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Abstract. In this paper, a new generalized Laplace transform is defined and its certain proper-
ties are given. By using the new transform, the solutions of fractional Bagley-Torvik and frac-
tional harmonic vibration problems are obtained, as application. Also transformations of some
elementary functions and the relationships between the new transform with other generalized
Laplace transforms are given in separate tables.
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1. INTRODUCTION

Integral transformations are very powerful tools used to solve differential and in-
tegral equations that arise in various fields of science. These transformations usually
consist of integrating the equation with a weight function of two variables, which
will result a simplification of the considered particular problem. Many problems in
the field of oscillation theory, thermal conductivity, neutron diffusion, hydrodynam-
ics, theory of elasticity and physical kinetics can be solved with the help of these
transformations.

The one of the most popular integral transformation is the Laplace transform [4]
which defined as

L{κ(ξ)}=
∫

∞

0
exp(−ξη)κ(ξ)dξ,

where ℜ(η)> 0, ξ≥ 0 and κ(ξ) is a piecewise continuous and α-exponential func-
tion. There are many generalizations of Laplace transform in the literature such as,
Aboodh [1], HY [2], Novel [3], Elzaki [5], Gupta [7], Jafari [8], Kamal [9], Kashuri
[10], N [12], G [13], Mahgoub [15], Shedu [16], α-Laplace [17], Mohand [18], Sawi
[19], ARA [21], Sadik [22], M [23], Upadhyaya [24], Sumudu [25] and ZZ [26]
transforms (see Table 1 for details).
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In this paper, we defined a new generalization of Laplace transform, which has a
more general form than the transforms mentioned above. We determined some of its
properties such as, linearity, convolution and derivative formula. We also calculate
generalized Laplace transforms of some elementary functions and Caputo fractional
derivative. Finally, we used the generalized Laplace transform for obtaining the solu-
tions of fractional Bagley-Torvik and fractional harmonic vibration problems.

2. GENERALIZED LAPLACE TRANSFORM AND ITS PROPERTIES

In this section, we give the definitions of generalized Laplace (Ln) and inverse
Laplace (L−1

n ) transforms and some of their properties.

Definition 2.1. Let n ∈ R−{0}, ℜ(sn) > 0, t ≥ 0 and f (t) is a piecewise con-
tinuous and α-exponential function. Then, the generalized Laplace and the inverse
Laplace transforms are defined respectively

Ln { f (t);s} := f̂n(s) = sn−1
∫

∞

0
exp(−snt) f (t)dt,

and

L−1
n
{

f̂n(s); t
}

:= f (t).

Remark 2.1. For the special value n = 1, the generalized Laplace transform con-
verts to the classical Laplace transform. Also, the special cases of Ln transform are
listed in Table 2.

Theorem 2.1. If a function f (t) is continuous or piecewise continuous and α-
exponential in every finite interval (0,T ), then the function f (t) has a generalized
Laplace transform for all sn with ℜ(sn)> α.

Proof. Let rewrite the generalized Laplace transform as follows:

Ln { f (t);s}=
(

sn−1
∫ T

0
exp(−snt) f (t)dt

)
+

(
sn−1

∫
∞

T
exp(−snt) f (t)dt

)
= I1 + I2.

The I1 integral is convergent, since it can be written as the sum of integrals over
intervals where exp(−snt) f (t) is continuous. Considering | f (t)| ≤M exp(αt) for the
positive constant M and the entire t > T in the range 0≤ t < ∞, we have∣∣I2

∣∣≤ ∣∣sn−1∣∣∫ ∞

T
exp(−snt) | f (t)|dt

≤
∣∣sn−1∣∣M∫

∞

0
exp
(
− t(sn−α)

)
dt

=
M
∣∣sn−1

∣∣
sn−α

,
(
ℜ(sn)> α

)
. �
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Throughout the paper, unless otherwise stated, we assumed that the functions f (t)
and g(t) have Ln transforms with n ∈ R−{0}, ℜ(sn)> 0, t ≥ 0.

Theorem 2.2. Let f (t) and g(t) be functions whose Ln transforms exist, and let
k1 and k2 be constants. Then

Ln {k1 f (t)+ k2g(t);s}= k1Ln { f (t);s}+ k2Ln {g(t);s} .

Proof. Applying the Ln transform, we have

Ln { f (t);s}= sn−1
∫

∞

0
exp(−snt) f (t)dt,

(
ℜ(sn)> α1

)
,

Ln {g(t);s}= sn−1
∫

∞

0
exp(−snt)g(t)dt,

(
ℜ(sn)> α2

)
.

With ℜ(sn)> max{α1,α2}, we have

Ln {k1 f (t)+ k2g(t);s}= sn−1
∫

∞

0
exp(−snt)

(
k1 f (t)+ k2g(t)

)
dt

= k1sn−1
∫

∞

0
exp(−snt) f (t)dt + k2sn−1

∫
∞

0
exp(−snt)g(t)dt

= k1Ln { f (t);s}+ k2Ln {g(t);s} . �

Example 2.1. Consider the function f (t) = exp(at) for t > 0. If we apply the Ln
transform, we get

Ln {exp(at);s}= sn−1
∫

∞

0
exp(−snt)exp(at)dt

= sn−1
(

lim
A→∞

∫ A

0
exp
(
− t(sn−a)

)
dt
)

=
sn−1

sn−a
, for all ℜ(sn)> a.

Example 2.2. If we apply Ln transform to the function f (t) = tm, where m is a
positive integer, then we get

Ln {tm;s}= m!
smn+1 .

To see this, we use induction. For m = 1, we have

Ln {t;s}= sn−1
∫

∞

0
exp(−snt)tdt

= sn−1 lim
A→∞

(
t exp(−snt)
−sn

∣∣∣∣A
0
+

1
sn

∫ A

0
exp(−snt)dt

)

=
1

sn+1 .



600 E. ATA AND İ. O. KIYMAZ

For m = k, let the following equation be true:

Ln

{
tk;s
}
=

k!
skn+1 . (2.1)

For m = k+1, considering equation (2.1), we have

Ln

{
tk+1;s

}
= sn−1

∫
∞

0
exp(−snt)tk+1dt

= sn−1 lim
A→∞

(
tk+1 exp(−snt)

−sn

∣∣∣∣A
0
+

(k+1)
sn

∫ A

0
exp(−snt)tkdt

)

=
(k+1)

sn
k!

snk+1

=
(k+1)!
sn(k+1)+1 .

Definition 2.2. Let f (t) and g(t) be two functions that are piecewise continuous on
every finite closed interval 0≤ t ≤ b and of exponential order. The function denoted
by f ∗g which defined by

f (t)∗g(t) = sn−1
∫ t

0
f (t− τ)g(τ)dτ

is called the convolution of the functions f (t) and g(t).

Theorem 2.3 (Convolution Theorem). Denoting Ln transforms of f (t) by f̂n(s)
and g(t) by ĝn(s), we have

Ln { f (t)∗g(t);s}= f̂n(s)ĝn(s).

Proof. By using the definitions of convolution and the Ln transform, we have

Ln { f (t)∗g(t);s}= sn−1
∫

∞

0
exp(−snt)sn−1

∫ t

0
f (t− τ)g(τ)dτdt

=

(
sn−1

∫
∞

0
exp(−sn

τ)g(τ)dτ

)(
sn−1

∫
∞

0
exp(−snx) f (x)dx

)
= ĝn(s) f̂n(s). �

Theorem 2.4 (Translation Property). Suppose f (t) is a function such that Ln { f (t)}
exist for ℜ(sn)> α. For any constant a,

Ln {exp(at) f (t);s}= sn−1

(sn−a)
n−1

n
Ln

{
f (t);(sn−a)

1
n

}
for ℜ(sn)> α+a.

Proof. Using the Ln transform, we have

Ln {exp(at) f (t);s}= sn−1
∫

∞

0
exp(−snt)exp(at) f (t)dt
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=
sn−1

(sn−a)
n−1

n
(sn−a)

n−1
n

∫
∞

0
exp
(
−
(
(sn−a)

1
n

)n
t
)

f (t)dt

=
sn−1

(sn−a)
n−1

n
Ln

{
f (t);(sn−a)

1
n

}
. �

The new generalized Laplace transform of some functions, which can be obtained
by direct calculations, are listed in Table 3. Also the graphics of the generalized
Laplace transform of the functions sin(t), cos(t) and exp(t) can be found in Figure 1
for the values of n =−1,n = 1 and n = 2.
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(A) Ln {sin(t);s}
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(B) Ln {cos(t);s}
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(C) Ln {exp(t);s}

FIGURE 1. The graphics of the Ln transforms of the functions
sin(t),cos(t) and exp(t) for n =−1,n = 1 and n = 2.
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Theorem 2.5 (Ln Transforms of Derivatives). The Ln transform of the function
f (k)(t) is obtained as:

Ln

{
f (k)(t);s

}
= skn f̂n(s)− sn−1

k−1

∑
m=0

(sn)k−1−m f (m)(0), (2.2)

where f (i)(t)exp(−snt)→ 0, (i = 0,1, . . . ,r−1) as t→ ∞.

Proof. We again use induction. For k = 1, we have

Ln
{

f ′(t);s
}
= sn−1

∫
∞

0
exp(−snt) f ′(t)dt

= sn−1 lim
A→∞

(
exp(−snt) f (t)

∣∣∣∣A
0
+ sn

∫ A

0
exp(−snt) f (t)dt

)
= sn f̂n(s)− sn−1 f (0),

in which we assumed f (t)exp(−snt)→ 0 as t→ ∞.
For k = r, let the following equation be true

Ln

{
f (r)(t);s

}
= srn f̂n(s)− sn−1

r−1

∑
m=0

(sn)r−1−m f (m)(0). (2.3)

For k = r+1, considering equation (2.3), we have

Ln

{
f (r+1)(t);s

}
= sn−1

∫
∞

0
exp(−snt) f (r+1)(t)dt

= sn−1
(
− f (r)(0)+ sn

∫
∞

0
exp(−snt) f (r)(t)dt

)
= s(r+1)n f̂n(s)− sn−1

r

∑
m=0

(sn)r−m f (m)(0),

in which we assumed f (i)(t)exp(−snt)→ 0, (i = 0,1, . . . ,r) as t→ ∞. �

Theorem 2.6. The Ln transform of the Caputo fractional derivative of order α is
obtained as:

Ln {c
0Dα

t f (t);s}= sαn f̂n(s)−
m−1

∑
k=0

sαn−nk−1 f (k)(0). (2.4)

Proof. The Caputo fractional derivative [20] for ℜ(α) > 0, m− 1 < ℜ(α) < m,
m ∈ N is given by

c
0Dα

t f (t) =
1

Γ(m−α)

∫ t

0
(t− τ)m−α−1 f (m)(τ)dτ.
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For g(τ) = f (m)(τ), we have

c
0Dα

t f (t) =
1

Γ(m−α)

∫ t

0
(t− τ)m−α−1g(τ)dτ.

Multiplied each sides by sn−1

sn−1 , we have

c
0Dα

t f (t) =
1

Γ(m−α)sn−1

(
sn−1

∫ t

0
(t− τ)m−α−1g(τ)dτ

)
.

Considering the Convolution Theorem and applying the Ln transform to both sides
of the equation, we have

Ln {c
0Dα

t f (t);s}= s−(m−α)nĝn(s).

Using equation (2.2), we have

Ln {c
0Dα

t f (t);s}= sαn f̂n(s)−
m−1

∑
k=0

sαn−nk−1 f (k)(0). �

3. APPLICATIONS OF Ln TRANSFORM TO DIFFERENTIAL PROBLEMS

Problem 3.1. Let the fractional Bagley-Torvik differential equation be given:

y′′(x)+ c
0D

3
2
x y(x)+ y(x) = x+1, y(0) = y′(0) = 1.

Considering equation (2.4) for m = 2 and applying the Ln transform to the Bagley-
Torvik differential equation, we have

Ln
{

y′′(x)
}
+Ln

{
c
0D

3
2
x y(x)

}
+Ln {y(x)}= Ln {x}+Ln {1}

s2nŷn(s)− s2n−1− sn−1 + s
3n
2 ŷn(s)− s

3n
2 −1− s

3n
2 −n−1 + ŷn(s) =

1
sn+1 +

1
s

ŷn(s)
(

s2n + s
3n
2 +1

)
− s2n−1− sn−1− s

3n
2 −1− s

3n
2 −n−1 =

1
sn+1 +

1
s
.

Then

ŷn(s) =
s−n−1 + s−1 + s2n−1 + sn−1 + s

3n
2 −1 + s

3n
2 −n−1

s2n + s
3n
2 +1

=
1

sn+1 +
1
s
.

By applying the L−1
n transform, we have

L−1
n {ŷn(s)}= L−1

n

{
1

sn+1

}
+L−1

n

{
1
s

}
y(x) = x+1.

Problem 3.2. Let 1 < ℜ(α)< 2 and the fractional harmonic vibration differential
equation be given:

c
0Dα

x y(x)+w2y(x) = 0, y(0) = c0, y′(0) = c1.
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Considering equation (2.4) for m = 2 and applying the Ln transform to the har-
monic vibration differential equation, we have

Ln {c
0Dα

x y(x)}+w2Ln {y(x)}= 0

sαnŷn(s)− sαn−1y(0)− sαn−n−1y′(0)+w2ŷn(s) = 0

sαnŷn(s)− c0sαn−1− c1sαn−n−1 +w2ŷn(s) = 0.

Then

ŷn(s) =
c0sαn−1

sαn +w2 +
c1sαn−n−1

sαn +w2

=
c0s−1

1+w2s−αn +
c1s−n−1

1+w2s−αn

= c0

∞

∑
k=0

(−1)kw2ks−αkn−1 + c1

∞

∑
k=0

(−1)kw2ks−αkn−n−1.

By applying the L−1
n transform, we obtain

L−1
n {ŷn(s)}= c0

∞

∑
k=0

(−1)kw2kL−1
n

{
s−αkn−1

}
+ c1

∞

∑
k=0

(−1)kw2kL−1
n

{
s−αkn−n−1

}
y(x) = c0

∞

∑
k=0

(
−w2xα

)k

Γ(αk+1)
+ c1x

∞

∑
k=0

(
−w2xα

)k

Γ(αk+2)

= c0Eα,1
(
−w2xα

)
+ c1xEα,2

(
−w2xα

)
,

where Eα,β(x) is the Mittag-Leffler function with two parameters [6], which defined
as

Eα,β(x) =
∞

∑
k=0

xk

Γ(αk+β)
.

Remark 3.1. For the graphics of the approximate solution of Problem 3.2, we
define the function yp(x) with finite sums as

yp(x) = c0

p

∑
k=0

(
−w2xα

)k

Γ(αk+1)
+ c1x

p

∑
k=0

(
−w2xα

)k

Γ(αk+2)
.

The graphics of the approximate solution y2(x) of the fractional harmonic vibration
problem for the special values c0 = c1 = w = 1 with α = 6

5 ,
7
5 ,

8
5 ,

9
5 can be found in

Figure 2.
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FIGURE 2. The behavior of approximate solution y2(x) of Problem
3.2 for different values of α, where 1 < ℜ(α)< 2.

4. CONCLUSIONS

In this article, we introduced the generalized Laplace Ln and inverse Laplace L−1
n

transforms and examine their certain properties. Our motivation in doing this was
to define an integral transform that has a more general form than many Laplace-
like integral transforms found in the literature. We also presented a transformation
table for Ln transform (Table 1), and another table containing the relationships with
other transforms (Table 2). Then, we use generalized Laplace and inverse Laplace
transforms to arrive the analytical solutions of fractional Bagley-Torvik and harmonic
vibration problems. Finally, we examined the behavior for different alpha values of
the approximate solutions of the fractional harmonic vibration problem on a graph
(Figure 2).

We should say that the solutions of the application problems we obtained with
the generalized Laplace transform are in full agreement with the results obtained
in the literature (see for example [11, 14]). As a result of these applications, we
saw that the newly defined generalized Laplace transform is much more general and
quite compatible with fractional problems. We conclude this research by stating that
the generalized Laplace transform plays a very important role in finding analytical
solutions of fractional problems, and therefore the results presented in this article are
very important for application.
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TABLE 1. Generalized Laplace transforms

Aboodh Transform [1]: A{κ(η)}= 1
ξ

∫
∞

0 exp(−ξη)κ(η)dη

HY Transform [2]: HY {κ(η)}= ξ
∫

∞

0 exp
(
−ξ2η

)
κ(η)dη

Novel Transform [3]: Mn {κ(η)}=
∫

∞

0 exp(−ξη)ηnκ(η)dη

Laplace Transform [4]: L{κ(η)}=
∫

∞

0 exp(−ξη)κ(η)dη

Elzaki Transform [5]: E {κ(η)}= ξ
∫

∞

0 exp
(
−η

ξ

)
κ(η)dη

Gupta Transform [7]: Ṙ{κ(η)}= 1
ξ3

∫
∞

0 exp(−ξη)κ(η)dη

Kamal Transform [9]: K {κ(η)}=
∫

∞

0 exp
(
−η

ξ

)
κ(η)dη

Kashuri Transform [10]: K {κ(η)}= 1
ξ

∫
∞

0 exp
(
− η

ξ2

)
κ(η)dη

N-Transform [12]: N {κ(η)}=
∫

∞

0 exp(−ξη)κ(uη)dη

G-Transform [13]: G{κ(η)}= ξα
∫

∞

0 exp
(
−η

ξ

)
κ(η)dη

Mahgoub Transform [15]: M {κ(η)}= ξ
∫

∞

0 exp(−ξη)κ(η)dη

Shedu Transform [16]: S{κ(η)}=
∫

∞

0 exp
(
− ξη

u

)
κ(η)dη

α-Laplace Transform [17]: Lα {κ(η)}=
∫

∞

0 exp
(
−ξ

1
α η

)
κ(η)dη

Mohand Transform [18]: M{κ(η)}= ξ2 ∫ ∞

0 exp(−ξη)κ(η)dη

Sawi Transform [19]: S{κ(η)}= 1
ξ2

∫
∞

0 exp
(
−η

ξ

)
κ(η)dη

ARA Transform [21]: Gn {κ(η)}= ξ
∫

∞

0 exp(−ξη)ηn−1κ(η)dη

Sadik Transform [22]: S{κ(η)}= 1
ξβ

∫
∞

0 exp(−ξαη)κ(η)dη

M-Transform [23]: Mρ,m {κ(η)}(u,v) =
∫

∞

0
exp(−uη)κ(vη)

(ηm+vm)ρ dη

Upadhyaya Transform [24]: U {κ(η)}= λ1
∫

∞

0 exp(−λ2η)κ(λ3η)dη

Sumudu Transform [25]: S {κ(η)}= 1
ξ

∫
∞

0 exp
(
−η

ξ

)
κ(η)dη

ZZ Transform [26]: H {κ(η)}= ξ
∫

∞

0 exp(−ξη)κ(uη)dη
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TABLE 2. Relationships of Ln transform with other transforms

Laplace Transform L1 {κ(η)}= L{κ(η)}

Sumudu Transform ξL−1 {κ(η)}= S {κ(η)}

N-Transform L1 {κ(uη)}= N {κ(η)}

Elzaki Transform ξ3L−1 {κ(η)}= E {κ(η)}

Aboodh Transform 1
ξ
L1 {κ(η)}= A{κ(η)}

Kashuri Transform ξ2L−2 {κ(η)}= K {κ(η)}

Novel Transform L1 {ηnκ(η)}= Mn {κ(η)}

M-Transform L1

{
κ(vη)

(ηm+vm)ρ

}
=Mρ,m {κ(η)}

α-Laplace Transform ξ
α−1

α L 1
α

{κ(η)}= Lα {κ(η)}

Kamal Transform ξ2L−1 {κ(η)}= K {κ(η)}

ZZ Transform ξL1 {κ(uη)}= H {κ(η)}

Mahgoub Transform ξL1 {κ(η)}= M {κ(η)}

G-Transform ξα+2L−1 {κ(η)}= G{κ(η)}

Mohand Transform ξ2L1 {κ(η)}= M{κ(η)}

Sadik Transform ξ1−α−βLα {κ(η)}= S{κ(η)}

HY Transform L2 {κ(η)}= HY {κ(η)}

Sawi Transform L−1 {κ(η)}= S{κ(η)}

Shedu Transform L1

{
κ(η); ξ

u

}
= S{κ(η)}

Upadhyaya Transform λ1L1 {κ(λ3η);λ2}=U {κ(η)}

ARA Transform ξL1
{

ηn−1κ(η)
}
= Gn {κ(η)}

Gupta Transform 1
ξ3L1 {κ(η)}= Ṙ{κ(η)}
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TABLE 3. Ln transform table

f (t) Ln { f (t);s}= sn−1 ∫ ∞

0 exp(−snt) f (t)dt

1 1
s

exp(at) sn−1

sn−a

sin(at) asn−1

s2n+a2

cos(at) s2n−1

s2n+a2

sinh(at) asn−1

s2n−a2

cosh(at) s2n−1

s2n−a2

t 1
sn+1

t2 2
s2n+1

tm m!
smn+1

exp(at)tm m!sn−1

(sn−a)m+1

exp(at)sin(bt) bsn−1

(sn−a2)+b2

exp(at)cos(bt) sn−1(sn−a)
(sn−a)2+b2

f ′(t) sn f̂n(s)− sn−1 f (0)

f ′′(t) s2n f̂n(s)− s2n−1 f (0)− sn−1 f ′(0)

f ′′′(t) s3n f̂n(s)− s3n−1 f (0)− s2n−1 f ′(0)− sn−1 f ′′(0)

f (k)(t) skn f̂n(s)− sn−1
∑

k−1
m=0(s

n)k−1−m f (m)(0)

c
0Dα

t f (t) sαn f̂n(s)−∑
k−1
m=0 sαn−nm−1 f (m)(0)
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