α)

∫ t

t2
ψ
′(s)Nα−1,ψ(t,s) f

(
s,y(s),Iδ,ψ

t2 y(σ2(s))
)
ds.

If t ∈ (tk, tk+1], we continue the procedure and again using Lemmas 6 and the condi-

tion
I

1−γ,ψ

t+k
y(t+k )

Γ(γ) = y(t−k )+ Jk(y(t−k )), we find

y(t) = Nγ−1,ψ(t, tk)

[
M

k

∏
i=1

Nγ−1,ψ(ti, ti−1)+
k

∑
i=1

Ξ
k−i
j=1Nγ−1,ψ(tk− j+1, tk− j)Ji(y(t−i ))

+
k

∑
i=1

Ξ
k−i
j=1Nγ−1,ψ(tk− j+1, tk− j)I

α,ψ

t+i−1
f
(
ti,y(ti),I

δ,ψ
ti−1y(σti−1(ti))

)]

+
1

Γ(α)

∫ t

tk
ψ
′(s)Nα−1,ψ(t,s) f

(
s,y(s),Iδ,ψ

tk y(σk(s))
)
ds.

Conversely, assume that y satisfies the impulsive equation (2.1). If t ∈ (t0, t1], by
using 6, we get

I
1−γ,ψ
c+ y(t) = M and HDα,β,ψ

t0 y(t) = f
(
t,y(t),Iδ,ψ

t0 y(σt0(t))
)
, for each t ∈ (t0, t1].

By recurrence, if t ∈ (tk, tk+1], k = 1, . . . ,m and according to Lemma 6, we get

HDα,β,ψ
tk y(t) = f

(
t,y(t),Iδ,ψ

tk y(σtk(t))
)
, for each t ∈ (tk, tk+1].

And, we can easily show that

∆α,ψy|t=tk = Jk(y(t+k )).

�

3. EXISTENCE OF THE SOLUTION

Suppose that the function f : (c,L]×E2→ E verifies

f (.,u(.),v(.)) ∈ PCγ

1−γ,ψ([c,L]),

for all u(.),v(.) ∈ PC1−γ([c,L]), f (.,0,0) ∈ C ([c,L],E) and there exists A,B ∈ R+

and λ≥ 1−α such that
(H1) For any u,v,u,v ∈ E and for all t ∈ Ik, k = 1, . . . ,m :

‖ f (t,u,v)− f (t,u,v)‖ ≤ ANλ,ψ(t, tk)‖u−u‖+B‖v− v‖.
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(H2) For each nonempty, bounded set Ω ⊂ PC1−γ,ψ([c,L]), for all t ∈ Ik,k =
0, . . . ,m, we have

ϑ( f (t,Ω(t),Iδ,ψ
tk Ω(σk(t)))≤ ANλ,ψ(t, tk)ϑ(Ω(t)))+Bϑ(I

δ,ψ
tk Ω(σk(t))),

where I
δ,ψ
tk Ω(σk(t)) = {Iδ,ψ

tk y(σk(t)),y ∈ PC1−γ,ψ([c,L])}, k = 0, . . . ,m.

Suppose that the functions Jk : E → E, k = 1, . . . ,m, are continuous and there exists
C ∈ R+ such that

(H3) For any u ∈ E :

‖Jk(u)‖ ≤C‖u‖, k = 1, . . . ,m.

(H4) For each nonempty, bounded set Ω⊂ PC1−γ,ψ([c,L]), we have

ϑ(Jk(Ω(t)))≤Cϑ(Ω(t)), k = 0, . . . ,m.

(H5) T m
γ−1Tα

(
mCΓ(α+1)+(m+1)(ATλ +BT ∗Tδ)

)
< Γ(α+1),

where T γ−1 = max
{

T1−γ,Tγ−1
}
.

Our first result concerning the existence of solutions of the problem (P) for which
we have used the fixed point theorem of Mönch’s is as follows:

Theorem 3. We assume that the hypotheses from (H1) to (H5) are satisfied, then
problem (P) has at least one solution in PCγ

1−γ,ψ([c,L]).

Proof. Consider the operator Λ : PC1−γ,ψ([c,L])→ PC1−γ,ψ([c,L]) defined by

Λy(t) = Nγ−1,ψ(t, tk)

[
M

k

∏
i=1

Nγ−1,ψ(ti, ti−1) +
k

∑
i=1

Ξ
k−i
j=1Nγ−1,ψ(tk− j+1, tk− j)Ji(y(t−i ))

+
k

∑
i=1

Ξ
k−i
j=1Nγ−1,ψ(tk− j+1, tk− j)I

α,ψ

t+i−1
f
(
ti,y(ti),I

δ,ψ
ti−1y(σti−1(ti))

)]

+
1

Γ(α)

∫ t

tk
ψ
′(s)Nα−1,ψ(t,s) f

(
s,y(s),Iδ,ψ

tk y(σk(s))
)
ds,

for any t ∈ Ik,k = 1, . . . ,m. From the definition of the operator Λ and Lemma 7, we
see that the fixed points of Λ are solutions of problem (P). For this reason, it suffices
to verify the axioms of Theorem 1, it is done in four steps.
First step. We start to prove that Λ is continuous. Let ε > 0 and {yn}n∈N → y in
PC1−γ,ψ([c,L]). The hypothesis (H1) and (H3) confirm the existence of an integer
n1 ∈ N such that, for all n≥ n1 and t ∈ Ik, k = 0, . . . ,m, we have

‖ f
(
t,yn(t),I

δ,ψ
tk yn(σk(t))

)
− f (t,y(t),Iδ,ψ

tk y(σk(t))
)
‖< Γ(α+1)ε

(2m+1)(ATλ +BT ∗Tδ)TαT m
γ−1
(3.1)
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and

‖Jk(yn(t−k ))− Jk(y(t−k ))‖< ε

2mT m
γ−1

. (3.2)

Thus, for all t ∈ Ik, k = 0, . . . ,m, we have

Nγ−1,ψ(t, tk)‖Λyn(t)−Λy(t)‖ ≤
k

∑
i=1

T m
γ−1‖Ji(yn(t−i ))− Ji(y(t−i ))‖

+
k

∑
i=1

T m
γ−1I

γ,ψ
ti ‖ f

(
ti+1,yn(ti+1),I

δ,ψ
ti yn(σi(ti+1))

)
− f
(
ti+1,y(ti+1),I

δ,ψ
ti y(σi(ti+1))

)
‖

+
T1−γ

Γ(α)

∫ t

tk
ψ
′(s)N1−α(t,s)‖ f

(
s,yn(s),I

δ,ψ
tk yn(σk(s))

)
− f
(
s,y(s),Iδ,ψ

tk y(σk(s))
)
‖ds.

By equations (3.1) and (3.2), we get

‖Λyn−Λy‖PC1−γ,ψ <
ε

2
+

ε

2
= ε.

Thus, Λ is continuous on PC1−γ,ψ([c,L]).
Second step. Now we will prove that Λ is bounded. Let y ∈ PC1−γ,ψ([c,L]), from
(H1) it is easy to deduce that Ny ∈ PC1−γ,ψ([c,L]). Using (H1) and (H3), for all
y ∈ Dκ = {y ∈ PC1−γ,ψ([c,L]) : ‖y‖PCγ,ψ < κ} and t ∈ Ik, we get

‖N1−γ,ψ(t, tk)Λy(t)‖ ≤ ‖M‖T m
γ−1 +T m

γ−1

k

∑
i=1
‖N1−γ,ψ(ti, ti−1)Ji(y(t−i ))‖

+T m
γ−1

k

∑
i=1

N1−γ,ψ(ti, ti−1)I
α,ψ

t+i−1
‖ f
(
ti,y(ti),I

δ,ψ
ti−1y(σti−1(ti))

)
‖

+
N1−γ,ψ(t, tk)

Γ(α)

∫ t

tk
ψ
′(s)Nα−1,ψ(t,s)‖ f

(
s,y(s),Iδ,ψ

tk y(σtk(s))
)
‖ds

≤ T m
γ−1
(
‖M‖+Cmκ

)
+

(m+1)TαT m
γ−1

Γ(α+1)

(
f ∗+κ

(
ATλ +BT ∗Tδ

))
,

where f ∗ = supt∈[c,L]
(
‖ f (t,0,0)‖

)
.

Third step. We prove that (ΛD)k is equicontinuous for all bounded subset D of
PC1−γ,ψ([c,L]), k = 1, . . . ,m, where (ΛD)k the restriction of ΛD on the interval Ik,
let Dκ be the subset which was previously defined. It suffices to prove that (ΛDκ)k
is equicontinuous in C1−γ,ψ([tk, tk+1]). Let y ∈ (Dκ)k and t1, t2 ∈ Ik with t1 < t2, from
(H1), we have

‖N1−γ,ψ(t2, tk)Λy(t2)−N1−γ,ψ(t1, tk)Λy(t1)‖

≤
N1−γ,ψ(t1, tk)

Γ(α)

∫ t1

tk
ψ
′(s)[Nα−1,ψ(t1,s)−Nα−1,ψ(t2,s)]‖ f (s,y(s),Iδ,ψ

tk y(σk(s))
)
‖ds
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+
[N1−γ,ψ(t2, tk)−N1−γ,ψ(t1, tk)]

Γ(α)

∫ t1

tk
ψ
′(s)Nα−1,ψ(t2,s)‖ f (s,y(s,Iδ,ψ

tk y(σk(s))
)
‖ds

+
N1−γ,ψ(t2, tk)

Γ(α)

∫ t2

t1
ψ
′(s)Nα−1,ψ(t2,s)‖ f (s,y(s),Iδ,ψ

tk y(σk(s))
)
‖ds

≤ f ∗+AκTλ +BκT ∗Tδ

Γ(α)

∫ t1

tk
ψ
′(s)[Nα−1,ψ(t1,s)−Nα−1,ψ(t2,s)]ds

+
f ∗[N1−γ,ψ(t2, tk)−N1−γ,ψ(t1, tk)]

Γ(α)

∫ t1

tk
ψ
′(s)Nα−1,ψ(t2,s)ds

+
Aκ[N1−γ,ψ(t2, tk)−N1−γ,ψ(t1, tk)]

Γ(α)

∫ t1

tk
ψ
′(s)Nα−1,ψ(t2,s)Nλ+α−1,ψ(s, tk)ds

+
BκT ∗[N1−γ,ψ(t2, tk)−N1−γ,ψ(t1, tk)]

Γ(α)

∫ t1

tk
ψ
′(s)Nα−1,ψ(t2,s)Nδ+γ−1,ψ(s, tk)ds

+
f ∗+AκTλ +BκT ∗Tδ

Γ(α)

∫ t2

t1
ψ
′(s)Nα−1,ψ(t2,s)ds

≤
f ∗+AκΨ∗

λ

Γ(α+1)
[2Nα,ψ(t2, t1)+Nα,ψ(t1, tk)−Nα,ψ(t2, tk)]

+
f ∗Tα +AκT2α+λ−1 +BκT ∗Tα+δ+λ−1

Γ(α+1)
[Ψ1−α(t2, tk)−Ψ1−α(t1, tk)],

Taking t2 tends towards t1, we get that, the last inequality tends to zero. Then (ΛDκ)k
is equicontinuous in C1−γ,ψ([tk, tk+1]), k = 0, . . . ,m.
Final step. We verify that Λ satisfies the assumptions of theorem 1. We pose

D = {y ∈ PC1−γ,ψ([c,L]) : ‖y‖PCγ,ψ ≤ R},
where R is a real number verifies the following equality

R >

T m
γ−1

(
Γ(α+1)‖M‖+(m+1)Tα f ∗

)
Γ(α+1)−T m

γ−1Tα

(
mCΓ(α+1)+(m+1)(ATλ +BT ∗Tδ)

) . (3.3)

First, we now show that Λ is defined from D to D, Indeed, for any y ∈ D, by above
conditions (H2),(H5) and by according to a little calculation, for all t ∈ Ik, we have

‖N1−γ,ψΛy(t)≤
T m

γ−1

Γ(α+1)

(
Γ(α+1)‖M‖+(m+1)Tα f ∗

)
+

T m
γ−1Tα

Γ(α+1)

(
mCΓ(α+1)+(m+1)(ATλ +BT ∗Tδ)

)
R.

From inequality (3.3), we obtain

∀y ∈ D : ‖Λy‖PCγ,ψ < R.
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Then Λ remains defined from D to D. Note that D is bounded, convex and closed
subset of PCγ,ψ([a,L]) and Λ is continuous on D, we can easily show the following
equality

ϑ
k
γ,ψ((NV )k) = sup

{
ϑ
(
N1−γ,ψ(t, tk)ΛV (t)

)
, t ∈ Ik

}
,

for all V ⊂ D, k = 0, . . . ,m. Next, we need to prove the following implication

V ⊂ conv{Λ(V )∪{0}}=⇒ ϑγ,ψ(V ) = 0, for any V ⊂ D.

Let V ⊂ D such that V ⊂ conv{Λ(V )∪{0}}. From (H2), (H4), Lemmas 1-2 and the
previous steps, for all t ∈ Ik, we have

ϑ
(
N1−γ,ψ(ΛV )(t)

)
≤

ATλT m
γ−1

Γ(α)

k

∑
i=0

∫ ti+1

ti
ψ
′(s)Nα−1,ψ(ti+1,s)ϑi

γ,ψ((ΛV )i)ds

+
BT ∗TδT m

γ−1

Γ(α)

k

∑
i=0

∫ ti+1

ti
ψ
′(s)Nα−1,ψ(ti+1,s)ϑi

γ,ψ((ΛV )i)ds+CT m
γ−1

k−1

∑
i=0

ϑ
i
α,ψ((ΛV )i)

+
ATλ +BT ∗Tδ

Γ(α)

∫ t

tk
ψ
′(s)Nα−1,ψ(t,s)ϑk

γ,ψ((ΛV )k)ds.

Thus,

ϑγ,ψ(ΛV )≤
T m

γ−1

[
(m+1)ATλ+α +(m+1)BT ∗Tδ+α +mCΓ(α+1)

]
Γ(α+1)

ϑγ,ψ(ΛV ).

By condition (H5), we get ϑγ,ψ(ΛV ) = 0, that is ϑγ,ψ(V ) = 0. From Theorem 1, Λ

has a fixed point ȳ ∈D which is a solution of Problem (P). Let us now show that the
fixed point of Λ is included in PCγ

1−γ,ψ([c,L]), Let t ∈ Ik, k = 0, . . . ,m. So, we have

ȳ(t) = Nγ−1,ψ(t, tk)

[
M

k

∏
i=1

Nγ−1,ψ(ti, ti−1)+
k

∑
i=1

Ξ
k−i
j=1Nγ−1,ψ(tk− j+1, tk− j)Ji(ȳ(t−i ))

+
k

∑
i=1

Ξ
k−i
j=1Nγ−1,ψ(tk− j+1, tk− j)I

α,ψ

t+i−1
f
(
ti, ȳ(ti),I

δ,ψ
ti−1 ȳ(σti−1(ti))

)]

+
1

Γ(α)

∫ t

tk
ψ
′(s)Nα−1,ψ(t,s) f

(
s, ȳ(s),Iδ,ψ

tk ȳ(σk(s))
)
ds.

By entering RLDγ

t+k
on both sides and utilizing Lemma 6, we find

RLDγ

t+k
ȳ(t) =RL Dγ

t+k
I

α,ψ

t+k
f
(
t, ȳ(t),Iδ,ψ

tk ȳ(σtk(t))
)

=RL Dβ(1−α)

t+k
f
(
t, ȳ(t),Iδ,ψ

tk ȳ(σtk(t))
)
.
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Thus, according to the hypotheses on f , we deduce that RLDγ

t+k
ȳ(t) ∈ C γ

1−γ
(Ik), k =

0, . . . ,m, from the definition of PCγ

1−γ,ψ([c,L]), we conclude that the fixed point ȳ of
Λ is an element of such space. �

Our present result is based on the Darbo’s fixed point theorem.

Theorem 4. Suppose that the conditions (H1)−(H5) are valid. Then, the problem
(P) has at least one solution. Moreover its solutions belong to PCγ

1−γ,ψ([c,L]) ⊂
PCα,β

1−γ,ψ([c,L]).

Proof. By Lemma 7, the solutions of Problem (P) and fixed points of operator Λ

are coincident. We will prove that Λ satisfies the conditions of Darbo’s fixed point
Theorem 2. According to what precedes the operator Λ is defined from D to D,
continuous, bounded and that ΛD is equicontinuous, it suffices to prove that there
exists a real 0 < ξ < 1 such that

ϑγ,ψ(ΛV )≤ ξϑγ,ψ(V ), for all V ⊂ D.

Let V ⊂ D and t ∈ Ik, k = 0, . . . ,m. From (H2), (H4) and by using Lemmas 1-3, we
have

ϑ
(
N1−γ,ψ(t, tk)(ΛV )(t)

)
= ϑ

({
N1−γ,ψ(t, tk)Λu(t), u ∈V

})
≤

ATλT m
γ−1

Γ(α)

k

∑
i=0

∫ ti+1

ti
ψ
′(s)Nα−1,ψ(ti+1,s)ϑi

γ,ψ((ΛV )i)ds

+
BT ∗TδT m

γ−1

Γ(α)

k

∑
i=0

∫ ti+1

ti
ψ
′(s)Nα−1,ψ(ti+1,s)ϑi

γ,ψ((ΛV )i)ds

+CT m
γ−1

k−1

∑
i=0

ϑ
i
α,ψ((ΛV )i)

+
ATλ +BT ∗Tδ

Γ(α)

∫ t

tk
ψ
′(s)Nα−1,ψ(t,s)ϑk

γ,ψ((ΛV )k)ds.

So, from (H5) there exists a real 0 < ξ < 1 such that

ϑγ,ψ(ΛV )≤ ξϑγ,ψ(V ), for all V ⊂ D,

where ξ =
T m

γ−1
Γ(α+1)

[
(m+1)ATλ+α +(m+1)BT ∗Tδ+α +mCΓ(α+1)

]
. So, Theorem 2

assures us that the operator has at least one fixed point ȳ. Method similar to that of
the last step of our first result, we find that its fixed points belong to PCγ

1−γ,ψ([c,L])⊂
PCα,β

1−γ,ψ([c,L]). �
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4. STABILITY

For any ε > 0, ζ > 0 and θ : (c,L]→R+ be a continuous function, we consider the
following system of inequalities

(S)

{
‖HDα,β,ψ

t+k
y(t)− f (t,y(t),Iδ,ψ

t+k
y(σk(t)))‖ ≤ εθ(t), t ∈ Ik, k = 0, . . . ,m,

‖∆γ,ψy|tk − Jk(y(t−k ))‖ ≤ εζ,k = 1, . . . ,m.

Definition 4. Problem (P) is said to be stable in the sense of Ulam-Hyers-Rassias
according to (θ,ζ) if there is a real number χ(θ,ζ), for all solution ϖ ∈ PC1−γ,ψ([c,L])
of problem (S) there exists a solution y ∈ PC1−γ,ψ([c,L]) of problem (P) such that

‖y(t)−ϖ(t)‖ ≤ εχ(θ,ζ)

(
θ(t)+ζ

)
, for all t ∈ (c,L].

Remark 1. A function ϖ of PC1−γ,ψ([c,L]) is called solution of problem (S) if
there exists a function ϕ ∈ C ([c,L)) and constants ρk ∈ E, k = 0, . . . ,m satisfies
‖ϕ(t)‖ ≤ εθ(t) and ‖ρk‖ ≤ εζ, t ∈ Ik, k = 0, . . . ,m, such that ϖ is a solution of the
following problem{

HDα,β,ψ

t+k
y(t) = f (t,y(t),Iδ,ψ

t+k
y(σk(t)))+ϕ(t), t ∈ Ik, k = 0, . . . ,m,

∆γ,ψy|tk = Jk(y(t−k ))+ρk, k = 1, . . . ,m.

In the following we give a result about the stability in the sense of Ulam-Hyers-
Rassias of Problem (P). We are interested in studying the case where θ : (c,L]→R+

is a constant function.

Theorem 5. Suppose that the conditions (H1)−(H5) are valid. Then, the problem
(P) is stable in the sense of Ulam-Hyers-Rassias according to (θ,ζ).

Proof. Let ε > 0, ϖ ∈ PC1−γ,ψ([c,L]) be any solution of Problem (S) and y be the
solution of the following problem

(P)


HDα,β,ψ

t+k
y(t) = f (t,y(t),Iδ,ψ

t+k
y(σk(t))), t ∈ Ik, k = 0, . . . ,m,

∆γ,ψy|tk = Jk(y(t−k )),k = 1, . . . ,m,

I
1−γ,ψ

t+k
y(t+k ) = I

1−γ,ψ

t+k
ϖ(t+k ),k = 0, . . . ,m.

From Lemma 6 the solution y of the previous problem is written in the following
form

y(t)=
I

1−γ,ψ

t+k
y(t+k )

Γ(γ)
Nγ−1,ψ(t, tk)+

1
Γ(α)

∫ t

tk
ψ
′(s)Nα−1,ψ(t,s) f

(
s,y(s),Iδ,ψ

tk y(σk(s))
)
ds.

Since ϖ is a solution of Problem (S) and by utilizing the remark 1, we have{
HDα,β,ψ

t+k
ϖ(t) = f (t,ϖ(t),Iδ,ψ

t+k
ϖ(σk(t)))+ϕ(t), t ∈ Ik = (tk, tk+1], k = 0, . . . ,m,

∆γ,ψϖ|tk = Jk(ϖ(t−k ))+ρk, k = 0, . . . ,m.
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Thus, for all t ∈ Ik, k = 0, . . . ,m, ϖ is given by

ϖ(t) =
I 1−γ,ψ

t+k
ϖ(t+k )

Γ(γ)
Nγ−1,ψ(t, tk)

+
1

Γ(α)

∫ t

tk
ψ
′(s)Nα−1,ψ(t,s)

(
ϕ(t)+ f

(
s,ϖ(s),Iδ,ψ

tk ϖ(σk(s))
))

ds.

Since I
1−γ,ψ

t+k
y(t+k ) = I

1−γ,ψ

t+k
ϖ(t+k ). So, for all t ∈ (tk, tk+1], k = 0, . . . ,m, we have

‖ϖ(t)− y(t)‖ ≤ I
α,ψ

t+k
‖ f
(
t,ϖ(t),Iδ,ψ

tk ϖ(σk(t))
)
− f
(
t,y(t),Iδ,ψ

tk y(σk(t))
)
‖+I

α,ψ

t+k
‖ϕ(t)‖.

From (H2), we get(
1− Tα(ATλ +BT ∗Tδ)

Γ(α+1)

)
‖ϖ− y‖PC1−γ,ψ ≤

εTα

Γ(α+1)
θ.

Thus, for all t ∈ (c,L], we obtain

‖ϖ(t)− y(t)‖ ≤
Tγ−1Tα

Γ(α+1)−Tα(ATλ +BT ∗Tδ)
(θ+ζ)ε.

Thus, the proof is completed. �

5. EXAMPLE

We pose ψ(t) = t, m = 1, t0 = 0, t1 = 0.5, t2 = 1,σ = 1, α = β = λ = δ = 0.5 and

E = {(y1,y2, . . . ,yn, . . .) : sup
n
|yn|< ∞}, with ‖y‖= sup

n
|yn|.

We take the following problem

HDα,β,ψ
tk y(t) =

(
fn(t,y(t),I

δ,ψ
tk y(σk(t)))

)∞

n=1
, t ∈ (tk, tk+1]⊂ (0,1], k = 0,1 (5.1)

I
1−γ,ψ
0+ y(0+) = (1,0, . . . ,0, . . .). (5.2)

∆γ,ψy|t= 1
2
= J1(y(

1
2

−
)), (5.3)

with

fn(t,y(t),I
δ,ψ
tk y(σk(t))) =

I
δ,ψ
tk yn(σk(t))

10+nt2 +

√
t− ti

10+ t + t2 yn(t),k = 0,1,n ∈ N∗ and

J1(u) =
1
10

u, for all u ∈ E.

We can easily see that f : (tk, tk+1]×E → E, k = 0,1 and J1 : E → E are continuous
and there exists A = B =C = 1

10 such that

‖ f (t,u,v)− f (t,u,v)‖≤A
√

t− tk‖u−u‖+B‖v−v‖, for all t ∈ Ik and u,v,u,v∈E and

‖J1(u)‖=C‖u‖, for all u ∈ E.
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So, (H2) and (H4) are valid. Next, let Ω be a bounded subset of PC1γ,ψ([0,1]), we
have

ϑ

(
f (t,Ω(t),Iδ,ψ

tk Ω(σk(t)))
)
≤ 1

10

(√
t− tkϑ

(
Ω(t)

)
+ϑ

(
I

δ,ψ
tk Ω(σk(t))

)
, t ∈ Ik

and

ϑ

(
J1(Ω(t)

)
≤ 1

10

(
Ω(t)

)
.

Thus, (H1) and (H3) are satisfied. A quick calculation gives us

T m
γ−1Tα

(
mCΓ(α+1)+(m+1)(ATλ +BT ∗Tδ)

)
< Γ(α+1).

So, (H5) holds. By virtue of Theorem 3 or 4 the problem (5.1)-(5.3) has at least one
solution. Moreover, from Theorem 5, we have for any constant function θ : (0,1]→
[0,∞) and ζ > 0, the problem (5.1)-(5.3) is stable in the sense of Ulam-Hyers-Rassias
according to (θ,ζ).

6. CONCLUSION

In this paper, we study the existence of a solution and its Ulam-Hyears-Rassias
stability for certain pantograph fractional integro-differential equations with impuls-
ive conditions. The significance of our work is that these conditions are nonlocal.
The future consideration will be to consider non-instantaneous impulsive conditions.

REFERENCES

[1] S. Abbas, M. Benchohra, J. R. Graef, J. Henderson, and Y. Zhou, Implicit Differential and
Integral Equations: Existence and stability. London: Walter de Gruyter, 2018. doi:
10.1515/9783110553819.

[2] S. Abbas, M. Benchohra, J. E. Lazreg, A. Alsaedi, and Y. Zhou, “Existence and Ulam stability for
fractional differential equations of Hilfer-Hadamard type.” Adv. Difference Equ., p. 14, 2017, doi:
10.1186/s13662-017-1231-1.

[3] H. Afshari, H. R. Marasi, and J. Alzabut, “Applications of new contraction mappings on exist-
ence and uniqueness results for implicit φ-Hilfer fractional pantograph differential equations.” J.
Inequal. Appl., vol. 2021, no. 185, 2021, doi: 10.1186/s13660-021-02711-x.

[4] R. P. Agarwal, B. Hedia, and M. Beddani, “Structure of solution sets for impulsive fractional
differential equations.” J. Fract. Calc. Appli., vol. 9, no. 1, pp. 15–34, 2017.

[5] R. P. Agarwal and D. O’Regan, “Multiple nonnegative solutions for second order impulsive dif-
ferential equations.” Appl. Math. Comput., vol. 114, no. 1, pp. 51–59, 2000, doi: 10.1016/S0096-
3003(99)00074-0.

[6] Z. Agur, L. Cojocaru, G. Mazaur, R. M. Anderson, and Y. L. Danon, “Pulse mass measles
vaccination across age cohorts.” Proc. Nat. Acad. Sci., vol. 90, pp. 11 698–11 702, 1993, doi:
10.1073/pnas.90.24.11698.

[7] J. Alzabut, B. Ahmad, S. Etemad, S. Rezapour, and A. Zada, “Novel existence techniques on the
generalized φ-Caputo fractional inclusion boundary problem.” Adv. Differ. Eq., vol. 2021, no. 135,
2021, doi: 10.1186/s13662-021-03301-3.

http://dx.doi.org/10.1515/9783110553819
http://dx.doi.org/10.1186/s13662-017-1231-1
http://dx.doi.org/10.1186/s13660-021-02711-x
http://dx.doi.org/10.1016/S0096-3003(99)00074-0
http://dx.doi.org/10.1016/S0096-3003(99)00074-0
http://dx.doi.org/10.1073/pnas.90.24.11698
http://dx.doi.org/10.1186/s13662-021-03301-3


650 M. BEDDANI, H. BEDDANI, AND M. FEČKAN
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[20] D. Luo, J. R. Wang, and M. Fečkan, “Applying fractional calculus to analyze economic growth
modelling.” J. Appl. Math. Stat. Inform., vol. 14, pp. 25–36, 2018, doi: 10.2478/jamsi-2018-0003.

[21] J. Patade and S. Bhalekar, “Analytical solution of pantograph equation with incommensurate
delay.” Phys. Sciens. Rev. Inform., vol. 9, no. 2, pp. 20 165 103, 1–17, 2017, doi: 10.1515/psr-
2016-5103.

[22] I. Podlubny, Fractional Differential Equations, in: Mathematics in Science and Engineering.
New York: Academic Press, 1999.

[23] J. M. Rassias, Functional Equations: Difference Inequalities and Ulam Stability Notions. New
York: Nova Science Publishers, 2010.

[24] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and
Applications. Yverdon: Gordon and Breach, 1993.

[25] J. Vanterler da, C. Sousa, and E. Capelas de Oliveira, “On the ψ-Hilfer fractional derivative.” Com-
mun. Nonlinear Sci. Numer. Simul., vol. 60, pp. 72–91, 2018, doi: 10.1016/j.cnsns.2018.01.005.

Authors’ addresses

Moustafa Beddani
E. N. S. of Mostaganem, Department of Exact Sciences, Mostaganem, Algeria
E-mail address: beddani2004@yahoo.fr

http://dx.doi.org/10.1016/j.cnsns.2010.08.005
http://dx.doi.org/10.2478/mjpaa-2022-0006
http://dx.doi.org/10.1016/j.chaos.2017.03.024
http://dx.doi.org/10.1016/j.cnsns.2011.11.017
http://dx.doi.org/10.1007/978-1-4613-1281-9
http://dx.doi.org/10.1073/pnas.27.4.222
http://dx.doi.org/10.3390/fractalfract5040251
http://dx.doi.org/10.3390/fractalfract5040251
http://dx.doi.org/10.1016/j.chaos.2021.111335
http://dx.doi.org/10.2478/jamsi-2018-0003
http://dx.doi.org/10.1515/psr-2016-5103
http://dx.doi.org/10.1515/psr-2016-5103
http://dx.doi.org/10.1016/j.cnsns.2018.01.005


IMPULSIVE PANTOGRAPH FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION 651

Hamid Beddani
Higher School of Electrical and Energy Engineering, Laboratory of Complex Systems, Oran, Algeria
E-mail address: beddanihamid@gmail.com

Michal Fečkan
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