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We compute the time evolution of correlation functions after quantum quenches in the sine–
Gordon model within the semiclassical approximation which is expected to yield accurate results
for small quenches. We demonstrate this by reproducing results of a recent form factor calculation
of the relaxation of expectation values. Extending these results, we find that the expectation values
of most vertex operators do not decay to zero. We give analytic expressions for the relaxation of
dynamic correlation functions, and we show that they have diffusive behavior for large timelike
separation.

I. INTRODUCTION

Questions of the relaxation and thermalization of iso-
lated quantum systems have attracted a lot of atten-
tion over the last decade1,2. Under which conditions a
given system relaxes or thermalizes? If the asymptotic
stationary state is not thermal, can it be described within
the framework of statistical physics? How quickly is the
asymptotic state reached and what are the characteris-
tics of the time evolution? The increased interest in these
fundamental questions is to a major part due to the spec-
tacular advances in cold atom experiments which are able
to study the coherent evolution of isolated quantum sys-
tems, moreover, many properties and parameters of the
systems are tunable3–6.

With the scope of understanding thermalization or the
lack thereof, many studies focused on the asymptotic
steady state after a quantum quench7. Still, there are
many unsettled questions. An example is the General-
ized Gibbs Ensemble8 that was proposed to describe the
stationary state of integrable systems which possess an
excessive number of conserved quantities. Lately, its ap-
plicability for continuum systems was questioned9, and
its natural implementation using local conserved quanti-
ties was even shown to fail to capture the steady state of
the XXZ spin chain10,11.

Even less is known about the details of the relaxation
process and the time scales of the relaxation. Numeri-
cal approaches are usually constrained either by the sys-
tem size or the times until they are able to follow re-
liably the evolution of the system, and the long time
behavior in the thermodynamic limit is very difficult to
study. This is especially true for continuum many-body
systems. A promising direction is based on the quench
action method12–14 (see below). Progress in the analytic
description has been made in conformal field theories7

and in systems that can be mapped to free bosons or free
fermions13,15–31. A notable exception is Ref. 32.

The relaxation of quantum many body systems can
happen in a number of steps. For example, a weakly non-
integrable integrable system can reach a prethermaliza-

tion plateau6,31,33–36 close to the steady state of the in-
tegrable model and real thermalization takes place only
at much larger timescales.

Obtaining analytical results for genuinely interacting
systems is notoriously hard even in integrable models,
where the spectrum and the matrix elements of local op-
erators, the so-called form factors, are usually known.
Based on these ingredients, a linked cluster expansion
can be constructed where the small expansion param-
eter is essentially the density of excitations after the
quench37,38. Summing up the series is a daunting task,
nevertheless, some progress can be made at least regard-
ing the short time behavior after a quantum quench.
Another possible approach is based on the so-called
quench action technique for Bethe Ansatz integrable
systems12 which works directly in the thermodynamic
limit. Both methods have been applied to study the re-
laxation dynamics in the sine–Gordon model in Ref. 38,
and predicted an exponential decay of the vertex opera-
tor

〈
eiβΦ(x,t)/2

〉
∼ e−t/τ .

Here we shall follow a complementary and more in-
tuitive approach, and study the evolution of dynami-
cal correlations after a quantum quench by extending
the semiclassical approach of Refs.18,22–25,39–45 to study
small quenches in the gapped phase of the sine–Gordon
model. The sine–Gordon model is a paradigmatic model
providing the low energy effective description of a wide
range of one-dimensional systems including spin chains,
spin ladders, and cold atomic gases46–51. It is defined by
the action

S =
c

16π

∫
dxdt

[
1

c2
(∂tΦ)2 − (∂xΦ)2 + λ cos(βΦ)

]
,

(1)
with Φ(x, t) a bosonic field. In this work, for the sake
of simplicity, we shall focus on the gapped repulsive
phase (1/

√
2 < β < 1), where the model contains mas-

sive topological excitations (kinks), the so-called solitons
and antisolitons with charge m = ±1 interpolating be-
tween neighboring minima of the cos(βΦ) potential, but
no bound states (breathers) exist.52

The time evolution of the vertex operator
〈
eiβΦ

〉
was
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studied after quenches in the attractive regime in Ref. 53.
Analytic results have been derived for the correlations
of the same operator for quenches between the exactly
solvable points λ = 0 and β = 1/

√
2 in Ref. 20. In Ref.

54 the time evolution of an inhomogeneous initial state
was studied.

The semiclassical method is based on the observation
that at small temperatures or after a small quench the
density of quasiparticles as well as their velocity is small.
Therefore quasiparticles can be treated as classical enti-
ties apart from collisions, where their de Broglie wave-
length becomes comparable to their separation. These
quantum effects are taken into account by using the low
energy limit of the two-particle scattering matrix.

The semiclassical approach turned out to yield a
remarkably accurate description of many gapped sys-
tems. It has been successfully applied to compute fi-
nite temperature correlation functions39–44, as well as
the time evolution of correlations after global and local
quenches18,23–25,45.

As we demonstrate here, this approach is able to cap-
ture the leading behavior of the decay processes and re-
produces the tediously obtained results of Ref. 38 with
ease.

However, we can go significantly beyond these results.
While extending the form factor based calculations of
Ref. 38 to other observables (e.g. two-point functions)
seems to be a very demanding task, in the semiclassical
method it poses only slight, surmountable complications.
Assuming that only soliton-antisoliton pairs are present
in the initial state (as is the case for fixed Φ initial con-
ditions), we obtain new results in two directions. On the
one hand, we calculate the relaxation of general vertex
operators

Gα(t) =
〈
eiαΦ(x,t)

〉
= 〈ψ0|eiHteiαΦ(x,0)e−iHt|ψ0〉 (2)

with the somewhat surprising result that — in the uni-
versal limit — they do not decay to zero but approach
finite asymptotic values.55 On the other hand, we com-
pute the time evolution of dynamical two-point functions
of general vertex operators

Cα(x′ − x; t, t′) =
〈
eiαΦ(x,t)e−iαΦ(x′,t′)

〉
. (3)

We show that the two-time correlations show diffusive
behavior for generic values of α. This is expected to some
extent given that diffusive behavior was also observed
in the semiclassical treatment of correlations in thermal
equilibrium42–44.

The paper is organized as follows. In Section II we de-
scribe the semiclassical approach in detail. Expectation
values of vertex operators are computed in Section III.
We calculate the time evolution of general dynamic cor-
relation functions in Section IV, and we analyze the equal
time correlations, the local correlation functions and the
correlations in the asymptotic state separately. We give
our conclusions in Section V.

m1 m2

m'2 m'1

FIG. 1: A two-body collision of kinks.

II. THE SEMICLASSICAL METHOD

As discussed in the Introduction, for small quenches,
the energy density injected in the system is small, and
quasiparticles are generated with a low density and with
energies close to the energy gap. In this low density limit,
the motion of quasiparicles is ‘slow’ and can be treated
semiclassically. The quantum expectation values (2) and
(3) are calculated as averages over the kink configura-
tions, that is over the initial positions, velocities and
charges of the kinks39. Importantly, due to momentum
and energy conservation, the trajectories of quasiparti-
cles remain straight lines in 1D and follow “rays”, (see
Figs. 1,2).

In the particular case of the repulsive sine-Gordon
model, in the semiclassical limit, most of the time the
field Φ remains close to minima of the cosine term in
Eq. (1)

Φ = n
2π

β
, n ∈ Z . (4)

Quasiparticles are just kinks (domain walls) separating
domains of constant Φ, such that n increases (decreases)
by one when crossing in the positive spatial direction a
soliton (antisoliton) trajectory.

In the small density limit only two-particle collisions
are relevant. Given the small velocity of quasiparticles,
the scattering matrix of solitons and antisolitons can be
approximated by its low momentum limit as

Sm1,m2

m′1,m
′
2

= (−1) δm1,m′2
δm2,m′1

, (5)

i.e. kinks scatter as “hard balls” (c.f. Fig. 1). This struc-
ture is crucial for the rest of this work: it implies that the
spatial sequence of the topological charges of the kinks
(solitons and antisolitons) remain the same for all times
in this asymptotic limit. Alternatively, in terms of do-
mains, Eq. (5) implies that the ‘color’ sequence of do-
mains remains invariant under time evolution (see Fig. 2).

As discussed above, any quantum quench of the Hamil-
tonian generates a gas of quasiparticles. However, very
importantly, in many cases the post-quench state seems
to possess a particular, correlated structure in terms of
quasiparticle pairs. Following Ref. 38, we take our initial
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state to be

|ψ0〉 = exp

{∫ ∞
0

dθ

2π
Kmm′(θ)Ẑ

†
m(−θ)Ẑ†m′(θ)

}
|0〉 , (6)

where Ẑ†m(θ) creates a kink of type m = ± with relativis-
tic rapidity θ. These states are coherent superpositions of
kink pairs and are called integrable initial states due to
their resemblance to integrable boundary states19. The
exponential form featuring a single creation amplitude
(for each pair type) generates independent pairs of par-
ticles with opposite velocities. For small quenches, the
pair creation amplitudes Kmm′(θ) and the correspond-
ing densities are small,

ρmm′ ≈
∫ ∞

0

dθ

2π
Mc cosh(θ)|Kmm′(θ)|2 � 1 , (7)

where M is the kink mass56 .
For small quenches, the form (6) of the initial state

can be justified on very general grounds: by momentum
conservation, a local perturbation, to the lowest order,
gives rise to pairs of kinks flying away from each other
with the same velocity. Moreover, if the field is originally
constant (Dirichlet boundary condition) then, since the
field must remain unaltered away from the perturbation,
the total topological charge of each pair must be zero, i.e.
pairs must form soliton-antisoliton pairs. Since a homo-
geneous global quench by the integral of a local operator
is a sum of such local quenches, thus the post-quench
state will be populated by independent pairs. Indeed,
this pattern of the quench creating pairs of quasiparti-
cles has been observed for several integrable systems and
initial states17,57–61, even for large quenches. The variety
of quenches featuring the pair structure suggests that
this may be a general phenomenon. We note that the
sine-Godon model with the initial state (6) appears in
the description of interference patterns between split 1D
condensates and the Ramsey sequence of two-component
1D bosons62,63.

We thus assume that the post-quench semiclassical
configuration consists of a collection of uniformly and
independently distributed pairs of straight lines, placed
along the t = 0 axis, and a random sequence of soliton-
antisoliton charges (see Fig. 2). Kink pairs have a velocity
distribution fmm′(v) (v > 0), i.e. each pair of kinks with
charges m and m′ traveling with velocities −v and v is
created with a probability density fmm′(v). For the spe-
cific initial state (6) this distribution is related to the
amplitudes Kmm′(θ) as

fmm′(v) ≈ M

2πρ
|Kmm′(v/c)|2 , (8)

where ρ =
∑
m,m′ ρmm′ is the total density of pairs

and we used that the velocities are nonrelativistic and
v/c = tanh θ ≈ θ. With this definition, the distribu-
tion functions are normalized as

∑
mm′

∫∞
0

dvfmm′(v) =∑
mm′ pmm′ = 1.

x

x'

0 0 0 0 0 0
+ + +- -

FIG. 2: A kink configuration for initial states with
soliton-antisoliton pairs only. In this example

nL = 1, nR = 1, nI = 1, nA = 1.

In our case, only soliton-antisoliton and antisoliton-
soliton pairs are created with equal probability, thus
K++ = K−− = 0 and K+− = K−+ = K. We can there-
fore characterize the velocity distribution of the kinks by
a single function,

f(v) ≡ M

πρ
|K(v/c)|2,

∫ ∞
0

dvf(v) = 1. (9)

Our goal is to determine the time evolution of the ex-
pectation value (2) and the correlation function (3). Cor-
relation functions depend on the difference Φ(x1, t1) −
Φ(x2, t2) which, apart from a prefactor 2π/β is equal to
the sum of charges of the kinks that cross the straight
line connecting the two points where the operators are
inserted. As noticed earlier, due to the special structure
of the universal S-matrix (5), the spatial sequence of do-
mains of constant Φ remains unchanged under the time
evolution (see Fig. 2). Domains can thus be labeled by
an integer, and Φ(x, t) = Φl in case the point (x, t) lies
in the lth domain. Consequently, Φ(x1, t1) − Φ(x2, t2) =
Φl1 − Φl2 if (x1, t1) and (x2, t2) lie in the lth1 and lth2 do-
main, respectively, and

Φl1 − Φl2 =
2π

β

l2∑
i=l1+1

mi , (10)

where {mi} are the charges of the s = |l2 − l1| domain
walls (kinks) encountered while going from domain l1 to
l2. The precise value of s is determined by the number and
directions of the rays that intersect the segment between
the two operator insertion points, and an averaging over
the initial positions {xi} and velocities {vi} of the pairs
as well as over the charges {mi} needs to be performed.
The correlation function (3) is thus expressed as

Cα(∆x; t, t′) = C(0)
α (∆x, t′−t)

〈
ei

2π
β

∑l2
i=l1+1mi

〉
{mi},{(xi,vi)}

,

(11)

with C(0)
α denoting the vacuum correlation function.
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III. RELAXATION OF EXPECTATION VALUES

Let us start by calculating the time evolution of the
expectation value

〈
eiαΦ(x,t)

〉
. For this we need to deter-

mine the indices of domains in which the points (x, t)
and (x, 0) lie. Since Φ(x, t = 0) = 0, however, it suffices
to know the number of domains s we shift to the left or
to the right while we travel along the straight vertical
segment S connecting the points (x, 0) and (x, t). The
number s is given by the difference of the numbers of
rays intersecting the segment S = [(x, 0), (x, t)] from the
right and from the left, s = n+ − n−.

Clearly, at most one ray from each pair can intersect
the vertical segment, and a ray of velocity v > 0 in-
tersecting the segment from the left must be the right
member of a pair originating from the spatial interval
[(x − vt, 0), (x, 0)]. Since pairs are created uniformly at
t = 0, the probability that the right going ray of a given
pair with velocity v intersects the segment from the left is
vt/L, where L is the size of the system. The probability
that a given pair leads to such an intersection is

p =

∫ ∞
0

dv
vt

L
f(v) . (12)

By symmetry, the probability of left intersections is the
same. Since pairs are created uniformly, left and right in-
tersections are independent Poissonian processes, and the
probability of a pair configuration with n+ (n−) crossings
from the right (left) is simply given by

p(n+, n−) =
1

n+!

1

n−!
Qn++n−e−2Q (13)

with Q = tρ
∫∞

0
dv vf(v) = 〈n±〉, and ρ = N/L the total

density of pairs.

Since at time t = 0 the soliton-antisoliton pairs shrink
to single points, the domain l1 of Φ(x, 0) lies between two
pairs with probability 1 and l1 is even. If s = n+ − n−
is even, then so is the domain l2 = (l1 + s). In this
case domains l1 and l2 are separated by s/2 soliton-
antisoliton pairs and have necessarily the same Φ values:
Φl2 − Φl1 = Φ(x, t) − Φ(x, 0) = 0. If s is odd, however,
then the lth2 domain lies at t = 0+ in a domain between
the members of a pair in which Φ(x, t) = Φ(x, 0)± 2π/β
with equal probability. Averaging over the two possibili-
ties gives (ei2πα/β +e−i2πα/β)/2 = cos(2πα/β). The final
result for the expectation value is then

〈
eiαΦ(x,t)

〉
Gα

=

∞∑
n+,n−=0

p(n+, n−)

(
1 + (−1)n+−n−

2
+

1− (−1)n+−n−

2
cos(2πα/β)

)
, (14)

where Gα =
〈
eiαΦ(x,t)

〉
vac

is the vacuum expectation
value computed exactly in Ref. 64. Carrying out the sum-
mation yields then〈
eiαΦ(x,t)

〉
/Gα = cos2(πα/β) + sin2(πα/β)e−t/τ , (15)

with the characteristic time τ expressed as

τ−1 = 4ρ

∫ ∞
0

dvvf(v) . (16)

The expectation value thus approaches an α-dependent
constant exponentially fast, with the relaxation time in-
dependent of α, that is, independent of the operator mea-
sured. As a matter of fact, this time scale is, up to a O(1)
constant, given by the mean distance between the par-
ticles ρ−1 divided by the average velocity, that is, the
average time between two collisions.

The somewhat surprising non-zero asymptotic value
can be understood as follows. As explained earlier, do-
mains conserve their ‘colors’ even upon collisions. There-
fore, at any time, half of the domains must have phase
Φ = 0, while one quarter of them possess phases Φ =
±2π/β, respectively. For times t � τ, solitons collide
randomly and each individual domain exhibits a ran-
dom Brownian motion. Therefore, at any given spa-
tial point we find with probability 1/2 a phase Φ = 0

while phases Φ = ±2π/β occur with probabilities 1/4
each. This immediately yields the asymptotic expecta-
tion value

〈
eiαΦ(x,t)

〉
/Gα → cos2(πα/β).

Remarkably, expanding the result (14) for small t we
recover the results of Ref. 38,〈

eiαΦ(x,t)
〉

Gα
= 1− sin2(πα/β)

t

τ
+O(t2) , (17)

obtained through the linked cluster expansion. There,
however, higher order contributions being missing, a pure
exponential decay to zero was assumed and an operator
dependent decay rate, τ−1

α = sin2(πα/β)τ−1, was de-
fined.

In the special case α = β/2 + kπ, k ∈ Z, the asymp-
totic value is zero and a pure exponential decay is ob-
tained. For these operators we can compute the expecta-
tion value even without assuming f++(v) = f−−(v) = 0,
i.e. in the presence of soliton-soliton and antisoliton-
antisoliton pairs. In this case kinks crossing the segment
S simply flip the sign of eiαΦ(x,t) yielding〈

eiβΦ(x,t)/2
〉

= Gβ/2 e−t/τ , (18)

where now f(v) =
∑
mm′ fmm′(v). We thus recover the

exponential decay found in Ref. 38 (c.f. Eq. (8)). No-
tice that in Ref. 38 the representative state approach was
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based on a steady state computed in the leading order in
the kink density but the series describing the time evolu-
tion was resummed. It is thus a non-trivial fact that the
semiclassical approach completely reproduces the result.

For α = β+kπ we get
〈
eiβΦ(x,t)

〉
= Gβ , so the operator

eiβΦ does not evolve in time in the semiclassical approx-
imation. This is probably due to the fact that it is the
interaction energy density and the kinetic energy given
by the derivatives are suppressed in the small quench
limit. We note that the form factor calculation38 leads to
the same trivial result.

IV. RELAXATION OF CORRELATION
FUNCTIONS: DERIVATION

A. Case α = β/2

Before turning to the general case, let us compute the
dynamical two-point function (3) of the operator eiβΦ/2

with no restriction on the type of pairs. As we have seen
in the previous section, this is a particularly simple case
since

eiβ/2[Φ(x,t)−Φ(x′,t′)] = (−1)
∑s
i=1mi = (−1)n , (19)

where n stands for the total number of trajectories in-
tersecting the segment S = [(x, t), (x′, t′)] connecting the
two operator insertion points. This feature is the reason
why we can allow general initial states with all possible
kinds of kink pairs.

Pairs of which both rays intersect the segment do not
contribute. Let us compute the probability q that exactly
one ray of a given pair crosses the segment, as shown in
Figs 3b, 3c and 3f. Without loss of generality, we shall
assume that x′ > x. It will be useful to define the veloc-
ities

ṽ =
x′ − x
t′ + t

, vs =
x′ − x
t′ − t

. (20)

It is simple to check that if the velocity of the pair satisfies
v < ṽ then both rays of a pair can cross S. Then the real
space domain where pairs with just one crossing ray can
originate consists of two intervals, [x − vt, x + vt] and
[x− vt′, x+ vt′] of total length 2v(t′+ t). In the opposite
case, v > ṽ, at most one ray of a pair can cross S. One of
the two intervals in this case is [x− vt, x′− vt] for v < vs
(Fig. 3b) or [x− vt, x′ − vt] for v > vs (Fig. 3f), and the
other one is [x+ vt, x′+ vt′] (Fig. 3c). The lengths of the
intervals are |(x′−x)−v(t′− t)| and |(x′−x) +v(t′− t)|,
where the modulus ensures that the expressions cover
both the t′ > t and t′ < t cases. Thus the probability that
one of the two rays of a pair with velocity v intersects the
segment is

qv = Θ(ṽ−v)
2v(t+ t′)

L
+Θ(v−ṽ)

|∆x− v∆t|+ |∆x+ v∆t|
L

,

(21)

with Θ(x) the Heaviside function, ∆x = x′ − x, ∆t =
t′ − t. Then the probability that only one ray of a given
pair will cross is q =

∫∞
0

dvf(v)qv, and the weight of a
configuration having n crossings has Poisson statistics,
p(n) = 1

n!Q
ne−Q, with Q expressed as

Q(∆x; t, t′) = Nq = 2ρ(t+ t′)

∫ ṽ

0

dvf(v)v

+ 2ρ∆x

∫ vs

ṽ

dvf(v) + 2ρ|t′ − t|
∫ ∞
vs

dvf(v)v (22)

and f(v) =
∑
ab fab(v). The correlator is then obtained

by averaging (19) over all values of n, yielding

Cβ/2(∆x; t, t′) = C(0)
β/2(x′−x; t′− t) e−2Q(x′−x,t,t′) , (23)

with C(0)
β/2(x′ − x; t′ − t) denoting the vacuum correlator.

As we noted before, this expression should also de-
scribe the correlation of the order parameter in the con-
tinuum Ising field theory. Indeed, it agrees with the scal-
ing limit of the exact result26 for the transverse field Ising
chain once an appropriate f(v) function is used in it. Nat-
urally, it can also be obtained by taking the scaling limit
of the semiclassical result for the Ising chain presented in
Ref. 45. It is important to note that it is not a priori ob-
vious that the scaling limit of the post-quench behavior
of the spin chain coincides with the post-quench behavior
of the field theory, because a sudden quench can excite
high energy states. In the semiclassical method it is how-
ever almost automatic, as the derivations are essentially
identical, and only the dispersion relation and the dis-
tribution function differ. So, at least for quenches in the
semiclassical regime, it appears that the field theory cap-
tures correctly the non-equilibrium behavior of the spin
chain. This was also observed in Ref. 37, where it was
found that the asymptotic time evolution of the order
parameter after a mass quench within the paramagnetic
phase of the Ising field theory agrees with the scaling
limit of the time dependent magnetization of the Ising
spin chain after quenching the magnetic field.

B. General α

Let us turn to the calculation of the time dependent
correlation function (3) for general α. For the sake of
simplicity, let us assume that x′ ≥ x, t′ ≥ t, since the
other cases follow by symmetry. Unlike the previous sub-
section, we now restrict the analysis to the case when
there are only soliton-antisoliton and antisoliton-soliton
pairs present with the same velocity distribution. As we
mentioned, initial states with fixed Φ values fall into this
class.

For a generic vertex operator (α arbitrary), the calcu-
lation of the correlation function is similar to that of the
expectation value (2), but technically considerably more
involved. According to Eq. (10) we need to determine the
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x

x'

(a) Avoiding pair (LL).

x

x'

(b) Left cut (L).

x

x'

(c) Right cut (R).

x

x'

(d) Double cut (D)

x

x'

(e) Inclusion (I).

x

x'

(f) Left cut “from above” (A).

FIG. 3: Representative examples of the classes of pairs
defined in the main text.

distribution of the number and orientation of domains
between point (x, t) and (x′, t′). Depending on their rela-
tion to the segment S = [(x, t), (x′, t′)] we divide soliton-
antisoliton pairs into six disjoint classes (representative
examples are shown in Fig. 3): The first class contains
avoiding pairs with both rays lying on the right (RR) or
on the left (LL) of segment S (an LL pair is shown in Fig.
3a). These pairs do not affect the correlation. We call left
crossing (L) the pairs whose right going ray has a trajec-
tory that crosses from the left and from below, while the
left going ray of the same pair avoids the segment (see
Fig. 3b). These pairs necessarily have velocities v < vs.
We define in an analogous way right crossing pairs (R)
which can have arbitrary velocity (see Fig. 3c). The class
of double crossing pairs (D) includes pairs with both rays
crossing S (see Fig. 3d). We call pairs such that the seg-
ment lies in between the two rays inclusions (I). Finally,
a crucial role is played by those pairs whose right going

ray crosses the segment “from above” (A) (see Fig. 3f).
This is only possible if the velocity of the pair is greater
than vs.

The probabilities that a given pair belongs to either of
these classes are calculated based on the uniform spatial
distribution of the pairs, in the same way as in the pre-
vious sections. For example, the probability that a given
pair belongs to class ‘L’ for t′ > t is

qL =
1

L

∫ ṽ

0

dv2vtf(v) +
1

L

∫ vs

ṽ

dv[x′ − x− v(t′ − t)]f(v)

(24)
with f(v) = f+−(v) + f−+(v) = 2f+−(v). The probabili-
ties for the other classes are listed in the Appendix.

In a given configuration, the number of domains be-
tween points (x, t) and (x′, t′) can be expressed in terms
of the number of pairs in each class. Counting the do-
mains from the left, the point (x, t) is in domain

l = 2nLL + nL + nI + 2nA (25)

while (x′, t′) is located in domain l′ = 2nLL+2nL+nR+
2nD + nI + nA. Thus the number of kinks between the
two points is

s = l′ − l = nL + nR + 2nD − nA . (26)

Let us now focus on the average over the charges of these
s kinks. We first remark that in this universal semiclas-
sical limit kinks are strongly correlated: the charges of
kinks 2k − 1 and 2k always add up to 0. Therefore, if
s is odd we have to average over the charge of a single
kink without a pair, yielding (ei2πα/β + e−i2πα/β)/2 =
cos(2πα/β). If, on the other hand, s is even, then there
are two possibilities: either both l and l′ are even, so
that all s kinks form s/2 pairs and Φl′ −Φl = 0, or both
l and l′ are odd, in which case we have s/2−1 pairs with
zero total charge, and two unpaired kinks. Averaging over
the charges of these two kinks yields cos2(2πα/β) . We
have to separate, however, the special case, s = 0: then
Φl′ −Φl = 0 irrespectively of the parity of l. Notice that
the s = 0 configurations can be non-trivial due to the
existence of the special cuts from above (A) that shift
back the domain of Φ(x′, t′) (see the sign in Eq. (26) and
Fig. 3f).

Since only the parity of s and l matters, averaging over
the velocities and positions of the pairs translates into a
multiple sum over the numbers of the various types of
pairs weighted by the probability of such a configuration:

C̃α(x′ − x; t, t′) =
∑

nR,nL,nA,nD,nI

1

nR!nL!nA!nD!nI !
QnRR QnLL QnAA QnDD QnII e

−QR−QL−QA−QD−QI

(
δs,0 · 1 + (1− δs,0) ·

{
1− (−1)s

2
cos

(
2πα

β

)
+

1 + (−1)s

2

[
1 + (−1)l

2
· 1 +

1− (−1)l

2
cos2

(
2πα

β

)]})
, (27)



7

where

C̃α(x′ − x; t, t′) ≡ Cα(x′ − x; t, t′)/C(0)
α (x′ − x; t′ − t) (28)

is the correlation function normalized by the vacuum correlation, and Qµ(∆x; t, t′) = Nqµ(∆x; t, t′) with the proba-
bilities qµ listed in the Appendix.

The terms not multiplied by the Kronecker δs,0 can be written, collecting the sign factors and using some basic
trigonometric identities, as

C̃1 = cos4 (πα/β) + sin4 (πα/β) e−2QR−2QL−2QA + sin2 (πα/β) cos2 (πα/β) e−2QI (e−2QL + e−2QR−2QA) . (29)

The terms proportional to δs,0 can be dealt with by using the integral representation for the Kronecker delta, δs,0 =∫ π
−π

dφ
2π e

isφ, and yield a contribution

C̃2 = 2 sin2 (πα/β) cos2 (πα/β)

∫ π

−π

dφ

2π
e(eiφ−1)QR+(e2iφ−1)QD+(e−iφ−1)QA

(
e(eiφ−1)QL − e−(eiφ+1)QL−2QI

)
. (30)

The total expression for the correlator normalized by its vacuum value is then expressed as

C̃α(x′ − x; t, t′) = C̃1 + C̃2

= cos4 (πα/β) + sin4 (πα/β) e−2QR−2QL−2QA + sin2 (πα/β) cos2 (πα/β) e−2QI (e−2QL + e−2QR−2QA)

+ 2 sin2 (πα/β) cos2 (πα/β) e−(QL+QR+QD+QA)

∫ π

−π

dφ

2π
eQRe

iφ+QDe
2iφ+QAe

−iφ
(
eQLe

iφ

− e−QLe
iφ−2QI

)
. (31)

We remark that expanding to second order in α and differentiating with respect to x and x′ yields the topological
charge density correlation function.

V. RELAXATION OF CORRELATION
FUNCTIONS: DISCUSSION OF THE RESULT

We shall now analyze the general result in Eq. (31) and
examine its behavior in various limits. First we note that
setting α = β/2 + kπ only the second term of Eq. (31)
survives, and Eq. (31) simplifies to

C̃β/2(x′ − x; t, t′) = e−2QR−2QL−2QA , (32)

and we recover the result (23) with Q = QR +QL +QA,
defined earlier in Eq. (22). For α = β + kπ, on the other

hand, only the first term remains, and the semiclassical
calculation yields C̃β(x, x′; t, t′) = 1.

Let us now analyze the local correlation function, the
equal time correlation function, and the asymptotic dy-
namic two-point functions for late times for general val-
ues of α.

A. Local correlation function

The local correlation function is obtained by setting
x → x′. Using the special limits of the Q listed in Eq.
(A8) of the Appendix, we obtain

C̃α(0; t, t′) = cos4 (πα/β) + sin4 (πα/β) e−∆t/τ

+ sin2 (πα/β) cos2 (πα/β)

[
e−t/τ (1 + e−∆t/τ ) + 2e−∆t/(2τ)(1− e−t/τ )I0

(
∆t

2τ

)]
, (33)

where ∆t = t′ − t and τ is the characteristic relaxation
time defined in Eq. (16).

The local correlation function is computed for a veloc-
ity distribution

f(v) =
4v2

v3
0

√
π
e−v

2/v20 (34)



8

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

t’ /  τ

0

0.2

0.4

0.6

0.8

1

t / τ = 0

t / τ = 1

t / τ = 3

t / τ = 8

C
(0

, 
t,

 t
 ’

)
~

cos
2
(πα/β)

cos
4
(πα/β)

FIG. 4: Local correlation function for different values of
t as a function of t′/τ , where τ is defined in Eq. (16).

The decay is exponential for t = 0 and diffusive
∼ 1/

√
|t′ − t| for all t > 0.

and displayed in Fig. 4. This form of f(v) is motivated
by the observation that the amplitude K(θ) is an odd
function of θ around θ = 0 65.

It is easy to check that C̃α(0; t, t) = 1 as ∆t → 0, a
condition giving rise to the spike structures in Fig. 4. The
most interesting feature of the result is its behavior for
large time separation. For a finite and fixed t and large
values of t′ we find

C̃α(0; t, t′ →∞) = cos4 (πα/β)

+ sin2 (πα/β) cos2 (πα/β)
[
e−t/τ +

2(1− e−t/τ )√
π∆t/τ

]
.

(35)

For any t > 0, the late time behavior is thus diffusive,
similar to the behavior found within the semiclassical ap-
proximation in thermal equilibrium42–44. As ∆t → ∞,
the local correlation function approaches a t-dependent
non-zero constant, equal to the product of expectation
values given in Eq. (14) at times t and t′ → ∞, as ex-
pected. (The normalization factor given by the vacuum
correlator also factorizes in this limit.)

The origin of the diffusive contribution can be under-
stood in terms of the simple picture of randomly diffusing
domains, discussed in Sec. III as follows: for sufficiently
long times t� τ the point (0, t) is in a randomly selected
domain l. This domain follows a diffusive motion, and re-
mains at the point x = 0 with probability ∼ 1/

√
D∆t,

with D ∼ 1/(τρ2) the diffusion constant. With this prob-
ability, the phase of the vertex functions at (0, t) and
(0, t′) is exactly the same, and the correlator gives 1.

Interestingly, the diffusive term vanishes only for t = 0
in which case we recover the exponential behavior found
for the expectation value:

C̃α(0; 0, t′) = cos2 (πα/β) + sin2 (πα/β) e−t
′/τ . (36)

It is also interesting to note that for α = β/2 + kπ,

C̃β/2(0; t, t′) = e−∆t/τ (37)

is independent of the time after the quench. This is true
also for more general initial states having pairs with
non-zero total charge, as can be seen from Eqs. (22,23)
where the first two terms in Eq. (22) vanishes upon
vs, ṽ → 0. This instant relaxation might be an artefact
of the semiclassical approximation. However, the calcu-
lation for α = β/2 is equivalent to that in the Ising
field theory which can be mapped to free fermions, and
in such systems similar behavior has already been ob-
served. In Ref. 29, for a non-relativistic gas of bosons
the exact density-density correlation function was ob-
tained analytically after quenching the contact interac-
tion strength from zero to infinity, exploiting the map-
ping between the infinitely repulsive Bose gas (Tonks–
Girardeau gas) and free fermions. The local correlation
function was shown exactly to be time-independent. Sim-
ilar behavior was found for relativistic free field theories
in a different situation, after connecting two semi-infinite
systems thermalized at different temperatures66. Thus in
the case of the Ising model, the time independence of the
spin-spin local correlation function found in the semiclas-
sical approach can turn out to be an exact result.

B. Equal time correlation function

Let us turn now to the relaxation of the equal time cor-
relation function. The Q functions for t = t′ are given in
Eqs. (A10). Since QA = 0, the φ-integral in Eq. (31) can
easily be evaluated and the correlation function becomes

C̃α(∆x; t, t) = cos4 (πα/β)+sin4 (πα/β) e−4ρ∆x+4QD+

2 sin2 (πα/β) cos2 (πα/β)
[
eQD−2ρ∆x + e−t/τ (1− e−QD ])

]
,

(38)

where

QD(∆x, t) = ρ

∫ ṽ

0

dv(∆x− 2vt)f(v) . (39)

It can easily be shown that for ∆x = 0 (QD = 0) we

recover again C̃α(0; t, t) = 1.
The correlation function is plotted in Fig. 5 using the

distribution in Eq. (34). At any finite t > 0, as ∆x→∞
it approaches exponentially a constant,

C̃α(∆x→∞; t, t) =
[
cos2 (πα/β) + sin2 (πα/β) e−t/τ

]2
.

(40)
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FIG. 5: Equal time correlation funtion at different times
as a function of x/d where d = 1/(2ρ) is the mean

interparticle spacing.

This is the square of the expectation value (14) at time t,
so the cluster decomposition property holds for all times

after the quench. The connected part of the correlation
function is thus exponential ∼ e−ρ∆x with correlation
length given by the density of kink pairs.

A different result is obtained by taking the t → ∞
limit first, where we obtain the asymptotic steady state
correlation function,

C̃α(∆x; t→∞) =
[
cos2 (πα/β) + sin2 (πα/β) e−2ρ∆x

]2
.

(41)
The correlation length in the asymptotic state is thus
ξas = 1/(2ρ) rather than 1/ρ, showing that the large
separation and large time limits do not commute.

C. Asymptotic steady state

Finally, let us discuss the correlation function in the
asymptotic steady state. Asymptotically, time transla-
tional invariance is restored, and the probabilities given
in Eqs. (A11) become functions of the spatial and tempo-
ral separations only. Consequently, the steady state cor-
relation function can be expressed as

C̃asα (∆x; ∆t) ≡ lim
t,t′→∞

C̃α(∆x; t, t′)

= cos4 (πα/β) + sin4 (πα/β) e−4ρ∆x−4QA + 2 sin2 (πα/β) cos2 (πα/β) e−2ρ∆x−2QAI0

(
2
√
Qas
A (Qas

A + 2ρ∆x)

)
. (42)

with

Qas
A (∆x,∆t) = ρ

∫ ∞
vs

dv(v∆t−∆x)f(v) . (43)

Assuming a power law behavior f(v) = f0v
k + O(vk+1)

for small velocities, the asymptotic value is approached
as ∼ 1/t(k+1).

For infinite separation, ∆x→∞, the cluster decompo-
sition holds and we recover the square of the asymptotic
value of the 1-point function,

Cas
α (∆x→∞; ∆t)→ G2

α cos4 (πα/β) =
〈
eiαΦ(x,∞)

〉2

.

(44)

For large temporal separation, ∆t/(4τ)� ρ∆x, QA →
∆t/(4τ)− ρ∆x, and to leading order

C̃asα (∆x; ∆t→∞) = cos4 (πα/β)

+ 2 sin2 (πα/β) cos2 (πα/β)
1√

π∆t/τ
, (45)

that is, the diffusive behavior of the local correlation
function is recovered.

VI. SUMMARY AND OUTLOOK

In this paper we developed a semiclassical approach
to study the time evolution of correlation functions after
small quenches in the repulsive regime of the sine–Gordon
field theory. Assuming that the velocity of quasiparticles
(kinks) is very small compared to the gap and using the
asymptotic S-matrix, we were able to derive analytical
approximations for the 1-point and general dynamical 2-
point functions. Remarkably, this simple method — not
restricted to integrable systems — allowed us to recover
results for the 1-point functions obtained earlier by means
of exact form factor expansions. Though these calcula-
tions were performed in the repulsive regime, we expect
our results to remain valid even in the attractive regime
β < 1/

√
2 where breathers (bound states of solitons and

antisolitons) are also present. Passing a breather does not
change the value of Φ, and in the low energy limit the
scattering between the breathers and the kinks is purely
transmissive. Thus breathers decouple from kinks in the
semiclassical limit and should not influence the correla-
tion functions dramatically.

Our semiclassical calculations yield certain results that
are somewhat surprising at first sight. We find, e.g., that
the expectation value

〈
eiαΦ(x,t)

〉
approaches exponen-
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tially a constant value for generic α’s (see Eq. (14)). This
is a consequence of the fact that the low-energy limit
of the S-matrix is perfectly reflective, implying that the
spatial sequence of the domains is conserved in time. Al-
lowing also transmission in course of soliton-antisoliton
scattering would break this pattern and lead to random
domain sequences and a decay of the expectation value.

We also obtained an analytic expression for
the time evolution of the dynamic correlations〈
eiαΦ(x,t)e−iαΦ(x′,t′)

〉
of generic vertex operators

and analyzed it in the various limits. We found that
the cluster decomposition property holds during the
non-equilibrium time evolution after the quench, at
least for not very short times. The asymptotic value
of the correlation functions is approached as a power
law. The two-time correlations and the local correlation
functions, in particular, show diffusive behavior. This
can be understood heuristically based upon the picture
of ‘magnetic’ domains performing a random walk.

Both the diffusive correlations and the saturating ex-
pectation values are consequences of the assumption of a
perfectly reflective S-matrix. At any finite energy, how-
ever, the transmission has a small but finite probability
Ptr ∼ v2/c2, yielding a finite time scale, above which
expectation values should decay to zero and the diffu-

sive behavior is also expected to turn into an exponen-
tial decay. In this sense our asymptotic results describe
a sort of prerelaxation plateau which eventually decays
at late times. We can estimate relatively simply the cor-
responding time scale by considerations similar to those
in Ref. 42. Within a time period T a given kink partic-
ipates in T/tcoll collisions with a collision time tcol ∝ τ .
So after time T ∼ τc2/v̄2 domains should change their
color with a probability close to one and the reflective ap-
proximation of the S-matrix should break down. These
considerations point into a possible direction of improv-
ing the present method by incorporating the leading non-
reflective part of the S-matrix, or to use the full S-matrix.
These explorations need, however, extensive numerical
simulations and are beyond the scope of the present work.
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APPENDIX

In this Appendix we list the integral expressions for the probabilities that a given pair belongs to one of the classes
defined in Sec. IV B. These are calculated similarly to the probabilities computed in Sec. III and IV A, based on the
uniform spatial distribution of pairs giving rise to rays that intersect or avoid the segment connecting the two operator
insertion points in space and time. We work with the convention x′ ≥ x, t′ > t and we use the notation

ṽ =
x′ − x
t′ + t

, vs =
x′ − x
t′ − t

. (A1)

• Probability that a pair leads to a double intersection

qD =
1

L

∫ ṽ

0

dv[x′ − x− v(t′ + t)]f(v) . (A2)

• Probability that a pair leads to an inclusion

qI =
1

L

∫ vs

ṽ

dv[v(t′ + t)− (x′ − x)]f(v) +
1

L

∫ ∞
vs

dv2vtf(v) . (A3)

• Probability that a pair leads to one right intersection

qR =
1

L

∫ ṽ

0

dv2vt′f(v) +
1

L

∫ vs

ṽ

dv[x′ − x+ v(t′ − t)]f(v) + Θ(t′ − t) 1

L

∫ ∞
vs

dv[x′ − x+ v(t′ − t)]f(v) . (A4)
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• Probability that a pair leads to one left intersection

qL =
1

L

∫ ṽ

0

dv2vtf(v) +
1

L

∫ vs

ṽ

dv[x′ − x− v(t′ − t)]f(v) + Θ(t− t′) 1

L

∫ ∞
vs

dv[x′ − x− v(t′ − t)]f(v) . (A5)

• Probability that a pair leads to one left intersection from above

qA = Θ(t′ − t) 1

L

∫ ∞
vs

dv[x− x′ + v(t′ − t)]f(v) . (A6)

In the correlation functions these probabilities appear multiplied by the total number of pairs N , e.g.

QD = NqD = ρ

∫ ṽ

0

dv[x′ − x− v(t′ + t)]f(v) . (A7)

Below we list some limiting forms of these expressions.

1. For the local correlation function x = x′, so both ṽ = vs = 0, and

QD = QL = 0 , QR = QA =
t′ − t

4τ
, QI =

t

2τ
, (A8)

where

τ−1 ≡ 4ρ

∫ ∞
0

dvvf(v) . (A9)

2. For the equal time correlation function t = t′, the velocities become ṽ = ∆x/(2t), vs =∞, and

QD = ρ

∫ ṽ

0

dv(∆x− 2vt)f(v) , QI = ρ

∫ ∞
ṽ

dv(2vt−∆x)f(v) =
t

2τ
− ρ∆x+QD , (A10a)

QA = 0 , QL = QR = 2t ρ

∫ ṽ

0

dvvf(v) + ∆x ρ

∫ ∞
ṽ

dvf(v) = ρ∆x−QD , (A10b)

where we used
∫∞

0
dvf(v) = 1.

3. The asymptotic steady state is obtained by taking t, t′ →∞ with ∆t fixed, when we have ṽ → 0, and (for t′ ≥ t)

QA = ρ

∫ ∞
vs

dv(v∆t−∆x)f(v) , QD → 0 , QI →∞ , (A11a)

QR = ρ∆x+ ∆t/(4τ) , QL = ρ∆x−∆t/(4τ) +QA . (A11b)

The leading correction to these asymptotic expressions for large t comes from integrals of the type
∫ ṽ

0
dvf(v)(a+

bvt). Assuming a power law behavior f(v) = f0v
k +O(vk+1) for small velocities, this gives a ∼ 1/t(k+1) power

law correction.
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