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MAPS ON QUANTUM STATES PRESERVING BREGMAN AND JENSEN

DIVERGENCES

DÁNIEL VIROSZTEK

Dedicated to Anna Gelniczky

ABSTRACT. We describe the structure of the bijective transforma-
tions on the set of density operators which preserve the Bregman f -
divergence for an arbitrary differentiable strictly convex function f .
Furthermore, we determine the preservers of the Jensen f -divergence
in the case when the generating function f belongs to a recently intro-
duced function class called Matrix Entropy Class.

1. INTRODUCTION

1.1. Motivations and overview of the literature. The investigation of
certain measures of dissimilarity between two objects (numbers, vectors,
matrices, functions and so on) plays an essential role in several areas of
mathematics ans mathematical physics. Some of the widely investigated
measures are distance functions, but there are many important measures
which do not satisfy the properties of distance.

For instance, the square loss function has been used widely for regres-
sion analysis, Kullback-Leibler divergence [7] has been applied to com-
pare two probability density functions, the Itakura-Saito divergence [6]
is used as a measure of the perceptual difference between spectra. The
Bregman divergence was introduced by Lev Bregman [3] for convex func-
tionsφ : Rd →R as theφ-depending nonnegative measure of discrepancy
of elements of R

d . Originally his motivation was the problem of con-
vex programming, but it became widely researched both from theoreti-
cal and practical viewpoints. The remarkable fact that all the aforemen-
tioned divergences — let alone Stein’s loss and Umegaki’s relative entropy

— are special cases of the Bregman divergence shows its importance [1].
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Moreover, in the recent volume [15] on matrix information geometry 3
chapters are devoted to the study of Bregman divergences. One feature of
Jensen divergences which justifies their importance is that Bregman diver-
gences can be considered as asymptotic Jensen divergences (see Section
6.2 in [15]). Furthermore, the celebrated Jensen-Shannon divergence and
its non-commutative counterpart the Jensen-von Neumann divergence

are particular Jensen divergences.
For some recent results conserning Bregman divergences of operators

we refer to [8] and [16]. In [8], M. Lewin and J. Sabin characterized a cer-
tain monotonicity property of the Bregman divergence by the operator
monotonicity of the derivative of the corresponding scalar function. In
[16], J. Pitrik and the author gave a characterization of the joint convexity
of the Bregman divergence in terms of the generating function.

The Bregman and Jensen divergences are generalized distance mea-
sures. This latter notion stands for any function d : X ×X → [0,∞) on
any set X with the mere property that for x, y ∈ X we have d(x, y) = 0 if
and only if x = y . Transformations which preserve generalized distance
measures are called generalized isometries.

In a recent paper L. Molnár, J. Pitrik and the author determined the
structure of the generalized isometries of the cone of positive definite
matrices with respect to Bregman divergences and Jensen divergences
[13]. Let us mention that in the papers [10, 14] L. Molnár and his coau-
thors considered a certain family of generalized distance measures on the
cone of positive definite matrices and the structure of the isometries was
obtained by Mazur-Ulam type arguments. The aforementioned family of
divergences is almost disjoint from the families of Bregman divergences
and Jensen divergences. The intersection contains only the Stein’s loss
and the Chebbi-Moakher log-determinantα-divergences, respectively.

1.2. Goals. In this paper we describe the structure of the generalized
isometries of the set of density matrices — which used to represent the
state space of a finite quantum system — with respect to Bregman and
Jensen divergences. It turns out that every bijective transformation which
leaves the Bregman or Jensen divergence invariant is implemented by a
unitary or antiunitary operator on the underlying Hilbert space. Such a
result may be considered as a Wigner type result. For other closely related
Wigner type results we refer to [9] and [12]. In fact, at several points of our
argument we use ideas and techniques of the latter two papers.

1.3. Basic notions and notations. Throughout this paper the following
notations will be used. H stands for a finite dimensional complex Hilbert
space. R

+ (R++) consists of all nonnegative (positive) numbers and
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B(H ) (Bsa (H ), B
+(H ), B

++(H )) denotes the set of bounded (self-
adjoint, positive semidefinite, positive definite) linear operators on the
Hilbert space H . S (H ) stands for the state space of H (the set of pos-
itive semidefinite operators with unit trace) and P1(H ) denotes the set
of rank-one projections on H .

If f : I → R is a function defined on an interval I ⊂ R then the corre-
sponding standard operator function is the following map:

f : {A ∈B
sa (H ) : σ(A) ⊆ I }→B(H )

A =
∑

a∈σ(A)
aPa 7→ f (A) :=

∑

a∈σ(A)
f (a)Pa ,

where σ(A) is the spectrum and Pa is the spectral projection correspond-
ing to the eigenvalue a.

1.4. Bregman divergences on positive definite operators. Let f be a dif-
ferentiable strictly convex function on (0,∞). (Note that the derivative of
f is necessarily contiuous.) The Bregman f -divergence of the positive
definite operators A,B ∈B

++(H ) is defined by

H f (A,B) = Tr
(

f (A)− f (B)− f ′(B)(A−B)
)

,

see e. g. formula (5) in [16]. Easy computation shows that if the spectral
decompositions are

A =
∑

a∈σ(A)
aPa and B =

∑

b∈σ(B)
bQb .

then we have

H f (A,B) =
∑

a∈σ(A),b∈σ(B)

(

f (a)− f (b)− f ′(b)(a−b)
)

TrPaQb .

1.4.1. The extension to positive semidefinite operators. If f can be ex-
tended to 0 by continuity, then the Bregman f -divergence can be ex-
tended to positive semidefinite operators by continuity the following way.
Let

(1) H f (X ,Y ) := lim
ε→0

(X +εI ,Y +εI )

for positive semidefinite operators X and Y . In the followings we show
that the limit (1) always exists and takes values in R

+∪ {+∞}. The argu-
ment is based on [16, Sec. 2.1].

If X and Y admit the spectral decompositions X =
∑

x∈σ(X ) xPx and
Y =

∑

y∈σ(Y ) yQy then
H f (X +εI ,Y +εI )

(2) =
∑

x∈σ(X ),y∈σ(Y )

(

f (x +ε)− f (y +ε)− f ′(y +ε)(x − y)
)

TrPxQy .
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Assume that f ∈C 1((0,∞))∩C 0([0,∞)), that is, limx→0 f (x) ∈R. The con-
vexity of f gives that f ′ is monotone increasing, hence limε→0 f ′(ε) ∈R or
limε→0 f ′(ε) =−∞.

Clearly, if limε→0 f ′(ε) ∈ R, then the limit of (2) is a real number. If
supp(X ) ⊆ supp(Y ) , then for every x ∈σ(X ) we have TrPxQ0 = 0 or x = 0,
hence the limit of (2) is finite in this case, as well. It is easy to see that if
supp(X ) * supp(Y ) and limε→0 f ′(ε) =−∞, then the limit of (2) is +∞.

1.4.2. Computation rules. By the above argument, if limx→0 f ′(x) = −∞,
for positive semidefinite operators X and Y the following computation
rule holds.

(3) H f (X ,Y ) =
∑

x∈σ(X ),y∈σ(Y )\{0}

(

f (x)− f (y)− f ′(y)(x − y)
)

TrPxQy

(4) = Trsupp(Y )
(

f (X )− f (Y )− f ′(Y )(X −Y )
)

if supp(X ) ⊆ supp(Y ) and

H f (X ,Y ) =∞

if supp(X ) * supp(Y ) . (For any K ⊂ H , TrK means that we take the
trace only on the subspace K .)

If limx→0 f ′(x) ∈R then the computation rule is simply the following.

(5) H f (X ,Y ) =
∑

x∈σ(X ),y∈σ(Y )

(

f (x)− f (y)− f ′(y)(x − y)
)

TrPxQy

(6) = Tr
(

f (X )− f (Y )− f ′(Y )(X −Y )
)

.

Example. For the standard entropy function f (x) = x log x the induced
Bregman f -divergence on density matrices is the Umegaki relative en-

topy

H f (A,B) = Tr A
(

log A− log B
)

which is one of the most important numerical quantities in quantum in-
formation theory. Therefore, Bregman f -divergences may be considered
as genralized relative entropies [8].

For any q > 1, the function fq : x 7→ fq (x) := xq−x
q−1 is convex, and the

induced Bregman divergence is

H fq
(A,B) = TrB q +

1

q −1

(

Tr Aq −q Tr AB q−1) ,

see [16]. In the particular case q = 2 the latter quantity is just the square
of the Hilbert-Schmidt norm,

H f2 (A,B) = Tr(A−B)2 .
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1.5. Jensen divergences on positive semidefinite operators. Let f be a
strictly convex function on (0,∞) such that the limit limx→0+ f (x) =: f (0)
exists. The Jensen f -divergence of the positive semidefinite operators
A ∈B

+(H ) and B ∈B
+(H ) is defined by

J f (A,B) = Tr

(

1

2

(

f (A)+ f (B)
)

− f

(

1

2
(A+B)

))

,

see e. g. [13]. We investigate the preservers of the Jensen f -divergence in
the case when the generating function f belongs to the Matrix Entropy

Class.
In the recent paper [5] Tropp and Chen defined the Matrix Entropy

Class the following way.

Definition. The Matrix Entropy Class consists of the real valued functions

defined on [0,∞) that are either affine or satisfy the following conditions.

• f is convex and f ∈C ([0,∞))∩C 2((0,∞)).
• For every finite dimensional Hilbert space H the map

B(H )++ →B
(

B(H )sa
)

; X 7→
(

D f ′[X ]
)−1

is concave with respect to the semidefinite order, where D f [Y ] de-

notes the Fréchet derivative of the standard operator function f :
B(H )++ →B(H )sa at the point Y .

Example. The standard entropy function f (x) = x log x is an impor-
tant element of the Matrix Entropy Class [5]. The induced Jensen f -
divergence is the well-known Jensen-von Neumann divergence

J f (A,B) =
1

2

(

Tr A log A+TrB logB
)

−Tr

(

A+B

2

)

log

(

A+B

2

)

.

If 1 < q ≤ 2, then the function fq : x 7→ fq (x) := xq−x
q−1 belongs to the

Matrix Entrpy Class [5], and the induced Jensen divergence is

J fq (A,B) =
1

q −1

(

Tr Aq +TrB q

2
−Tr

(

A+B

2

)q)

.

In particular, if q = 2, then we have

J f2 (A,B) = Tr

(

A−B

2

)2

.

2. THE MAIN RESULTS

It is clear that any unitary or antiunitary conjugation leaves the Breg-
man divergences and Jensen divergences invariant. The main result of
this paper is that the converse statement is also true, i. e., the preservers
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of Bregman and Jensen divergences are necessarily unitary or antiunitary
conjugations.

Theorem 1. Let f ∈ C 1((0,∞))∩C 0([0,∞)) be a strictly convex function.

Let φ : S (H ) → S (H ) be a bijection which preserves the Bregman f -

divergence, that is,

H f (φ(A),φ(B)) = H f (A,B) (A,B ∈S (H )) .

Then there exists a unitary or antiunitary transformation U : H → H

such that

φ(A) =U AU∗ (A ∈S (H )) .

Theorem 2. Let f be a strictly convex element of the Matrix Entropy
Class. Let φ : S (H ) → S (H ) be a bijection which preserves the Jensen

f -divergence, that is,

J f (φ(A),φ(B)) = J f (A,B) (A,B ∈S (H )) .

Then there exists a unitary or antiunitary transformation U : H → H

such that

φ(A) =U AU∗ (A ∈S (H )) .

3. PROOFS

Remark. Affine perturbation of the generating function does not change
the Bregman or the Jensen divergence, that is

H f +a (., .) = H f (., .)

and
J f +a (., .) = J f (., .)

for any convex function f and affine function a(x) =αx +β. Therefore in
the followings we may and do assume that f (0) = f (1) = 0.

3.1. The proof of Theorem 1.

Case I. First we investigate the case when limx→0 f ′(x) =−∞.
In this first part of the proof we basicly follow the argument of [9],

but the more general statement requires new techniques at some crucial
points of the proof.

As f ′(x) is unbounded from below, the divergence H f (A,B) is finite
if and only if supp(A) ⊆ supp(B) . Therefore, any divergence-preserving
transformation φ has the following properties.

(7) supp(A) ⊆ supp(B) ⇔ supp
(

φ(A)
)

⊆ supp
(

φ(B)
)

,

(8) supp(A) = supp(B) ⇔ supp
(

φ(A)
)

= supp
(

φ(B)
)
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and

(9) supp(A)( supp(B) ⇔ supp
(

φ(A)
)

( supp
(

φ(B)
)

.

As a consequence, φ preserves the rank — the reader should consult [9]
for a more detailed argument. In particular, the image of a rank-one pro-
jection is a rank-one projection, as well. So φ restricted to P1(H ) is a
bijection from P1(H ) to P1(H ).

Let P and Q be orthogonal elements of P1(H ), set 0 < λ< µ < 1 such
that λ+µ= 1, S :=λP +µQ and let R ∈P1(H ).

If supp(R) ⊆ supp(S) then by the computation rule (3) we have

H f (R ,S)

=
(

f (1)− f (λ)− f ′(λ)(1−λ)
)

TrRP +
(

f (0)− f (λ)− f ′(λ)(0−λ)
)

Tr(I −R)P

+
(

f (1)− f (µ)− f ′(µ)(1−µ)
)

TrRQ+
(

f (0)− f (µ)− f ′(µ)(0−µ)
)

Tr(I −R)Q

=− f ′(λ)TrRP − f ′(µ)TrRQ +λ f ′(λ)− f (λ)+µ f ′(µ)− f (µ)

(10) =− f ′(λ)TrRP − f ′(µ)TrRQ +C f ,λ,µ

if we introduce the notation C f ,λ,µ =λ f ′(λ)− f (λ)+µ f ′(µ)− f (µ).
As R runs through the set of rank-one projections which have their

support contained in supp(S) , TrRP and TrRQ take all values such that
0 ≤ TrRP,TrRQ ≤ 1 and TrRP +TrRQ = 1. f is strictly convex, hence f ′ is
strictly monotone increasing. By the strict monotonicity of f ′

max{R∈P1(H ):supp(R)⊆supp(S)}H f (R ,S)=− f ′(λ)+C f ,λ,µ

which maximum is taken only at R = P and

min{R∈P1(H ):supp(R)⊆supp(S)}H f (R ,S) =− f ′(µ)+C f ,λ,µ

which minimum is taken only at R =Q. Clearly,

max{R∈P1(H ):supp(R)⊆supp(S)}H f (R ,S)

−min{R∈P1(H ):supp(R)⊆supp(S)}H f (R ,S)

= f ′(µ)− f ′(λ).

f ′ is strictly monotone increasing, so f ′(µ)− f ′(λ) = f ′(1−λ)− f ′(λ) is
a strictly monotone decreasing function of λ. Therefore, f ′(µ) − f ′(λ)
uniquely determines λ and hence the spectrum of the rank-two density
S.

This means that the Bregman f -divergence preserving property of φ
implies that φ(S) is a rank-two density with eigenvalues λ and µ (and
possibly zero). Hence φ(S) = λP ′+µQ ′ with some rank-one projections
P ′ and Q ′ which are orthogonal to each other.
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Therefore, we can conclude that

R = P ⇔ H f (R ,S) =− f ′(λ)+C f ,λ,µ ⇔ H f

(

φ(R),φ(S)
)

=− f ′(λ)+C f ,λ,µ ⇔

⇔ H f

(

φ(R),λP ′+µQ ′)=− f ′(λ)+C f ,λ,µ ⇔φ(R) = P ′.

We deduced that φ(P ) = P ′. Similarly, φ(Q)=Q ′. So

(11) φ(S)=φ
(

λP +µQ
)

=λφ(P )+µφ(Q),

and the mutual orthogonality of rank-one projections is preserved.
Let P and Q be arbitrary mutually orthogonal elements of P1(H ) and

set R ∈P1(H ) such that supp(R) ⊆ supp(P )+ supp(Q) . Let 0 <λ< µ< 1
with λ+µ= 1. Then by (10), (11) and by the preserver property of φ

H f (R ,λP +µQ)

=
(

− f ′(λ)+C f ,λ,µ
)

TrRP +
(

− f ′(µ)+C f ,λ,µ
)

TrRQ

= H f

(

φ(R),λφ(P )+µφ(Q)
)

=
(

− f ′(λ)+C f ,λ,µ
)

Trφ(R)φ(P )+
(

− f ′(µ)+C f ,λ,µ
)

Trφ(R)φ(Q)

We used that φ(R)∈P1(H ) such that

supp
(

φ(R)
)

⊆ supp
(

λφ(P )+µφ(Q)
)

= supp
(

φ(P )
)

+ supp
(

φ(Q)
)

.

Any element of a nontrivial compact real interval is a unique convex com-
bination of the endpoints, hence we get that

(12) TrRP = Trφ(R)φ(P ) and TrRQ = Trφ(R)φ(Q).

Wigner’s theorem states that any bijection ξ : P1(H ) → P1(H ) which
preserves the transition probability — i. e., for which Trξ(P )ξ(Q) = TrPQ

holds for any P,Q ∈P1(H ) — is implemented by a unitary or antiunitary
operator — see e. g. [11]. So, by Wigner’s theorem, we get that

(13) φ(R)=U RU∗ (R ∈P1(H ))

for some unitary or antiunitary operator U acting on H .
Now let

ψ(D) =U∗φ(D)U (D ∈S (H )) .

Then ψ is the identity on P1(H ) and it preserves the Bregman f -
divergence. Note that by (7) for any D ∈S (H ) and P ∈P1(H )

supp(P ) ⊆ supp(D) ⇔ supp
(

ψ(P )
)

⊆ supp
(

ψ(D)
)

and
P =ψ(P ) ⇒ supp(P ) = supp

(

ψ(P )
)

,

hence
supp(D) = supp

(

ψ(D)
)

.
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By (4), for any D ∈ S (H ) and P,Q ∈ P1(H ) with supp(P ) ⊆ supp(D),
supp(Q) ⊆ supp(D) we have

H f (P,D) = Trsupp(D)
(

f (P )− f (D)− f ′(D)(P −D)
)

H f (Q,D) = Trsupp(D)
(

f (Q)− f (D)− f ′(D)(Q −D)
)

Using that f (0) = f (1) = 0 and hence f (P ) = f (Q) = 0, we get

(14) H f (P,D)−H f (Q,D) = Trsupp(D) f ′(D)(Q −P ).

Similarly,

(15) H f (P,ψ(D))−H f (Q,ψ(D)) = Trsupp(D) f ′ (ψ(D)
)

(Q −P ).

ψ preserves the Bregman f -divergence, hence subtracting (15) from (14)
one gets that that

(16) Trsupp(D)
(

f ′(D)− f ′ (ψ(D)
))

(Q −P ) = 0

for any P,Q ∈P1(H ) with supp(P ) ⊆ supp(D) ,supp(Q) ⊆ supp(D) .
From now, unless stated otherwise, we restrict ourselves to supp(D) . It

follows from (16) that

(17) f ′(D)− f ′ (ψ(D)
)

= cI

for some c ∈ R (in particular, f ′(D) and f ′ (ψ(D)
)

commute). Indeed, if P

and Q are projections corresponding to different eigenvectors of f ′(D)−
f ′ (ψ(D)

)

(which is self-adjoint), then (16) shows that the eigenvalues are
the same. So all the eigenvalues of f ′(D)− f ′ (ψ(D)

)

are equal.
Suppose that c 6= 0, for example, c > 0. Then by (17),

f ′(D) > f ′ (ψ(D)
)

.

f ′(D) and f ′ (ψ(D)
)

commute and f ′ is monotone, hence we get that

D >ψ(D).

This is a contradiction, so c = 0, that is, f ′(D) = f ′ (ψ(D)
)

. By the strict
monotonicity of f ′ this implies D =ψ(D).

So we deduced that D =ψ(D) on supp(D) = supp
(

ψ(D)
)

which means
that without any restriction, we have

D =ψ(D).

We deduced that ψ is the identity of S (H ), the proof is done. �

Case II. Now we investigate the case when limx→0 f ′(x) ∈ R. In this case
the Bregman divergence of any two states is finite, hence it is reasonable
to define

(18) M(X ) := max
{

H f (X ,D) |D ∈S (H )
}

.
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Let us note that f is contiuously differentiable, hence the map D 7→
H f (X ,D) is contiuous on the compact set S (H ). Therefore, the above
definition is correct as max

{

H f (X ,D) |D ∈S (H )
}

exists. In the follow-
ings we show that for P ∈S (H )

M(P ) = max{M(X )|X ∈S (H )}

if and only if P is a pure state, i. e., a rank-one projection.
Indeed, assume that ρ is not a pure state, that is, ρ =

∑k
j=1 λ j P j for

some k ≥ 2, for some real numbers 0 <λ1, . . . ,λk < 1 with
∑k

j=1λ j = 1 and
for some rank-one projections P1, . . . ,Pk . Assume that D∗ ∈ S (H ) has
the property that

M(ρ) = max
{

H f (ρ,D) |D ∈S (H )
}

= H f (ρ,D∗).

By the strict convexity of f , the map

X 7→ H f (X ,Y ) = Tr
(

f (X )− f (Y )− f ′(Y )(X −Y )
)

is strictly convex on S (H ), see e. g. [4, 2.10. Theorem]. So

H f (ρ,D∗) = H f

(

k
∑

j=1
λ j P j ,D∗

)

<
k
∑

j=1
λ j H f (P j ,D∗).

Therefore, H f

(

ρ,D∗)

< H f

(

P j∗ ,D∗)

for some j∗ ∈ {1, . . . ,k}. This means
that

M(ρ) = H f

(

ρ,D∗)

< H f

(

P j∗ ,D∗)

≤ M
(

P j∗
)

.

On the other hand, it can be easily seen — for example, by the unitary
invariance of the Bregman divergences — that M(P ) = M(Q) for all P,Q ∈
P1(H ). Therefore, M(P ) is maximal, if P ∈P1(H ).

So we have the following characterization of the pure states.

(19) P ∈P1(H ) ⇔ M(P ) = max{M(X )|X ∈S (H )} .

If φ is a bijection that preserves the Bregman f -divergence, then for any
X ∈S (H )

M
(

φ(X )
)

= max
{

H f

(

φ(X ),φ(D)
)

|D ∈S (H )
}

= max
{

H f (X ,D) |D ∈S (H )
}

= M(X ).

So φ restricted to P1(H ) is a P1(H ) →P1(H ) bijection.
Now let P,Q ∈P1(H ). By the computation rule (5)

H f (P,Q) =
(

f (0)− f (0)− f ′(0)(0−0)
)

Tr(I −P )(I −Q)

+
(

f (1)− f (0)− f ′(0)(1−0)
)

Tr(P )(I −Q)

+
(

f (0)− f (1)− f ′(1)(0−1)
)

Tr(I −P )(Q)+
(

f (1)− f (1)− f ′(1)(1−1)
)

TrPQ

(20) = (1−TrPQ)
(

f ′(1)− f ′(0)
)

.
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Similarly,

(21) H f

(

φ(P ),φ(Q)
)

=
(

1−Trφ(P )φ(Q)
)(

f ′(1)− f ′(0)
)

.

f ′ is strictly monotone, hence
(

f ′(1)− f ′(0)
)

6= 0. So by (20) and (21),
H f

(

φ(P ),φ(Q)
)

= H f (P,Q) gives us

(22) TrPQ = Trφ(P )φ(Q) (P,Q ∈P1(H )) .

From now on, our argument is very similar to the ending part of the dis-
cussion of Case I. By Wigner’s theorem,

(23) φ(R)=U RU∗ (R ∈P1(H ))

for some unitary or antiunitary operator U .
Now let

ψ(D) =U∗φ(D)U (D ∈S (H )) .

Then ψ is the identity on P1(H ) and it preserves the Bregman f -
divergence. By (6), for any D ∈S (H ) and P,Q ∈P1(H )

H f (P,D) = Tr
(

f (P )− f (D)− f ′(D)(P −D)
)

H f (Q,D) = Tr
(

f (Q)− f (D)− f ′(D)(Q −D)
)

It follows that

(24) H f (P,D)−H f (Q,D) = Tr f ′(D)(Q −P ).

Similarly,

(25) H f (P,ψ(D))−H f (Q,ψ(D)) = Tr f ′ (ψ(D)
)

(Q −P ).

ψ preserves the Bregman f -divergence, hence (24) and (25) imply that

(26) Tr
(

f ′(D)− f ′ (ψ(D)
))

(Q −P ) = 0

for any P,Q ∈P1(H ).
It follows from (26) that

(27) f ′(D)− f ′ (ψ(D)
)

= cI

for some c ∈R, and it is easy to show that c = 0 by necessity.
That is, f ′(D) = f ′ (ψ(D)

)

. By the strict monotonicity of f ′ this implies

D =ψ(D).

We deduced that ψ is the identity of S (H ), the proof is done. �
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3.2. The proof of Theorem 2. Our aim is to prove that any bijective trans-
formation of S (H ) which preserves the Jensen f -divergence is imple-
mented by a unitary or an antiunitary operator. Recall that J f (., .) denotes
the Jensen f -divergence, which quantity was defined in Subsection 1.5.

Lemma 3. For any rank-one projections P,Q ∈P1(H ) we have

(28) J f (P,Q) = (−1)

(

f

(

1

2

(

1+
√

TrPQ
)

)

+ f

(

1

2

(

1−
√

TrPQ
)

))

.

Proof. Let {e1, . . . ,en} ⊆ H be an orthonormal basis such that supp(P ) =
span({e1}) and supp(Q) ⊆ span({e1,e2}) . In this basis

P =















1 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0















and

Q =















p
√

p(1−p)α 0 . . . 0
√

p(1−p)α 1−p 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0















where we introduced the notation p := TrPQ and α ∈C, |α| = 1. Let us de-
note by µ and 1−µ the eigenvalues of 1

2 (P+Q) restricted to span({e1,e2}) .
Easy computations show that

det

(

1

2
(P +Q)|span({e1,e2})

)

=
1

4
(1−p).

Therefore, µ(1−µ) = 1
4 (1−p). The solution of this quadratic equation is

µ1,2 =
1

2

(

1±p
p
)

,

which gives the result of the lemma. (We used that by f (0) = f (1) = 0 we
have Tr f (P ) = Tr f (Q) = 0.) �

Corollary 4. By the convexity of f ,

max
P,Q∈P1(H )

J f (P,Q) =−2 f

(

1

2

)

=: M f

and by the strict convexity of f , for P,Q ∈P1(H ) we have J f (P,Q) = M f if

and only if TrPQ = 0, that is, PQ = 0.
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Claim 5.

max
A,B∈S (H )

J f (A,B) = M f

and for any A,B ∈S (H ), if J f (A,B) = M f , then AB = 0.

Proof. The function f is an element of the Matrix Entropy Class, hence
by [16, Thm. 2] the induced Bregman f -divergence (denoted by H f ) is
jointly convex. Observe that

J f (A,B) =
1

2

(

H f

(

A,
A+B

2

)

+H f

(

B ,
A+B

2

))

.

Suppose that

A =
∑

i

λi Pi , and B =
∑

j

µ j Q j

where the Pi ’s and the Q j ’s are rank-one projections and the λi ’s and the
µ j ’s are positive numbers such that

∑

i λi =
∑

j µ j = 1. The joint convexity
of the Bregman divergence implies that

J f (A,B) =
1

2

(

H f

(

A,
A+B

2

)

+H f

(

B ,
A+B

2

))

=
1

2

(

H f

(

∑

i

λi Pi ,
∑

i

λi
Pi +B

2

)

+H f

(

∑

i

λi B ,
∑

i

λi
Pi +B

2

))

≤
∑

i

λi

(

1

2
H f

(

Pi ,
Pi +B

2

)

+
1

2
H f

(

B ,
Pi +B

2

))

=
∑

i

λi J f (Pi ,B).

Similarly, J f (Pi ,B) ≤
∑

j µ j J f

(

Pi ,Q j

)

for any i . Therefore,

J f (A,B) ≤
∑

i

∑

j

λiµ j J f (Pi ,Q j ) ≤ max
P,Q∈P1(H )

J f (P,Q) = M f .

We have λiµ j > 0 for any i and j , and
∑

i

∑

j λiµ j = 1, hence if J f (A,B) =
M f , then J f (Pi ,Q j ) = M f for any i and j . By Corollary 4 this means that
we always have Pi Q j = 0, and therefore AB = 0. �

Claim 6. If φ is a bijection on S (H ) that preserves the Jensen f -

divergence, then φ restricted to P1(H ) is a bijection from P1(H ) to

P1(H ).

Proof. If P ∈ P1(H ), then there exists a set H ⊆ S (H ) such that P ∈
H , |H | = dim(H ) and J f (A,B) = M f for any A,B ∈ H . (H contains orthog-
onal rank-one projections.) φ preserves the Jensen f -divergence, hence
J f (X ,Y ) = M f for any X ,Y ∈ φ(H), that is, by Lemma 5, φ(H) ⊆ S (H )
has dim(H ) pairwise orthogonal elements. This implies that all the ele-
ments of φ(H) are rank-one projections, in particular,φ(P ) ∈P1(H ). �
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Claim 7. There exists a unitary or antiunitary operator U : H → H such

that

φ(R)=U RU∗ (R ∈P1(H )) .

Proof. By the strict convexity of f , (28) shows that for P,Q ∈ P1(H ),
J f (P,Q) is a strictly monotone decreasing function of TrPQ. Therefore,
if φ preserves the Jensen f -divergence, then it preserves the transi-
tion probability TrPQ, as well. So φ restricted to P1(H ) is a bijec-
tion from P1(H ) to P1(H ) which preserves the transition probability
(Trφ(P )φ(Q) = TrPQ for any P,Q ∈P1(H )). Therefore, by Wigner’s theo-
rem we obtain the statement of this Claim. �

Claim 8. Let us define the map ψ : S (H ) →S (H ) by

ψ(D) :=U∗φ(D)U .

Then ψ(D) = D for any D ∈S (H ).

Proof. Clearly, ψ preserves the Jensen f -divergence and ψ(R) = R for any
R ∈P1(H ). Therefore, we have

J f (R ,D) = J f

(

R ,ψ(D)
)

R ∈P1(H ), D ∈S (H ),

which equation can be written as

(29) Tr f

(

1

2

(

R +ψ(D)
)

)

−Tr f

(

1

2
(R +D)

)

=
1

2
Tr f

(

ψ(D)
)

−
1

2
Tr f (D).

Let D ∈ S (H ) be arbitrary but fixed. Suppose that the spectral decom-
positions of D and ψ(D) are

(30) D =
m
∑

i=1
λi Pi and ψ(D) =

n
∑

j=1
µ j Q j ,

where λ1 >λ2 > ·· · >λm and µ1 >µ2 > ·· · >µn .
f is strictly convex, hence the difference quotient function h(a,b) :=

f (a)− f (b)
a−b

is strictly monotone increasing in both a and b.
Now, we show that for any R ∈ P1(H ) the quantity Tr f

(1
2 (R +D)

)

is
maximal, that is,

Tr f

(

1

2
(R +D)

)

= max
X∈P1(H )

Tr f

(

1

2
(X +D)

)

if and only if R ≤ P1, and in this case

Tr f

(

1

2
(R +D)

)

= f

(

λ1

2
+

1

2

)

− f

(

λ1

2

)

+
m
∑

i=1
rank(Pi ) f

(

λi

2

)

.

Indeed, let us denote the dimension of the Hilbert space H by N and let
ν1 ≥ ν2 ≥ ·· · ≥ νN denote the (not necessarily different) eigenvalues of D.
As R ≥ 0, by Weyl’s inequality (see e. g. [2, Thm. III.2.1]) we get that the
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eigenvalues of R+D can be written in the form ν1+ε1,ν2+ε2, . . . ,νN +εN ,
where εk ≥ 0 for any k ∈ {1, . . . , N }. The condition TrR = 1 ensures that
∑N

k=1 εk = 1. Obviously,

Tr f

(

1

2
(R +D)

)

−Tr f

(

1

2
D

)

=
N
∑

k=1

f
(νk +εk

2

)

− f
(νk

2

)

=
∑

k:εk>0

εk

2

f
(νk+εk

2

)

− f
(νk

2

)

εk

2

.

If R � P1, then εl ,εk > 0 for some 1 ≤ l 6= k ≤ N . In this case, by the strict
monotonicity of the difference quotient function h we have

∑

k:εk>0

εk

2

f
(νk+εk

2

)

− f
(νk

2

)

εk

2

<
∑

k:εk>0

εk

2

f

(
(

ν1+
∑k−1

l=1 εl

)

+εk

2

)

− f

(

ν1+
∑k−1

l=1 εl

2

)

εk

2

=
N
∑

k=1
f

((

ν1 +
∑k−1

l=1 εl

)

+εk

2

)

− f

(

ν1 +
∑k−1

l=1 εl

2

)

= f

(

ν1 +1

2

)

− f
(ν1

2

)

.

If R ≤ P1, then the eigenvalues of R +D are ν1 +1,ν2, . . . ,νN . Therefore, in
this case we have

Tr f

(

1

2
(R +D)

)

−Tr f

(

1

2
D

)

= f

(

ν1 +1

2

)

− f
(ν1

2

)

.

So we get that Tr f
(1

2 (R +D)
)

is maximal if and only if R ≤ P1.
Similarly, Tr f

(1
2

(

R +ψ(D)
))

is maximal, that is,

Tr f

(

1

2

(

R +ψ(D)
)

)

= max
X∈P1(H )

Tr f

(

1

2

(

X +ψ(D)
)

)

if and only if R ≤Q1, and in this case

Tr f

(

1

2

(

R +ψ(D)
)

)

= f

(

µ1

2
+

1

2

)

− f
(µ1

2

)

+
n
∑

j=1
rank

(

Q j

)

f
(µ j

2

)

.

Observe that the right hand side of (29) is independent of R , hence
Tr f

(1
2 (R +D)

)

is maximal if and only if Tr f
(1

2

(

R +ψ(D)
))

is maximal.
That is, R ≤ P1 ⇔R ≤Q1, so P1 =Q1.

Let us introduce the notation S1 := P1 = Q1. For any R ∈ P1(H ) with
RS1 = 0 Tr f

(1
2 (R +D)

)

is maximal, that is,

Tr f

(

1

2
(R +D)

)

= max
X∈P1(H ):X S1=0

Tr f

(

1

2
(X +D)

)

if and only if R ≤ P2, and in this case

Tr f

(

1

2
(R +D)

)

= f

(

λ2

2
+

1

2

)

− f

(

λ2

2

)

+
m
∑

i=1
rank(Pi ) f

(

λi

2

)

.
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Similarly, Tr f
(1

2

(

R +ψ(D)
))

is maximal, that is,

Tr f

(

1

2

(

R +ψ(D)
)

)

= max
X∈P1(H ):X S1=0

Tr f

(

1

2

(

X +ψ(D)
)

)

if and only if R ≤Q2, and in this case

Tr f

(

1

2

(

R +ψ(D)
)

)

= f

(

µ2

2
+

1

2

)

− f
(µ2

2

)

+
n
∑

j=1
rank

(

Q j

)

f
(µ j

2

)

.

The right hand side of (29) is independent of R , hence Tr f
(1

2 (R +D)
)

is
maximal if and only if Tr f

(1
2

(

R +ψ(D)
))

is maximal. That is, R ≤ P2 ⇔
R ≤Q2, so P2 =Q2.

And so on, we can deduce that all the eigenprojections coincide, that
is, m = n and Pi =Qi for all 1≤ i ≤ m.

Let us define the following function on the positive half line.

g (a) := f

(

a

2
+

1

2

)

− f
(a

2

)

By the strict convexity of f , g is strictly monotone increasing. It follows
easily from the above variational formulas that

max
R∈P1(H ):R≤Pl +Pl+1

Tr f

(

1

2
(R +D)

)

− min
R∈P1(H ):R≤Pl +Pl+1

Tr f

(

1

2
(R +D)

)

= g (λl )− g (λl+1)

and

max
R∈P1(H ):R≤Pl +Pl+1

Tr f

(

1

2

(

R +ψ(D)
)

)

−

− min
R∈P1(H ):R≤Pl +Pl+1

Tr f

(

1

2

(

R +ψ(D)
)

)

= g
(

µl

)

− g
(

µl+1
)

for all 1≤ l ≤ m−1. The right hand side of (29) is independent of R , hence
we have

g (λl )− g (λl+1) = g
(

µl

)

− g
(

µl+1
)

for all 1≤ l ≤ m −1.
Indirectly assume that λk > µk for some 1 ≤ k ≤ m. Then by

∑m
i=1λi =

∑m
i=1µi = 1 we have λs <µs for some 1 ≤ s ≤ m. Without loss of generality

we may assume that s > k. Then there exists some t ∈ {k,k +1, . . . , s −1}
such that

[λt+1,λt ] )
[

µt+1,µt

]

which implies by the strict monotonicity of g that

g (λt )− g (λt+1) > g
(

µt

)

− g
(

µt+1
)

.

A contradiction.
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So the proof of the claim is done, and hence the proof Theorem 2 is
complete. �

Acknowledgement. The author is grateful to Lajos Molnár for illuminat-
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