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ISTVÁN MEZŐ
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Abstract. The exponential space, which is a Banach function space, can be defined with two very
differently looking, but equivalent norms. In this paper, we give estimates for the best constants
of the ratio of these two norms. Our result answers a question of C. Bennett, and R. Sharpley.
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1. INTRODUCTION

1.1. The Lexp space

In 1928, A. Zygmund and E. C. Titchmarsh independently introduced the L logL
logarithm space, and the Lexp exponential space during their studies on Fourier ana-
lysis [5–7] (see also the historical remarks on p. 288 of [1]). Later, these spaces
turned out to be important in the theory of interpolation of operators, too [1]. The
exponential space can be defined by a Marcinkiewicz space norm, and via an Orlicz
space norm. These norms, although are guaranteed to be equivalent, look very differ-
ently. The authors of [1] wrote that “the exact relationship” between the two norms
“is not clear” (p. 271). Our aim in this paper is to clarify this relation by giving
approximations of the best constants for the ratio of the two norms. The logarithm
space was treated in our previous paper [3].

The Lexp = Lexp[0,1] space is the complete vector space of measurable functions
on [0,1] with finite norm, where the norm is given by the expression

‖ f‖Lexp = sup
0<t<1

f ∗∗(t)
1+ log

(1
t

) . (1.1)

Here

f ∗∗(t) =
1
t

∫ t

0
f ∗(s)ds
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is the maximal function of f , and f ∗(s) is the decreasing rearrangement of f . The
reader can find more on these notions in the classical text [2] or in the newer [1, 4].
Norms of the type (1.1) are called Marcinkiewicz-type norms [4, Chapter 11].

The exponential space can be viewed as an Orlicz space, too. In this case f ∈ Lexp
is equipped with the following norm, called Luxemburg norm [4, Notes on p. 234]:

‖ f‖Φ = inf
{

λ > 0 :
∫ 1

0
Φ

(
| f (t)|

λ

)
dt ≤ 1

}
, (1.2)

where

Φ(t) =
{

t, 0≤ t ≤ 1;
et−1, t > 1. (1.3)

The fact that (1.1) and (1.2) are equivalent can be verified by showing that the two
corresponding spaces contain the same set of functions (see [1, p. 271] for more
details, and detailed explanation). It therefore follows that there are two positive,
finite constants c1 and c2 such that c1 ≤

‖ f‖Lexp
‖ f‖Φ

≤ c2. In the following theorem we
give estimates for these constants.

Theorem 1. There exist constants c1 and c2, such that for all f ∈ Lexp

c1 ≤
‖ f‖Lexp

‖ f‖Φ

≤ c2 (1.4)

with
0 < c1 ≤ 1, and 1+

1
e
≤ c2 ≤ 2(1+ log2).

Before proving our theorem, a remark and a question are in order.

Question. The constants in our theorem unfortunately do not seem to be optimal,
so we put the following question: what are the optimal constants in (1.4)?

2. THE PROOF OF THEOREM 1

2.1. The estimate of c1

We will consider step functions1 f which are decreasing and right-continuous (so
that, conveniently, f ∗ = f ):

f (t) =
n

∑
k=0

akχ]ik,ik+1](t) (2.1)

1Note that Lexp is a non-separable space. The theory of Marcinkiewicz spaces says that if the fun-
damental function φ of the space is so that φ(0+) = 0, and φ′(0+) = ∞, then the given Marcinkiewicz
space is non-separable [4, p. 164]. The fundamental function of the exponential space is

φ(t) =
1

1+ log
( 1

t
) ,

which behaves at zero exactly as we said above. Therefore, the step functions do not form a dense set
in Lexp.
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with 0 = i0 < i1 < · · · in+1 = 1 and a0 > a1 > · · ·> an ≥ 0. (Here χI is the character-
istic function of the interval I.)

It turns out, that on one-step functions the norms (1.1) and (1.2) agree. To see this,
let f be a one-step function. Then

f ∗∗(t) =
1
t

∫ i1

0
a0ds =

{
a0, if 0 < t ≤ i1;
a0i1

t , if t > i1,

whence

‖ f‖Lexp = max

{
sup

0<t≤i1

a0

1+ log
(1

t

) , sup
i1<t<1

a0i1/t
1+ log

(1
t

)}=
a0

1+ log
(

1
i1

) . (2.2)

On the other hand,

‖ f‖Ψ = inf
{

λ > 0
∣∣∣∣∫ i1

0
Φ

(a0

λ

)
dt ≤ 1

}
= inf

{
λ > 0

∣∣∣i1Φ

(a0

λ

)
≤ 1

}
.

By (1.3),

Φ

(a0

λ

)
=

{ a0
λ
, λ≥ a0;

exp(a0/λ−1), 0 < λ < a0.

It is seen, that Φ
(a0

λ

)
= 1 has a unique solution:

λ
∗ =

a0

1+ log
(

1
i1

) . (2.3)

And thus we have that
‖ f‖Φ =

a0

1+ log
(

1
i1

) . (2.4)

This indeed agrees with (2.2). It therefore follows that

c1 = inf
f∈Lexp

‖ f‖Lexp

‖ f‖Φ

≤ inf
f∈S1

‖ f‖Lexp

‖ f‖Φ

= 1.

(That c1 is positive is a trivial consequence of the equality of the norms.) Above S1
is the set of one-step functions. The first part of our theorem is proved.

2.2. The estimate of c2

To find lower estimate for

c2 = sup
f∈Lexp

‖ f‖Lexp

‖ f‖Φ

,

we consider step functions of special form. Let S be a class of step functions, for
which the norm (1.2) is taken already on the first step, i.e., ‖ f‖Φ ≥ a1. In view of
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(2.3), a step function f can belong to S only if

a1 <
a0

1+ log
(

1
i1

) (2.5)

(otherwise we would have that λ < a1, and a1 would therefore be needed to calculate
‖ f‖Φ).

Seeking for the supremum of
‖ f‖Lexp
‖ f‖Φ

, we can raise the steps of f and thus making
the nominator bigger, while the denominator remains unchanged. We do this so that
our function stays in S. Clearly, in limit, any rear steps in f become as high as a1,
and a1 itself will be equal to a0

1+log
(

1
i1

) (see (2.5)). For simplicity, let us denote i1 by

α. Thus, in the set S, the extremal ratio of the norms is attained for

f (t) = a0χ]0,α(t)+a1χ]α,1](t) (2.6)

with some 0 < α < 1, and a1 =
a0

1+log( 1
α)

. For this f , (2.4) is still valid (with i1 = α),

which gives us the Luxemburg norm of f . We still need to determine the Mar-
cinkiewicz norm of f . This can be calculated as follows:

‖ f‖Lexp = max

{
sup

0<t<α

a0

1+ log
(1

t

) , sup
α≤t<1

a0α+a1(t−α)

t
(
1+ log

(1
t

)) }

= max

{
a0

1+ log
( 1

α

) , sup
α≤t<1

(a0−a1)α+a1t
t
(
1+ log

(1
t

)) } .

If the maximum was the first value, we would be in the case of one step functions.
Otherwise, we have that

‖ f‖Lexp

‖ f‖Φ

=
supα≤t<1

(a0−a1)α+a1t
t(1+log( 1

t ))

a1
= sup

α≤t<1

(
a0
a1
−1
)

α

t +1

1+ log
(1

t

) .

Since a0/a1 = 1+ log
( 1

α

)
, it comes that

‖ f‖Lexp

‖ f‖Φ

= sup
α≤t<1

log
( 1

α

)
α

t +1

1+ log
(1

t

) (2.7)

for our particular f in (2.6). For any α ∈]0,1[, the function on the right-hand-side
inside the supremum decreases, and then increases in t, so its extremal values in
t ∈ [α,1] are taken in the points t = α and t = 1. In t = α its value is one, and at t = 1
it is log

( 1
α

)
α+1. We choose α such that this expression is maximal. The maximum

is reached when α = 1
e .

From these considerations and from (2.7), we altogether have that

‖ f‖Lexp

‖ f‖Φ

=
1
e
+1.
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Since the set S is obviously smaller than the whole set Lexp, we expect the supremum
of the ratio on Lexp larger than it is on S. That is,

c2 ≥
1
e
+1.

The only statement that still needs to be proven is that c2 ≤ 2(1+ log2). To prove
this inequality, we recall that the finiteness of

K :=
∫ 1

0
exp(λ f ∗(t))dt (2.8)

implies that

f ∗(t)≤ c
(

1+ log
(

1
t

))
(0 < t < 1). (2.9)

Here c = 1
λ

max{logK,1}, and λ is positive. See the argument on p. 244-245 of [1].
At this point we suppose that f belongs to the unit sphere of (Lexp,‖ · ‖Φ) in the

expression
‖ f‖Lexp
‖ f‖Φ

. This causes no lost of generality, because of the homogeneity of
the norms. We therefore have that

‖ f‖Φ =
∫

A
| f (t)|dt +

∫
B

exp(| f (t)|−1)dt = 1. (2.10)

Here
A = {t ∈ [0,1] : | f (t)| ≤ 1}, B = [0,1]\A.

Next, we estimate the constant K in (2.8) (with λ = 1):∫ 1

0
exp( f ∗(t))dt =

∫
B

exp(| f (t)|)dt +
∫

A
exp(| f (t)|)dt.

From (2.10) it comes that
∫

B exp(| f (t)|)dt ≤ e. Moreover, by the definition of the set
A, ∫

A
exp(| f (t)|)dt ≤

∫
A

exp(1)dt ≤ e.

Hence

K =
∫ 1

0
exp( f ∗(t))dt ≤ 2e,

and this yields that in (2.9) the constant c is

c =
1
1

max{log(2e),1}= 1+ log2.

To estimate ‖ f‖Lexp , however, we need an estimate for f ∗∗(t). But this is easy after
having (2.9) at hand:

f ∗∗(t) =
1
t

∫ t

0
f ∗(s)ds≤ 1+ log2

t

∫ t

0

(
1+ log

1
s

)
ds≤ 2(1+ log2)

(
1+ log

1
t

)
.

Now, (1.1) immediately yields that, if f is on the unit sphere of (Lexp,‖ · ‖Φ), then

‖ f‖Lexp ≤ 2(1+ log2).
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Our proof is done.
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