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Abstract. Using the Caputo derivative of order q ∈ (α−1,α), we examine boundary value prob-
lems for fractional integro-differential equations in Banach spaces. Using an a priori estimate
technique, the Holder’s inequality, a suitable singular Gronwall’s inequality, and the fixed point
theorem are utilised to prove the existence and uniqueness of solutions.
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1. INTRODUCTION

When representing natural events, differential and integro-differential equations
and inclusions are more realistic, and they can be found in a variety of applications
(refer[10]-[9], and the cited references). ODEs and integration to arbitrary non in-
teger order are generalised to fractional differential equations(FDEs).

Differential equations with fractional order derivatives have recently proven to be
effective tools for modelling a wide range of physical phenomena as well as in a vari-
ety of scientific and technical domains. In ordinary and partial FDEs with fractional
order, there has been a lot of advancement in recent years; look into the monographs
of Abbas et al.[2], Baleanu et al. [8], the papers by Abbas et al. (refer [1]-[3]). Many
applications exist in control, electrochemistry, porous media, electromagnetism, vis-
coelastic, and other fields (see [15]-[21]).

Miller and Ross have a comprehensive bibliography on this subject. [18]. As a
result, the theory of FDEs has been extensively developed. The monographs of Kil-
bas et al. [16], Lakshmikantham et al. [17]. Particularly, Agarwal et al. [4] provide
necessary criteria for the existence and uniqueness of solutions for many classes of
starting and boundary value problems utilising the Caputo fractional derivative for
FDEs and inclusions in R. Some FDEs and optimum controllers in abstract Banach
spaces have recently been investigated by Balachandran et al. [6, 7], Dong et al.[12],
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El-Borai [13], Henderson and Ouahab [14], Hernández [15], Wang et al. ([20]-[21]),
and Zhou et al. ([23]-[24]). Chalishajar and Karthikeyan [11] have recently proved
the existence of impulsive fractional order integro-differential equations in Banach
spaces using a combination of generalised Grownwall’s inequality, Caputo derivat-
ive, and the fixed point approach. The writers have looked at an abstract boundary
condition in this paper. In this paper, we use the generalised boundary condition to
generalise the conclusion found in [11].

The remainder of this work is laid out as follows: The problem is explicitly defined
with motivations in Section 2. We make some notes and recall certain concepts and
findings from the preparation. Theorems 2 and 3 are presented in Section 3, with the
first based on the Banach contraction principle and the second based on Schaefer’s
fixed point theorem.

2. PRELIMINARIES

The goal of this paper is to build on previous research [5,22] on FBVPs, for FDEs
in R to U is an abstract Banach space of type

cDqz(v) = φ(v,z(v),(Az)(v)), v ∈ I = [0,T ], q ∈ (α−1,α),
z(0) = z0, z′(0) = z1

0, z′′(0) = z2
0, · · · , z(α−1)(0) = zα−2

0 ,

z(α−1)(T ) = zT

(2.1)

where cDq is the Caputo fractional derivative of order q, φ : I ×U ×U → U is a
given function satisfying F(z) a few assumptions to be detailed later, and z0, z j

0 ( j =
1,2, · · · ,α−2,α≥ 4,α is a integer), zT are some elements of U and S is a nonlinear
integral operator given by

(Az)(v) =
∫ v

0
ψ(v,s)z(s)ds,

with ϕ0 = max{
∫ v

0 ψ(v,s)ds : (v,s) ∈ I× I} where ψ ∈C (I× I,R+).
Some existence and uniqueness results for the fractional BVP (2.1) are shown

using Holder’s inequality, a suitable singular Gronwall’s inequality, and the fixed
point method. There are at least three discrepancies between the preceding results
obtained in [5]: To establish the priori bounds, (i) the work space is not R but the
abstract Banach space X ; (ii) f is not necessarily jointly continuous and fulfils some
weaker constraints; (iii) another singular Gronwall’s inequality is presented.

The study of such problems has gotten a lot of attention in recent years, both the-
oretically and practically. The following recent works on this topic will be mentioned
in [7, 14], without making an attempt to be exhaustive The following conditions are
frequently used by authors: for the existence of solutions, the nonlinear term φ must
satisfy F(z) that there exist functions.u1,u2 ∈C([0,1], [0,∞)) as a result 1≥ v≥ 0 and
each x ∈ R,

|φ(v,x)| ≤ u1(v)|x|+u2(v),
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In terms of uniqueness, they believe that the nonlinear term φ satisfies the requirement
that there exist functions. u1,u2 ∈ C([0,1], [0,∞)) as if for each 1 ≥ v ≥ 0 and any
x,z ∈ R,

|φ(v,x)−φ(v,y)| ≤ u1(v)|x− y|.
Now we’ll go over the notation, terminology, and preliminary findings that will be
used throughout the work. We denote C(I,U) all continuous functions from the
Banach spaceI into U with the norm ‖z‖∞ := sup{‖z(v)‖ : v ∈ I}. For measurable

functions µ : I → R, define the norm ‖µ‖Lp(I,R) =

(∫
I
|µ(v)|pdt

) 1
p

, 1 ≤ p < ∞.

We denote Lp(I,R) the Banach space of all Lebesgue measurable functions µ with
‖µ‖Lp(I, R) < ∞.

To follow the contents of this paper, we’ll require the following essential defin-
itions and properties of fractional calculus theory. For more information, see, for
instance, [16].

Definition 1. ([19]) The Caputo fractional order derivative of order q of h for a
suitable function h given on the interval [c,d] is defined by

(cDq
a+h)(v) =

1
Γ(α−q)

∫ v

a
(v− s)α−q−1h(α)(s)ds,

Lemma 1. Let q > 0, then the differential equation cDqh(v) = 0 has the following
general solution

h(v) = d0 +d1v+d2v2 + · · ·+dα−1vα−1,

where d j ∈ R, j = 0,1,2, · · · ,α−1,α, with α =−[−q].

Lemma 2. Let q > 0, then Iq(cDqh)(v) = h(v)+d0+d1v+d2v2+ · · ·+dα−1vα−1,
for some d j ∈ R, j = 0,1,2, · · · ,α−1, α =−[−q].

We introduce the concept of a solution of the fractional BVP (2.1), which is similar
to Definition 3.7 in [4].

Definition 2. A function z ∈ C(I,U) with its q-derivative existing on I is said
to be a solution of the fractional BVP (2.1) if y satisfies the equation cDqz(v) =
φ(v,z(v),(Az)(v)) a.e. on I, and the conditions z(0) = z0, z′(0) = z1

0, z′′(0) = z2
0, · · · ,

z(α−1)(0) = zα−2
0 , z(α−1)(T ) = zT .

The following auxiliary lemma is required for the existence of solutions for the
fractional BVP (2.1).

Lemma 3. Let φ̄ : I→U be continuous. A function z ∈C(I,U) is a solution of the
fractional integral equation

z(v) =
1

Γ(q)

∫ v

0
(v− s)q−1

φ̄(s)ds
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− vα−1

(α−1)!Γ(q−α+1)

∫ T

0
(T − s)q−α

φ̄(s)ds

+ z0 + z1
0v+

z2
0

2!
v2 + · · ·+

zα−2
0

(α−2)!
vα−2 +

zT

(α−1)!
vα−1,

if and only if z is a solution of the following fractional BVP
cDqz(v) = φ̄(v), v ∈ I = [0,T ], q ∈ (α−1,α),

z(0) = z0, z′(0) = z1
0, z′′(0) = z2

0, · · · , z(α−1)(0) = zα−2
0 ,

z(α−1)(T ) = zT .

(2.2)

Proof. The proof can be completed quickly using Lemma 3.8 in [4] and mathem-
atical induction. �

We get the following result as a result of Lemma 3, which is relevant in the next
section.

Lemma 4. Let φ : I×U×U →U be continuous function z ∈C(I,U) is a solution
of the fractional integral equation

z(v) =
1

Γ(q)

∫ v

0
(v− s)q−1

φ(s,z(s),(Sz)(s))ds

− vα−1

(α−1)!Γ(q−α+1)

∫ T

0
(T − s)q−α

φ(s,z(s),(Sz)(s))ds

+ z0 + z1
0v+

z2
0

2!
v2 + · · ·+

zα−2
0

(α−2)!
vα−2 +

zT

(α−1)!
vα−1,

if and only if z is a solution of the fractional BVP (2.1)

Lemma 5. (Bochner theorem) A measurable function φ: I→U is Bochner integ-
rable if ‖φ‖ is Lebesgue integrable.

Lemma 6. (Mazur lemma) If U is a compact subset of U, then its convex closure
conv U is compact.

Lemma 7. (Ascoli-Arzela theorem) Let S = {s(v)} is a function family of con-
tinuous mappings s : [c,d]→ X. If S is uniformly bounded and equicontinuous, and
for any v∗ ∈ [c,d], the set {s(v∗)} is relatively compact, then there exists a uniformly
convergent function sequence {sα(v)}
(α = 1,2, · · · ,v ∈ [c,d]) in S .

Theorem 1. (Schaefer’s fixed point theorem) Let F : U →U completely continu-
ous operator. If the set E(F) = {z ∈U : z = ρ∗F(z) f or some ρ∗ ∈ [0,1]} is bounded,
then F has fixed points.
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3. MAIN RESULTS

We introduce the following hypotheses, before stating and proving the main res-
ults. Our first result is based on the principle of Banach contraction. The following
assumptions are made:

(H1) The function φ : I×U×U →U is measurable with respect to v on I.
(H2) There exists a constant q1 ∈ (0,q−α+ 1) and real-valued functions m1(v),

m2(v) ∈ L
1

q1 (I,U) such that

‖φ(v,z(v),(Sz)(v))−φ(v,z(v),(Az)(v))‖ ≤ m1(v)‖y− z‖+m2(v)‖Sy−Sz‖,

for each v ∈ I, and all y,z ∈U.
(H3) There exists a constant q2 ∈ (0,q−α+ 1) and real-valued function h(v) ∈

L
1

q2 (I,U) such that ‖φ(v,z,Sz)‖ ≤ h(v), for each v ∈ I, and all z ∈U.
For brevity, let M = ‖m1 + γ0m2‖

L
1

q1 (I,U)
and H = ‖h‖

L
1

q2 (I,U)
.

Our second finding is based on the well known Schaefer’s fixed point theorem.
The following assumptions are made:

(H4) There exist constants ρ ∈ [0,1− 1
p) for some 1 < p < 1

α−q and N > 0 such
that

‖φ(v,x,Sx)‖ ≤ N(1+ϕ0‖x‖ρ) f or each v ∈ I and all x ∈U.

(H5) For every v ∈ I, the set

K1 =
{
(v− s)q−1

φ(s,z(s),(Sz)(s)) : z ∈C(I,U), s ∈ [0,v]
}

and
K2 =

{
(v− s)q−α

φ(s,z(s),(Sz)(s)) : z ∈C(I,X), s ∈ [0,v]
}

are relatively compact.

Theorem 2. Assume that (H1)-(H3) hold. If

Φq,T,α =
M

Γ(q)
T q−q1

(q−q1
1−q1

)1−q1
+

M
(α−1)!Γ(q−α+1)

T q−q1

(q−q1−α+1
1−q1

)1−q1
< 1, (3.1)

then the fractional BVP (2.1) has a unique solution on I.

Proof. For each v ∈ I, we have∫ v

0

∥∥∥(v− s)q−1
φ(s,z(s),(Sz)(s))

∥∥∥ds≤
(∫ v

0
(v− s)

q−1
1−q2 ds

)1−q2
(∫ v

0
(h(s))

1
q2 ds

)q2

≤
(∫ v

0
(v− s)

q−1
1−q2 ds

)1−q2
(∫ T

0
(h(s))

1
q2 ds

)q2

≤ T q−q2H(
q−q2
1−q2

)1−q2
.
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Thus ‖(v− s)q−1φ(s,z(s),(Sz)(s))‖ is Lebesgue integrable with respect to s ∈ [0,v]
for all v ∈ I and z ∈C(I,U). Then (v− s)q−1φ(s,z(s),(Sz)(s)) is Bochner integrable
with respect to s ∈ [0,v] for all v ∈ I due to Lemma 5,∫ T

0

∥∥∥(v− s)q−1
φ(s,z(s),(Sz)(s))

∥∥∥ds≤
(∫ T

0
(T − s)

q−α

1−q2 ds
)1−q2

(∫ T

0
(h(s))

1
q2 ds

)q2

≤ T q−q2−α+1H

(q−q2−α+1
1−q2

)1−q2
.

Thus, ‖(T − s)q−αφ(s,z(s),(Sz)(s))‖ is Lebesgue integrable with respect to s ∈ [0,T ]
for all v ∈ I and z ∈C(I,X). Then (T − s)q−αφ(s,z(s),(Sz)(s)) is Bochner integrable
with respect to s ∈ [0,T ] for all v ∈ I due to Lemma 5.

Hence, the FBVP (1) is equivalent to the following fractional integral equation

z(v) =
1

Γ(q)

∫ v

0
(v− s)q−1

φ(s,z(s),(Sz)(s))ds

− vα−1

(α−1)!Γ(q−α+1)

∫ T

0
(T − s)q−α

φ(s,z(s),(Sz)(s))ds

+ z0 + y1
0v+

z2
0

2!
v2 + · · ·+

zα−2
0

(α−2)!
vα−2 +

zT

(α−1)!
vα−1, v ∈ I

Let

r ≥ HT q−q2

Γ(q)(q−q2
1−q2

)1−q2
+

HT q−q1

(α−1)!Γ(q−α+1)
(
q−q2−α+1

1−q2
)1−q2

+‖z0‖+‖z1
0‖T +

‖z2
0‖

2!
T 2 + · · ·+

‖zα−2
0 ‖

(α−2)!
T α−2 +

‖yT‖
(α−1)!

T α−1.

Now we define the operator ℵ on Br := {z ∈C(I,U) : ‖z‖ ≤ r} as follows

(ℵ(z))(v) =
1

Γ(q)

∫ v

0
(v− s)q−1

φ(s,z(s),(Sz)(s))ds

− vα−1

(α−1)!Γ(q−α+1)

∫ T

0
(T − s)q−α

φ(s,z(s),(Sz)(s))ds

+ z0 + z1
0v+

v2
0

2!
t2 + · · ·+

zα−2
0

(α−2)!
vα−2 +

zT

(α−1)!
vα−1, v ∈ I. (3.2)

As a result, the existence of a fractional BVP (2.1) solution equates to the existence
of a fixed point for the operator ℵ on Br. The Banach contraction principle will be
used to show that ℵ has a fixed point. There are two parts to the proof.

Part 1. ℵ(z) ∈ Br for every y ∈ Br.
For every z ∈ Br and any θ > 0, by (H3) and Holder’s inequality, we get

‖(ℵ(z))(v+θ)− (ℵ(z))(v)‖
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≤
∥∥∥ 1

Γ(q)

∫ v+θ

0
(v+θ− s)q−1

φ(s,z(s),(Sz)(s))ds

− 1
Γ(q)

∫ v

0
(v− s)q−1

φ(s,z(s),(Sz)(s))ds
∥∥∥

+
∥∥∥ (v+θ)α−1

(α−1)!Γ(q−α+1)

∫ T

0
(T − s)q−α

φ(s,z(s),(Sz)(s))ds

+
(v+θ)α−1

(α−1)!Γ(q−α+1)

∫ T

0
(T − s)q−α

φ(s,z(s),(Sz)(s))ds
∥∥∥

+
∥∥∥z1

0(v+θ− t)+
y2

0
2!
[(t +θ)2− v2]+ . . .

+
zα−2

0
(α−2)!

[(v+θ)α−2− vα−2]

+
zT

(α−1)!
[(v+θ)α−1− vα−1]

∥∥∥
≤ H

Γ(q)

(
(v+θ)

q−q2
1−q2

q−q2
1−q2

− θ

q−q2
1−q2

q−q2
1−q2

− v
q−q2
1−q2

q−q2
1−q2

)1−q2

+
H

Γ(q)

(
θ

q−q2
1−q2

q−q2
1−q2

)1−q2

+
[(v+θ)α−1− vα−1]

(α−1)!Γ(q−α+1)
T q−q2−α+1H

(q−q2−α+1
1−q2

)1−q2

+‖z1
0‖(v+θ− v)+

‖z2
0‖

2!
[(v+θ)2− v2]+ . . .

+
‖zα−2

0 ‖
(α−2)!

[(v+θ)α−2− vα−2]

+
zT‖

(α−1)!
[(v+θ)α−1− vα−1].

It is self-evident that the right-hand side of the inequality above tends to zero.θ→ 0.
Therefore, ℵ is continuous on I, i.e., ℵ(z) ∈ C(I,X). Moreover, for z ∈ Br and all
t ∈ I, we get

‖(ℵ(z))(v)‖ ≤ 1
Γ(q)

∫ v

0
(v− s)q−1‖φ(s,z(s),(Sz)(s))‖ds

+
vα−1

(α−1)!Γ(q−α+1)

∫ T

0
(T − s)q−α‖φ(s,z(s),(Sz)(s))‖ds

+‖z0‖+‖z1
0‖T +

‖z2
0‖

2!
T 2 + · · ·+

‖zα−2
0 ‖

(α−2)!
T α−2 +

‖zT‖
(α−1)!

T α−1

≤ r,
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which implies that ‖ℵ(z)‖∞≤ r, Thus, we can conclude that for all z∈Br, ℵ(z)∈Br,
i.e., ℵ : Br→ Br.

Step 2. F is a contraction mapping on Br.
For y,z ∈ Br and any v ∈ I, using (H2) and Holder’s inequality, we get

‖(ℵ(z))(v)− (ℵ(z))(v)‖

≤ 1
Γ(q)

∫ v

0
(v− s)q−1‖φ(s,x(s),(Sx)(s))−φ(s,z(s),(Sz)(s))‖ds

+
T α−1

(α−1)!Γ(q−α+1)

∫ T

0
(T − s)q−α‖φ(s,y(s),(Sy)(s))

−φ(s,z(s),(Sz)(s))‖ds

≤ ‖y− z‖∞

Γ(q)

(∫ v

0
(v− s)

q−1
1−q1 ds

)1−q1
(∫ v

0
(m1(s)+ γ0m2(s))

1
q1 ds

)q1

+
[(v+θ)α−1− vα−1]

(α−1)!Γ(q−α+1)

(∫ T

0
(T − s)

q−α

1−q1 ds
)1−q1

×
(∫ T

0
(m1(s)+ γ0m2(s))

1
q1 ds

)q1

So we obtain
‖ℵ(y)−ℵ(z)‖∞ ≤Φq,T,α‖y− z‖∞.

Thus, ℵ is contraction due to the condition (3.1). By Banach contraction principle,
we can deduce that ℵ has an unique fixed point which is the unique solution of the
fractional BVP (2.1). �

Our second results is based on the well known Schaefer’s fixed point theorem.
We adopt following assumptions:

Theorem 3. Let (H1),(H4), and (H5) assumptions are satisfied. Then the frac-
tional BVP (1) has at least one solution on I.

Proof. Let us transform the FBVP (2.1) into a fixed point problem. Consider the
operator ℵ : C(I,U)→C(I,U) defined as (.). Because of (3.2), Holder’s inequality,
and Lemma 5, it is clear that F is clearly defined.

We’ve divided the proof into multiple steps for ease of understanding.
Step 1. ℵ is a continuous operator.
Let {zα} be a sequence such that zα→ z in C(I,U). Then for each v ∈ I, using the

continuity of f , we have

‖ℵ(z)α−ℵ(z)‖∞

≤
(

T q

Γ(q+1)
+

T q

(α−1)!Γ(q−α+2)

)
‖φ(·,zα(·),(Szα)(·))

−φ(·,z(·),(Sz)(·))‖∞→ 0
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as α→ ∞.

Step 2. ℵ maps bounded sets into bounded sets in C(I,U).
Indeed, it is enough to show that for any ξ∗ > 0, there exists a l > 0 such that for

each z ∈ Bξ∗ = {z ∈C(I,U) : ‖z‖∞ ≤ ξ∗}, we have ‖z‖∞ ≤ l.
For each v ∈ I, by (H4), we get

‖(ℵ(z))(v)‖ ≤
(

1
Γ(q+1)

+
1

(α−1)!Γ(q−α+2)

)
T q

γ0N(1+(ξ∗)ρ)

+‖z0‖+‖z1
0‖T +

‖z2
0‖

2!
T 2 + · · ·+

‖zα−2
0 ‖

(α−2)!
T α−2 +

‖zT‖
(α−1)!

T α−1 := l

which implies that ‖ℵ(z)‖∞ ≤ l.
Step 3. ℵ maps bounded sets into equicontinuous sets of C(I,U).
Let 0≤ v1 < v2 ≤ T, z ∈ Bξ∗ . Using (H4) again, we have

‖(ℵ(z))(v2)− (ℵ(z))(v1)‖

≤ γ0N(1+(ξ∗)ρ)

Γ(q+1)
(vq

2− vq
1)+

T q−α+1γ0N(1+(ξ∗)ρ)

(α−1)!Γ(q−α+2)
(v2

2− v2
1)

+‖z1
0‖(v2− v1)+

‖z2
0‖

2!
(v2

2− v2
1)+ · · ·+

‖zα−2
0 ‖

(α−2)!
(vα−2

2 − vα−2
1 )

+
‖zT‖

(α−1)!
(vα−1

2 − vα−1
1 ).

As v2→ v1, the right-hand side of the above inequality tends to zero, therefore ℵ is
equicontinuous.

Now, let {zα}, α = 1,2, · · · be a sequence on Bξ∗ , and

(ℵ(z)α)(v) = (ℵ1zα)(v)+(ℵ2zα)(v)+(ℵ3z)(v), v ∈ I,
where

(ℵ1zα)(v) =
1

Γ(q)

∫ v

0
(v− s)q−1

φ(s,zα(s),(Szα)(s))ds, v ∈ I,

(ℵ2zα)(v) =−
vα−1

(α−1)!Γ(q−α+1)

∫ T

0
(T − s)q−α f (s,zα(s),(Szα)(s))ds, v ∈ I,

(ℵ3z)(v) = z0 + z1
0v+

z2
0

2!
v2 + · · ·+

zα−2
0

(α−2)!
vα−2 +

zT

(α−1)!
vα−1, v ∈ I.

In view of the condition (H5) and Lemma 6, we known that conv K1 is compact. For
any v∗ ∈ I,

(ℵ1zα)(v∗) =
1

Γ(q)
lim
k→∞

k

∑
j=1

v∗

k

(
v∗− it∗

k

)q−1

φ

(
it∗

k
,zα

(
it∗

k

)
,(Szα)

(
it∗

k

))
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=
z∗

Γ(q)
ωα1,

where ωα1 = lim
k→∞

k

∑
j=1

1
k

(
v∗− it∗

k

)q−1

f
(

it∗

k
,zα

(
it∗

k

)
,(Szα)

(
it∗

k

))
.

Since conv K1 is convex and compact, we known that ωα1 ∈ conv K1. Hence, for any
v∗ ∈ I, the set {(ℵ1zα)(v∗)} is relatively compact. From Lemma 7, every {(ℵ1zα)(v)}
contains a uniformly convergent subsequence {(ℵ1zαk)(v)}, k = 1,2, · · · on I. Thus,
the set {ℵ1z : z ∈ Bξ∗} is relatively compact.

Set

(ℵ2zα)(v) =−
vα−1

(α−1)!Γ(q−α+1)

∫ v

0
(v− s)q−α

φ(s,zα(s),(Szα)(s))ds, v ∈ I.

For any v∗ ∈ I,

(ℵ2zα)(v∗) =−
(v∗)α−1

(α−1)!Γ(q−α+1)

× lim
k→∞

k

∑
j=1

v∗

k

(
v∗− it∗

k

)q−α

φ

(
it∗

k
,yα

(
it∗

k

)
,(Syα)

(
it∗

k

))
=− (v∗)α

(α−1)!Γ(q−α+1)
ωα2,

where

ωα2 = lim
k→∞

k

∑
j=1

1
k

(
v∗− it∗

k

)q−α

φ

(
it∗

k
,zα

(
it∗

k

)
,(Szα)

(
it∗

k

))
.

Since conv K2 is convex and compact, we known that ωα2 ∈ conv K2. Hence, for any
v∗ ∈ I, the set {(ℵ2zα)(v∗)} is relatively compact. From Lemma 7, every {(ℵ2zα)(v)}
contains a uniformly convergent subsequence
{(ℵ2zαk)(v)}, k = 1,2, · · · on I. Particularly, {(ℵ2zα)(v)} contains a uniformly con-
vergent subsequence {(ℵ2yαk)(v)}, k = 1,2, · · · on I. Thus, the set {ℵ2z : z ∈ Bξ∗}
is relatively compact.

Obviously, the set {ℵ3z : z∈ Bξ∗} is relatively compact. As a result, the set {ℵ(z) :
z ∈ Bξ∗} is relatively compact.

As a consequence of Step 1-3, we conclude that F is continuous and hence com-
pletely continuous.

Step 4. A priori bounds.
Now it remains to show that the set

E(ℵ) = {z ∈C(I,U) : z = ρ
∗
ℵ(z), for some ρ

∗ ∈ [0,1]}

is bounded.



BVP OF HIGHER ORDER FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS 815

Let z ∈ E(ℵ), then z = ρ∗ℵ(z) for some ρ∗ ∈ [0,1]. Thus, for each v ∈ I, we have

z(v) = ρ
∗
(

1
Γ(q)

∫ v

0
(v− s)q−1

φ(s,zα(s),(Szα)(s))ds

− vα−1

(α−1)!Γ(q−α+1)

∫ T

0
(T − s)q−α

φ(s,zα(s),(Szα)(s))ds

+ z0 + z1
0v+

z2
0

2!
v2 + · · ·+

zα−2
0

(α−2)!
vα−2 +

zT

(α−1)!
vα−1

)
.

For each v ∈ I, we have

‖z(v)‖ ≤ ‖(ℵ(z))(v)‖

≤ γ0NT q

Γ(q+1)
+

γ0NT q

(α−1)!Γ(q−α+1)
+‖z0‖+‖z1

0‖T

+
‖z2

0‖
2!

T 2 + · · ·+
‖zα−2

0 ‖
(α−2)!

T α−2 +
‖zT‖

(α−1)!
T α−1

+
γ0N
Γ(q)

∫ v

0
(v− s)q−1‖z(s)‖ρds

+
γ0NT α−1

(α−1)!Γ(q−α+1)

∫ T

0
(T − s)q−α‖z(s)‖ρds.

By Lemma 2.9 in [9], there exists a M∗ > 0 such that ‖z(v)‖ ≤M∗, v ∈ I.
Thus for every v ∈ I, we have ‖z‖∞ ≤M∗.

This establishes the boundedness of the set E(ℵ). We derive that ℵ has a fixed
point that is a solution of the fractional BVP as a result of Schaefer’s fixed point
theorem. �

4. EXAMPLES

We provide two examples in this part to demonstrate the utility of our main results.

Example 1. Let us consider the following FBVPs,
cDqz(v) = e−pv|z(v)|

(1+kev)(1+|z(v)|) +
∫ v

0
e−pv

16 s |z(s)|1+|z(s)|ds,
y ∈ [0,1], v ∈ I = [0,T ], q ∈ (3,4), k > 0,

z(0,y) = 0, z′(0,y) = 0, z′′(0,y) = 0 z′′′(T,y) = 0, y ∈ [0,1],
z(v,0) = z(v,1) = 0 v > 0.

(4.1)

where z > 0 is a constant. Set

φ(v,y) =
e−pvy

(1+ ev)(1+ y)
, (v,y) ∈ I1× [0,∞), k(v,s) =

e−pv

16
s.
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Let z1,z2 ∈ [0,∞) and v ∈ I1. Then we have

|φ(v,z1,Sz1)−φ(v,z2,Sz2)| ≤
9e−pv

16
|z1− z2|.

Obviously, for all z ∈ [0,∞) and each v ∈ I1,

| f (v,z,Sz)| ≤ 9e−pt

16
.

For v ∈ I1, ζ ∈ (0,q−3), let m1(v) = m2(v) = h(v) = e−pv−s

32 ∈ L
1
ζ (I1,R),

M =
∥∥∥9e−pv

16

∥∥∥
L

1
ζ (I1,R)

. Choosing some z > 0 large enough and suitable ζ ∈ (0,q−3),

one can arrive at the following inequality

Ωq,T =
M

Γ(q)
T q−ζ

(q−ζ

1−ζ
)1−ζ

+
M

2!Γ(q−2)
T q−ζ

(q−ζ−2
1−ζ

)1−ζ
< 1,

Clearly, all of the assumptions in Theorem 2 are met. Our findings can be used to
solve the issue (4.1).

Example 2. Let us consider the another FBVPs,

cDqz(v) = vp+3|z(v)|ρ
(1+ev)(1+z(v)|) +

∫ v
0

vp+3

16 s |z(s)|
ρ

1+|z(s)|ds,
y ∈ [0,1], q ∈ I = [0,T ], q ∈ (3,4),

z > −q, ρ ∈ [0,− 1
p), 1 < p < 1

4−q ,

z(0,y) = 0, z′(0,y) = 0, z′′(0,y) = 0 z′′′(T,y) = 0, y ∈ [0,1],
z(v,0) = z(v,1) = 0 t > 0.

(4.2)

Set

φ(v,u) =
vp+3

u

ρ

(1+ ev)(1+ z), v ∈ I× [0,∞), k(v,s) =
vp+3

16
s.

Obviously, for all z ∈U and each v ∈ I.

|φ(v,z)| ≤ T p+3

16
|z|ρ.

Since z > −q and p + 3 > −(q− 3). As a result of satisfying all of Theorem 3
assumptions, we may apply our findings to the Problem (4.2)
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