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Abstract

This paper studies the difficulty of discriminating between an arbitrary quantum channel
and a “replacer” channel that discards its input and replaces it with a fixed state. The results
obtained here generalize those known in the theory of quantum hypothesis testing for binary
state discrimination. We show that, in this particular setting, the most general adaptive discrim-
ination strategies provide no asymptotic advantage over non-adaptive tensor-power strategies.
This conclusion follows by proving a quantum Stein’s lemma for this channel discrimination
setting, showing that a constant bound on the Type I error leads to the Type II error decreasing
to zero exponentially quickly at a rate determined by the maximum relative entropy registered
between the channels. The strong converse part of the lemma states that any attempt to make
the Type II error decay to zero at a rate faster than the channel relative entropy implies that
the Type I error necessarily converges to one. We then refine this latter result by identifying
the optimal strong converse exponent for this task. As a consequence of these results, we can
establish a strong converse theorem for the quantum-feedback-assisted capacity of a channel,
sharpening a result due to Bowen. Furthermore, our channel discrimination result demonstrates
the asymptotic optimality of a non-adaptive tensor-power strategy in the setting of quantum
illumination, as was used in prior work on the topic. The sandwiched Rényi relative entropy is
a key tool in our analysis. Finally, by combining our results with recent results of Hayashi and
Tomamichel, we find a novel operational interpretation of the mutual information of a quantum
channel N as the optimal type II error exponent when discriminating between a large number
of independent instances of N and an arbitrary “worst-case” replacer channel chosen from the
set of all replacer channels.

1 Introduction

Quantum channel discrimination is a natural extension of a basic problem in quantum hypothesis
testing, that of distinguishing between the possible states of a quantum system. In the case of binary
state discrimination, it is given a priori that a quantum system is in one of two states ρ or σ, and
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the goal is to identify in which state it is by performing a quantum measurement. We say that ρ is
the null hypothesis and σ is the alternative hypothesis. A natural extension of this problem occurs
in the independent and identically distributed (i.i.d.) setting. Here, the discriminator is provided
with n quantum systems in the state ρ⊗n or σ⊗n, and the task is to apply a binary measurement
{Qn, I⊗n − Qn} on these n systems, with 0 ≤ Qn ≤ I⊗n, to determine which state he possesses.
One is then concerned with two kinds of error probabilities:

αn(Qn) ≡ Tr
{

(I⊗n −Qn)ρ⊗n
}
, (1.1)

the probability of incorrectly rejecting the null hypothesis, the Type I error, and

βn(Qn) ≡ Tr
{
Qnσ

⊗n} , (1.2)

the probability of incorrectly rejecting the alternative hypothesis, the Type II error. Of course, it
is generally impossible to find a quantum measurement such that both of these errors are equal
to zero simultaneously, so one instead studies the asymptotic behaviour of αn and βn as n → ∞,
expecting there to be a trade-off between minimising αn and minimising βn.

In asymmetric hypothesis testing, one fixes a constraint on the Type I error, say, and then seeks
to minimise the Type II error. When a constant threshold ε is imposed on the Type I error, the
optimal Type II error is given by

βε(ρ‖σ) ≡ min{β(Q) : 0 ≤ Q ≤ I, α(Q) ≤ ε}. (1.3)

The central result in the asymptotic setting is the quantum Stein’s lemma, due to Hiai and Petz
[25] and Ogawa and Nagaoka [41]. The direct part of the lemma states that for any constant
bound on the Type I error, there exists a sequence of measurements {Qn, I⊗n − Qn} that meets
this constraint and is such that the Type II error decreases to zero exponentially fast with a decay
exponent given by the quantum relative entropy D(ρ‖σ), defined as [54, 25]

D(ρ‖σ) ≡
{

Tr {ρ [log ρ− log σ]} if supp (ρ) ⊆ supp (σ)
+∞ otherwise

. (1.4)

In the above and throughout the paper, we take the logarithm to be base two. Furthermore, the
strong converse part of the lemma states that any attempt to make the Type II error decay to zero
with a decay exponent larger than the relative entropy will result in the Type I error converging to
one in the large n limit [41]. The direct and the strong converse parts can be succinctly written as

lim
n→∞

− 1

n
log βε(ρ

⊗n‖σ⊗n) = D(ρ‖σ), ∀ε ∈ (0, 1). (1.5)

That is, for any threshold value ε ∈ (0, 1), the optimal Type II error decays exponentially fast in
the number of copies, and the decay rate is equal to the relative entropy.

It is easy to see that the negative logarithm of the optimal Type II error,

Dε
H(ρ‖σ) ≡ − log βε(ρ‖σ), (1.6)

is non-negative and monotonic non-increasing under completely positive trace-preserving maps.
Thus, it can be considered as a “generalized divergence” or “generalized relative entropy” and it
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was named “hypothesis testing relative entropy” in [55]. With this notation, Stein’s lemma (1.5)
can be reformulated as

lim
n→∞

1

n
Dε
H(ρ⊗n‖σ⊗n) = D(ρ‖σ), ∀ε ∈ (0, 1). (1.7)

As a refinement of the quantum Stein’s lemma, one can study the optimal Type I error given that
the Type II error decays with a given exponential speed. One is then interested in the asymptotics
of the optimal Type I error

αn,r ≡ α2−nr(ρ
⊗n‖σ⊗n) ≡ min

{
αn(Qn) : 0 ≤ Qn ≤ I, βn(Qn) ≤ 2−nr

}
, (1.8)

with r > 0 a constant. In the “direct domain,” when r < D(ρ‖σ), αn,r also decays with an
exponential speed, as was shown in [40]. The exact decay rate is determined by the quantum
Hoeffding bound theorem [21, 39, 2] as

lim
n→∞

− 1

n
logαn,r = Hr(ρ‖σ) ≡ sup

0<α<1

α− 1

α
(r −Dα(ρ‖σ)), (1.9)

where Dα is a quantum Rényi relative entropy, to be defined later, and Hr(ρ‖σ) is the Hoeffding
divergence of ρ and σ. On the other hand, in the “strong converse domain,” when r > D(ρ‖σ),
αn,r goes to 1 exponentially fast [41, 38]. The rate of this convergence has been determined in [20,
pages 80-81] in terms of the limit of post-measurement Rényi relative entropies. A “single-letter”
expression has been obtained recently in [36] as

lim
n→∞

− 1

n
log(1− αn,r) = H∗r (ρ‖σ) ≡ sup

α>1

α− 1

α
(r − D̃α(ρ‖σ)), (1.10)

where D̃α is an alternative version of the quantum Rényi relative entropy [37, 56], and H∗r (ρ‖σ)
is the Hoeffding anti-divergence. Note that it is unique to the quantum case that one requires a
Rényi relative entropy for the strong converse domain which is different from that used in the direct
domain (however, these Rényi relative entropies coincide when ρ and σ commute, i.e., the classical
case).

The results in (1.9) and (1.10) give a complete understanding of the trade-off between the two
error probabilities in the asymptotics. Note that the quantum Stein’s lemma can also be recovered
from (1.9) and (1.10) in the limit r → D(ρ‖σ). We remark that there are other ways of refining
our understanding of the quantum Stein’s lemma, as established recently in [32, 52].

The objectives of channel discrimination are very similar to those of state discrimination; what
makes the problem different is the complexity of the available discrimination strategies. In the
general setup we have a quantum channel with input system A and output system B, and we
know that the channel is described by either N1 or N2, where N1 and N2 are completely positive
trace-preserving (CPTP) maps. We assume that we can use the channel several times, consecutive
uses are independent, and the properties of the channel do not change with time. Thus, n uses
of the channel are described by either N⊗n1 or N⊗n2 . A non-adaptive discrimination strategy for
n uses of the channel consists of feeding an input state ψRnAn into the n-fold tensor-product
channel, and then performing a binary measurement {Qn, I − Qn} on the output, which is either
N⊗n1 (ψRnAn) ≡ (idRn ⊗N⊗n1 )(ψRnAn) or N⊗n2 (ψRnAn) ≡ (idRn ⊗N⊗n2 )(ψRnAn). Here, Rn is an
ancilla system on which the channel acts trivially as the identity map idRn . When an adaptive
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strategy is used, the output of the first k uses of the channel can be used to prepare the input for
the (k + 1)-th use; see Figure 1 for a pictorial explanation and Section 2.1 for a precise definition.

For any discrimination strategy Sn, let ρn(Sn) and σn(Sn) denote the output of the n-fold
product channel depending on whether the channel is equal to N1 or N2. In analogy with (1.1)-
(1.2), one can define the Type I and the Type II errors as

αn(Sn) ≡ Tr{(I −Qn)ρn(Sn)}, (Type I) βn(Sn) ≡ Tr{Qnσn(Sn)}, (Type II), (1.11)

where {Qn, I − Qn} is the measurement part of the strategy. It is then natural to consider the
optimal error probabilities

βxε (N⊗n1 ‖N
⊗n
2 ) ≡ inf{βn(Sn) : αn(Sn) ≤ ε}, and (1.12)

αxn,r ≡ αx2−nr(N
⊗n
1 ‖N

⊗n
2 ) ≡ inf

{
αn(Sn) : βn(Sn) ≤ 2−nr

}
, (1.13)

where x denotes the set of allowed discrimination strategies and the optimisations are over all
strategies in the class x. Here, we will consider x = ad for adaptive and x = pr for product
strategies. The latter are all non-adaptive strategies with an input state ψRnAn = ψ⊗nRA, where ψRA
is an arbitrary state on A and some ancilla R. Obviously, if only product strategies are allowed
(x = pr), then the optimal rates of these error probabilities are given by the corresponding channel
divergences as

lim
n→+∞

− 1

n
log βxε (N⊗n1 ‖N

⊗n
2 ) = D(N1‖N2) ≡ sup

ψRA

D(N1(ψRA)‖N2(ψRA)), (1.14)

lim
n→+∞

− 1

n
logαxn,r = Hr(N1‖N2) ≡ sup

ψRA

Hr(N1(ψRA)‖N2(ψRA)), (1.15)

lim
n→+∞

− 1

n
log(1− αxn,r) = H∗r (N1‖N2) ≡ inf

ψRA
H∗r (N1(ψRA)‖N2(ψRA)), (1.16)

according to the previously explained results on state discrimination. Note that in (1.16) an infimum
is taken; the reason is that, in the strong converse domain, the goal is to minimise the exponent of
the success probability. The Hoeffding (anti-)divergences can also be expressed as

Hr(N1‖N2) = sup
0<α<1

α− 1

α
(r −Dα(N1‖N2)), (1.17)

H∗r (N1‖N2) = sup
1<α

α− 1

α
(r − D̃α(N1‖N2)), (1.18)

where Dα(N1‖N2) and D̃α(N1‖N2) are the channel Rényi relative entropies:

Dα(N1‖N2) ≡ sup
ψRA

Dα(N1(ψRA)‖N2(ψRA)), (1.19)

D̃α(N1‖N2) ≡ sup
ψRA

D̃α(N1(ψRA)‖N2(ψRA)). (1.20)

The optimizations in (1.14)–(1.16) and (1.19)–(1.20) are taken over all possible bipartite states ψRA
with an arbitrary ancilla system R.

For adaptive strategies, the relations (1.14)-(1.16) are not expected to hold for arbitrary chan-
nels. For instance, the results of [19] provide some evidence in this direction. (See [14] as well
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for related results and more general conclusions.) There are various classes of channels, however,
for which (1.14)-(1.16) hold; for these channels, adaptive strategies do not offer any benefit over
product strategies. For instance, Hayashi showed (1.14)-(1.16) with x = ad for any pair of classical
channels [22].

Another extreme case is when both N1 and N2 are replacer channels, i.e., there exist states ρ, σ
such that N1(·) = Rρ ≡ Tr{·}ρ and N2(·) = Rσ ≡ Tr{·}σ. Obviously, in this case all the channel
divergences are equal to the corresponding divergences of the two states; e.g., Dα(Rρ‖Rσ) =
Dα(ρ‖σ), etc. It is also heuristically clear that adaptive strategies do not offer any benefit over
product strategies, and the channel discrimination problem reduces to the state discrimination
problem between ρ and σ, described before. Two of our main results, Theorems 1 and 2 yield as a
special case a mathematically precise argument for these heuristics in the case of (1.14) and (1.16).

A natural intermediate step towards determining the error exponents of the general quantum
channel discrimination problem is to allow one of the channels to be arbitrary, while keeping the
other channel a replacer channel. This setup interpolates between the fully understood case of
state discrimination and the still open problem of general quantum channel discrimination. Here
we consider the setup in which the first channel is arbitrary and the second channel is a replacer
channel. We prove (1.14) (Stein’s lemma) in Section 4.1, and show in Section 4.2 that the strong
converse exponent is given as in (1.16) for adaptive strategies (x = ad). As for now, we leave the
optimality part of (1.15) open for x = ad.

As a consequence of these results, in Section 5 we can establish a strong converse theorem for the
quantum-feedback-assisted capacity of a channel, which is the capacity of a quantum channel for
transmitting classical information with the assistance of a noiseless quantum feedback from receiver
to sender. Our result here strengthens that of Bowen’s [9]. We also make a connection between
our results and quantum illumination [34] in Section 2.3. Finally, in Section 4.3, we discuss how to
combine the recent results in [24] with ours to obtain a quantum Stein’s lemma in a setting more
general than that considered in either paper. This gives a novel operational interpretation of the
mutual information of a quantum channel, different from that already found in entanglement- and
quantum-feedback-assisted communication [7, 28, 9]. We also discuss an open question regarding
the characterization of the strong converse exponent in this more general setting.

2 Summary of results

2.1 Quantum Stein’s lemma in adaptive channel discrimination

Our first result is a generalization of the quantum Stein’s lemma in (1.7) to the setting of adaptive
quantum channel discrimination. In particular, we study the difficulty of discriminating between
an arbitrary quantum channel N and a “replacer” channel R that discards its input and replaces it
with a fixed state σ. An important physical realization of this problem is in quantum illumination
[34, 50] (discussed more in Section 2.3). We show that a tensor-power strategy is optimal in
this case, so that there is no need to consider the most general adaptive strategy (at least in the
asymptotic regime). This can be seen as a quantum Stein’s lemma for this task; if one optimises the
Type II error under the constraint that the Type I error is less than some fixed constant ε ∈ (0, 1),
then the optimal Type II error probability cannot decrease to zero exponentially faster than a rate
determined by the relative entropy. Otherwise, the Type I error necessarily converges to one. It is
straightforward to employ the direct part of the established quantum Stein’s lemma from [25] in
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Figure 1: A four-round adaptive discrimination strategy applied to the channel N .

Figure 2: A four-round adaptive discrimination strategy applied to the replacer channel R.

order to establish the direct part for our setting.
In more detail, the most general adaptive discrimination strategy is depicted in Figures 1 and 2.

It consists of a choice of input state ρR1A1 , a sequence {A(i)
RiBi→Ri+1Ai+1

}i∈{1,...,n−1} of adaptive

quantum channels, and finally a quantum measurement {QRnBn , IRnBn −QRnBn} to decide which
channel was applied. Let τRnBn denote the output state at the end of the adaptive discrimination
strategy (before the final measurement {QRnBn , IRnBn −QRnBn} is performed) when the channel
being applied is R, and let ρRnBn denote the output state at the end of the adaptive discrimina-
tion strategy when the channel being applied is N . Let Dε

H,ad (N⊗n‖R⊗n) denote the “adaptive
hypothesis testing relative entropy,” which generalizes (1.6) by allowing for an optimization over
all possible adaptive strategies used to discriminate between N⊗n and R⊗n. We define it formally
as follows:

Dε
H,ad

(
N⊗n

∥∥R⊗n) ≡ − log βad
ε (N⊗n‖R⊗n) = − log inf Tr {QRnBnτRnBn} , (2.1)

where the infimum is over all measurement operators QRnBn subject to 0 ≤ QRnBn ≤ IRnBn and

Tr {QRnBnρRnBn} ≥ 1− ε, (2.2)

all preparation states ρR1A1 subject to ρR1A1 ≥ 0 and Tr{ρR1A1} = 1, and all adaptive quantum
channels {

A(i)
RiBi→Ri+1Ai+1

}
i∈{1,...,n−1}

. (2.3)

We can now state our first main result:

Theorem 1 Let ε ∈ (0, 1) be a fixed constant. Let N : B(HA)→ B(HB) be an arbitrary quantum
channel and let R : B(HA) → B(HB) be the replacer quantum channel R(XA) = Tr{XA}σB, for
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some fixed density operator σB. Then the channel version of Stein’s lemma, (1.14) holds, i.e.,

lim
n→∞

− 1

n
log βad

ε

(
N⊗n

∥∥R⊗n) = lim
n→∞

1

n
Dε
H,ad

(
N⊗n

∥∥R⊗n) (2.4)

= sup
ψRA

D (NA→B(ψRA)‖ψR ⊗ σB) = D(N‖R) (2.5)

for any ε ∈ (0, 1). It suffices to take system R isomorphic to system A in the above optimization.

This theorem clearly generalizes the quantum Stein’s lemma in (1.7). It implies that a tensor-
power discrimination strategy is optimal—allowing for an adaptive strategy yields no asymptotic
improvement. That is, one should simply prepare n copies of the bipartite state ψRA optimiz-
ing (2.5), send each A system through each channel use (creating the state [NA→B(ψRA)]⊗n or
[RA→B(ψRA)]⊗n), and finally perform a collective measurement on all systems RnBn to decide
which channel was applied.

2.2 The strong converse exponent for adaptive channel discrimination

Next, we refine our analysis by identifying the strong converse exponent for the task of discrimi-
nating between an arbitrary quantum channel N and a replacer channel R. It is easy to see (by
considering ε→ 0) that Theorem 1 implies that for any rate r < D(N‖R), there exists a sequence
of non-adaptive strategies, along which the type I error goes to zero, and the type II error vanishes
exponentially fast, with a rate at least r. This is usually referred to as the direct part of Stein’s
lemma. Moreover, it also implies that the strong converse property holds, i.e., for any sequence of
adaptive srategies, if the type II error vanishes exponentially with a rate r > D(N‖R), then the
type I error goes to 1 (this can be seen by taking ε → 1). Our aim is to determine the speed of
convergence of the type I error to 1 in the strong converse domain, for any decay rate r > D(N‖R)
of the type II errors. As it turns out, this convergence is also exponential, and hence our aim is to
determine the exact values of the strong converse exponents:

sc(r) ≡ inf

{
lim inf
n→+∞

− 1

n
log Tr {QRnBnρRnBn} : lim inf

n→+∞
− 1

n
log Tr {QRnBnτRnBn} > r

}
, (2.6)

sc(r) ≡ inf

{
lim sup
n→+∞

− 1

n
log Tr {QRnBnρRnBn} : lim inf

n→+∞
− 1

n
log Tr {QRnBnτRnBn} > r

}
, (2.7)

where the infimum is over all sequences of adaptive measurement strategies, specified by measure-
ment operators QRnBn subject to 0 ≤ QRnBn ≤ IRnBn , preparation states ρR1A1 , and adaptive
quantum channels

A[n] ≡
{
A(i)
RiBi→Ri+1Ai+1

}
i∈{1,...,n−1}

. (2.8)

We establish the following theorem:

Theorem 2 Let N : B(HA) → B(HB) be an arbitrary quantum channel, and let R : B(HA) →
B(HB) be the replacer quantum channel R(X) = Tr{X}σB, for some fixed density operator σB.
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For any r > D(N‖R),

sc(r) = sc(r) = lim
n→+∞

− 1

n
log(1− αad

n,r) (2.9)

= sup
α>1

inf
ψRA

α− 1

α

[
r − D̃α(NA→B(ψRA)‖ψR ⊗ σB)

]
(2.10)

= inf
ψRA

sup
α>1

α− 1

α

[
r − D̃α(NA→B(ψRA)‖ψR ⊗ σB)

]
(2.11)

= sup
α>1

α− 1

α

[
r − D̃α(N‖R)

]
, (2.12)

where αad
n,r is defined in (1.13), the infima are taken over all possible bipartite states ψRA with an

arbitrary ancilla system R; in particular, (1.16) holds. Moreover, the same identities hold when the
infima are restricted to pure states ψRA with R being a fixed copy of A.

Remark 3 When D(N‖R) = +∞, the above statement is empty. On the other hand, when
D(N‖R) is finite, then Theorem 2 also holds for 0 < r ≤ D(N‖R) in a trivial way. Indeed, by
Theorem 1, if r ≤ D(N‖R) then the operational quantities in (2.9) are equal to 0, and so is (2.12),
since D̃α(N‖R) ≥ D(N‖R) for every α > 1, according to Lemma 10.

2.3 Connection to quantum illumination

Our results have implications for the theory of quantum illumination, which we discuss briefly here.
Building on prior work in [47, 48], Lloyd et al. show how the use of entangled photons can provide
a significant improvement over unentangled light when detecting the presence of an object [34, 50].
The goal in quantum illumination is to determine whether a distant object is present or not by
employing quantum light along with a quantum detection strategy. It is sensible and traditional
[34, 50] to take the object not being present as the null hypothesis and the object being present as
the alternative hypothesis.

In the usual scenario, the transmitter and receiver are in the same location. The protocol
begins with the transmitter sending a signal mode that is entangled with an idler mode still in
the possession of the transmitter. Let |ψ〉SI denote the state of the signal and idler mode. If the
object is not present (the null hypothesis), then the signal mode is lost and is replaced by a thermal
state θS , so that the joint state becomes θS⊗ψI . Clearly, this is an instance of the replacer channel.
If the object is present (the alternative hypothesis), then the signal beam is reflected off the object
and returns to the transmitter. The resulting state is described by (NS ⊗ idI) (ψSI), where NS
describes the noise characteristics of the reflection channel. This protocol is performed n times
with the receiver storing either the state [θS ⊗ ψI ]⊗n or [(NS ⊗ idI) (ψSI)]

⊗n. The receiver finally
performs a collective measurement on all of the systems in order to decide whether the object is
present. Thus, we have a quantum channel discrimination problem in which one seeks to distinguish
between a replacer channel and a noisy channel. However, our results do not apply to this setting
if one takes the null and alternative hypotheses in the natural way suggested above.

An alternative scenario is that in which the transmitter and receiver are in different locations.
It is technologically more challenging to take advantage of quantum illumination in this setting,
due to the fact that the transmitter and receiver need to share and store entanglement over a
potentially large distance. Nevertheless, this is the setting to which our results apply. Given that
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the null hypothesis in this setting corresponds to the object not being present, the channel applied
to the transmitted mode will be N , which characterizes the optical loss in the transmission. Since
the alternative hypothesis in this setting corresponds to the object being present and such an object
will reflect the light incident on it, the signal beam does not make it to the receiving end and the
receiver instead detects thermal noise, so that the channel applied to the transmitted mode is the
replacer channel R. Thus, the Type I and Type II errors for this setting correspond to our setting
described in the previous sections.

Implicit in prior analyses on quantum illumination is the assumption that a tensor-power, non-
adaptive strategy is optimal. Our results support this assumption (at least in the particular setting
of asymmetric hypothesis testing described above) by showing that no asymptotic advantage is
provided by instead using an adaptive strategy for quantum channel discrimination.1 It remains
an open question to determine if a tensor-power, non-adaptive strategy is optimal in the symmetric
hypothesis testing setting considered in [34, 50].

2.4 Strong converse theorem for quantum-feedback-assisted communication

There is a well-known connection between hypothesis testing and channel coding, first recognized
by Blahut [8], and this connection also holds for quantum channels. The direct part of the channel
coding theorem (i.e., the Holevo-Schumacher-Westmoreland theorem) [26, 49] can be obtained from
the direct part of Stein’s lemma, as shown in [23, 42].

One consequence of Theorem 1 is a strong converse theorem for the quantum-feedback-assisted
classical capacity of a quantum channel. In prior work, Bowen proved that a noiseless quantum
feedback channel does not increase the entanglement-assisted capacity [6, 7, 28] of a noisy channel,
by proving a weak converse for its quantum-feedback-assisted capacity [9]. That is, Bowen proved
that the quantum-feedback-assisted capacity of a channel N is equal to its entanglement-assisted
capacity, denoted by

I(N ) ≡ sup
ψRA

inf
σB
D (NA→B(ψRA)‖ψR ⊗ σB) . (2.13)

However, Bowen’s result did not exclude the possibility of a trade-off between the communication
rate and the error probability; our strong converse theorem shows that no such trade-off is possible
in the asymptotic limit of many channel uses. A strong converse theorem in this context states
that for any coding scheme, which seeks to transmit at a rate strictly higher than the capacity of
the channel, the probability of successful decoding decays to zero exponentially fast in the number
of channel uses. So our result sharpens Bowen’s [9], strengthens the main result of [18], and
generalizes [45, Theorem 7] to the quantum case. The approach taken is inspired by that used
by Nagaoka [38], who derived the strong converse theorem for any memoryless quantum channel
from the monotonicity of the Rényi relative entropies. Polyanskiy and Verdú [45] later generalised
this approach to show how a bound on the success probability could be derived from any relative-
entropy-like quantity that satisfies certain natural properties. This approach has already been used
to prove several strong converse theorems for quantum channels [31, 56, 18, 53]; here we shall use
the sandwiched Rényi relative entropy [37, 56].

1Strictly speaking, the results in our paper apply to finite-dimensional systems, whereas the quantum illumination
protocols apply to infinite-dimensional, albeit finite-energy, systems. Given that our analysis never has any dimension
dependence, this suggests that it should be possible to extend our results to infinite-dimensional systems with energy
constraints.
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With the proof of Theorem 1 in hand, it requires only a little extra effort to prove a strong
converse for the quantum-feedback-assisted capacity of a quantum channel (the capacity when
unlimited use of a noiseless quantum feedback channel from receiver to sender is allowed).

Theorem 4 Let psucc denote the success probability of any rate R quantum-feedback-assisted com-
munication code for a channel N that uses it n ≥ 1 times. The following bound holds

psucc ≤ 2−n supα>1(α−1
α )(R−Ĩα(N )), (2.14)

where Ĩα (N ) is the sandwiched Rényi mutual information of the channel N , defined in (3.27). As a
consequence of this bound, we can conclude a strong converse: for any sequence of quantum-feedback-
assisted codes for a channel N with rate R > I(N ), the success probability decays exponentially to
zero as n→∞.

Note that the second statement in Theorem 4 has in fact already been proved in [5, Section IV-
E1], via the channel simulation technique. However, our new contribution here is to provide the
bound in (2.14) on the strong converse exponent, in addition to providing an arguably more direct
proof of the theorem. It remains an open question to determine if the strong converse exponent
bound in (2.14) is optimal (i.e., if there exists a quantum-feedback-assisted communication scheme
achieving this exponent in the strong converse regime).

3 Rényi relative entropies

For two Hilbert spaces H,K, let B(H,K) denote the set of bounded linear operators from H to K.
When K = H, we use the shorthand notation B(H). We restrict ourselves to finite-dimensional
Hilbert spaces throughout this paper. The Schatten α-norm of an operator X is defined as

‖X‖α ≡ Tr{(
√
X∗X)α}1/α, (3.1)

for α ≥ 1. Let B (H)+ denote the subset of positive semi-definite operators; we often simply say
that an operator is “positive” if it is positive semi-definite. We also write X ≥ 0 if X ∈ B (H)+.
An operator ρ is in the set S (H) of density operators if ρ ∈ B (H)+ and Tr {ρ} = 1. We denote by
B(H)++ and S(H)++ the set of positive definite operators and states on H, respectively.

The tensor product of two Hilbert spaces HA and HB is denoted by HA⊗HB. Given a bipartite
density operator ρAB ∈ S(HA⊗HB), we write ρA = TrB {ρAB} for the reduced density operator on
system A. A linear map NA→B : B (HA)→ B (HB) is positive if NA→B (σA) ∈ B (HB)+ whenever
σA ∈ B (HA)+. Let idA denote the identity map acting on a system A. A linear map NA→B
is completely positive if the map idR ⊗ NA→B is positive for a reference system R of arbitrary
size. A linear map NA→B is trace-preserving if Tr {NA→B (τA)} = Tr {τA} for all input operators
τA ∈ B (HA). If a linear map is completely positive and trace-preserving (CPTP), we say that it
is a quantum channel or quantum operation. A positive operator-valued measure (POVM) is a set
{Λm} of positive operators such that

∑
m Λm = I.

The quantum Rényi relative entropy of order α ∈ [0, 1) ∪ (1,∞) between two non-zero positive
semidefinite operators ρ and σ is given by [43]

Dα(ρ‖σ) ≡
{ 1

α−1 log 1
Tr ρTr

{
ρασ1−α} if ρ 6⊥ σ and (supp (ρ) ⊆ supp (σ) or α ∈ [0, 1) )

+∞ otherwise.
, (3.2)
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with the support conditions established in [51]. Here and henceforth we use the convention that
powers of a positive semidefinite operator X are taken only on its support, i.e., if x1, . . . , xr are the
strictly positive eigenvalues of X with corresponding spectral projections P1, . . . , Pr, then Xt ≡∑r

i=1 x
t
iPi for every t ∈ R. In particular, X0 denotes the projection onto the support of X.

Recently, the sandwiched Rényi relative entropy [37, 56] was introduced. It is defined for
α ∈ (0, 1) ∪ (1,∞) as follows:

D̃α(ρ‖σ) ≡

 1
α−1 log

[
1

Tr ρTr
{(
σ(1−α)/2αρσ(1−α)/2α

)α}] if ρ 6⊥ σ and (supp (ρ) ⊆ supp (σ)
or α ∈ (0, 1) )

+∞ otherwise
.

(3.3)
It is known [35, 36] that for any fixed ρ, σ,

α 7→ Dα(ρ‖σ) and α 7→ D̃α(ρ‖σ) are monotone increasing, (3.4)

and in the limit α→ 1, they both give the relative entropy [37, 56]:

lim
α→1

D̃α(ρ‖σ) = lim
α→1

Dα(ρ‖σ) = D(ρ‖σ) ≡ D1(ρ‖σ). (3.5)

The Rényi relative entropies have several desirable properties which justify viewing them as dis-
tinguishability measures. In particular, D̃α (ρ‖σ) satisfies the following data-processing inequality
for α ∈ [1/2, 1) ∪ (1,∞) [17, 4, 37, 56, 36]:

D̃α(ρ‖σ) ≥ D̃α (N (ρ) ‖N (σ)) , (3.6)

where N is a CPTP map. A similar inequality holds for Dα(ρ‖σ) when α ∈ [0, 1) ∪ (1, 2] [43].
The following simple lemma relates the hypothesis testing relative entropy to the sandwiched

Rényi relative entropy. The idea for its proof goes back to [25, 38, 41].

Lemma 5 Let ρ, σ ∈ S (H) be such that supp ρ ⊆ suppσ. For any Q ∈ B(H) such that 0 ≤ Q ≤ I,
and any α > 1,

− log TrQσ ≤ D̃α(ρ‖σ)− α

α− 1
log TrQρ. (3.7)

In particular, for any α > 1 and any ε ∈ (0, 1),

Dε
H(ρ‖σ) ≤ D̃α(ρ‖σ) +

α

α− 1
log

(
1

1− ε

)
. (3.8)

Proof. Let p ≡ Tr {Qρ} and q ≡ Tr {Qσ}. By the monotonicity of the sandwiched Rényi relative
entropy for α > 1, we find that

D̃α(ρ‖σ) ≥ D̃α ((p, 1− p) ‖ (q, 1− q)) (3.9)

=
1

α− 1
log
[
pαq1−α + (1− p)α (1− q)1−α

]
(3.10)

≥ 1

α− 1
log
[
pαq1−α] (3.11)

=
α

α− 1
log p− log q, (3.12)
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from which (3.7) follows. The statement in (3.8) follows by optimizing over all Q such that
Tr {Qρ} ≥ 1− ε.

Recall the definition of the channel Rényi relative entropies in (1.19)–(1.20). Let A′ be a copy
of A, let e1, . . . , ed be an orthonormal basis in A, and define |ΓA′A〉 ≡ |

∑d
i=1 ei ⊗ ei〉, ΓA′A ≡

|ΓA′A〉〈ΓA′A|. Then we have the following:

Lemma 6 Let A′ be a copy of A. For any system R and any pure state ψRA, there exists a state
ρA′ on A′ such that for any two channels N1,N2 from A to some system B, and any α > 0, we
have

D̃α(N1‖N2) = D̃α

(
N1

(
ρ

1/2
A′ |ΓA′A〉〈ΓA′A|ρ

1/2
A′

)∥∥∥N2

(
ρ

1/2
A′ |ΓA′A〉〈ΓA′A|ρ

1/2
A′

))
(3.13)

= D̃α

(
ρ

1/2
A′ N1(ΓA′A)ρ

1/2
A′

∥∥∥ρ1/2
A′ N2(ΓA′A)ρ

1/2
A′

)
. (3.14)

Moreover, the same identities hold for Dα.

We give a proof of Lemma 6 in Appendix A.

Lemma 7 Let N1,N2 be quantum channels from system A to system B. For every α ∈ [1/2,+∞),
the channel Rényi relative entropies can be written as

D̃α(N1‖N2) = sup
{
D̃α(N1(ψRA)‖N2(ψRA)) : ψRA state on RA, where R is arbitrary

}
(3.15)

= sup
{
D̃α(N1(ψRA)‖N2(ψRA)) : ψRA pure state on RA, where R ∼= A

}
(3.16)

= sup
{
D̃α

(
ρ

1/2
A′ N1(ΓA′A)ρ

1/2
A′

∥∥ρ1/2
A′ N2(ΓA′A)ρ

1/2
A′

)
: ρA′ state on A′, where A′ ∼= A

}
.

(3.17)

Analogous formulas hold for Dα(N1‖N2) in (1.19) and α ∈ [0, 2].

Proof. According to [17], D̃α is jointly quasi-convex for α ∈ [1/2,+∞), and by [1, 33, 43], the
same holds for Dα and α ∈ [0, 2]. Hence, the optimizations in (1.19)–(1.20) can be restricted to
pure states, and the rest of the proof is immediate from Lemma 6.

When the second channel is a replacer channel, the sandwiched channel Rényi relative entropy
has a special representation as explained below. This will be key to our approach of obtaining
strong converse bounds.

A quantum channel NA→B induces a map from L1(B(HA)) → Lα(B(HB)), where Lα(B(H)))
denotes the space B(H) together with the Schatten α-norm ‖X‖α. The space Lα(B(H)) has a
canonical operator space structure [44], a certain sequence of norms on the spaces Mn(Lα(B(H))):

‖Y ‖Mn(Lα(B(H))) ≡ sup
A,B∈Mn

‖(A⊗ IH)Y (B ⊗ IH)‖α
‖A‖2α‖B‖2α

. (3.18)

One can then define the completely bounded (1→ α)-norm of N : L1(B(HA))→ Lα(B(HB)) as

sup
n
‖idn⊗N‖1→α ≡ sup

n
sup
Y

‖(idn⊗N )(Y )‖Mn(Lα(B(HB)))

‖Y ‖Mn(L1(B(HA)))
. (3.19)

12



For our purposes, it will be more useful to write the completely bounded (1 → α)-norm of a
quantum channel N as

‖N‖CB,1→α = sup
X∈B(HA′⊗HA)+

‖(id⊗N )(X)‖α
‖TrA{X}‖α

= sup
|ψ〉∈HA′⊗HA

‖(id⊗N )(|ψ〉〈ψ|)‖α
‖TrA{|ψ〉〈ψ|}‖α

, (3.20)

where A′ is any system with dimension at least that of A; in particular, A′ can be taken to be
a fixed copy of A. This follows from [13] and Eq. (8) of [29], where these norms have already
been considered in the context of quantum information theory. The above representation of the
completely bounded (1→ α)-norm will prove useful later due to the following connection between
the sandwiched Rényi relative entropy and the Schatten α-norm:

D̃α(ρ‖σ) =
α

α− 1
log
∥∥∥σ 1−α

2α ρσ
1−α
2α

∥∥∥
α
, (3.21)

where ρ and σ are density operators. Throughout, ΘX denotes the map

ΘX(Y ) ≡ X1/2Y X1/2, (3.22)

where X is a positive operator.
The following lemma is from [18]; for readers’ convenience, we give a detailed proof in Ap-

pendix A.

Lemma 8 Let N = NA→B be a quantum channel and RσB (·) ≡ Tr{·}σB be a replacer channel
with some fixed state σB. For every α ∈ (1,+∞),

D̃α(N‖RσB ) = sup
ψRA

D̃α (NA→B(ψRA)‖ψR ⊗ σB) =
α

α− 1
log

∥∥∥∥Θ
σ

1−α
α

B

◦ N
∥∥∥∥

CB,1→α
. (3.23)

We will also use the following Rényi mutual information quantities, originally defined in [56, 4,
18]. For every bipartite state ρRB, and every α ∈ (0,+∞), let

Iα(R;B)ρ ≡ inf
σB∈S(HB)

Dα(ρRB‖ρR ⊗ σB), (3.24)

Ĩα(R;B)ρ ≡ inf
σB∈S(HB)

D̃α(ρRB‖ρR ⊗ σB). (3.25)

These quantities appeared in the direct and strong converse exponents of [24]. We also define the
channel Rényi mutual informations. For any CPTP map NA→B : B(HA)→ B(HB), let

Iα(N ) ≡ sup
ψRA∈S(HRA)

Iα(R;B)ω, (3.26)

Ĩα(N ) ≡ sup
ψRA∈S(HRA)

Ĩα(R;B)ω, (3.27)

where ωRB ≡ NA→B(ψRA).

Lemma 9 Let A′ be a copy of A. Then

Iα(N ) = sup
ρR∈S(HR)

Iα(R;B)ω, α ∈ [0, 2], (3.28)

Ĩα(N ) = sup
ρR∈S(HR)

Iα(R;B)ω, α ∈ [1/2,+∞), (3.29)

where ωRB ≡ NA→B
(
ρ

1/2
R |ΓRA〉〈ΓRA|ρ

1/2
R

)
.
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Proof. According to [17], D̃α is monotone non-increasing under partial trace for α ∈ [1/2,+∞),
and by [43], the same holds for Dα and α ∈ [0, 2]. Hence, by taking purifications of ψRA in (3.26)
and (3.27), the values can only increase. Thus, the optimizations in (3.26) and (3.27) can be
restricted to pure states. Using Lemma 6 with N1 = N and N2 = RσB , the assertions follow.

Note that for α = 1, the above quantities are defined using the relative entropy D = D1, and
we have I1(R;B)ρ = Ĩ1(R;B)ρ ≡ I(R;B)ρ = D(ρRB‖ρR⊗ ρB), and I1(N ) = Ĩ1(N ) = I(N ), where
I(N ) is defined in (2.13). We will need the following extensions of (3.4)–(3.5):

Lemma 10 (i) For any two channels N1, N2, Dα(N1‖N2) and D̃α(N1‖N2) are monotone in-
creasing in α, and

lim
α→1

D̃α(N1‖N2) = lim
α→1

Dα(N1‖N2) = D(N1‖N2). (3.30)

(ii) For every bipartite state ρRB, Iα(R;B)ρ and Ĩα(R;B)ρ are monotone increasing in α, and

lim
α→1

Iα(R;B)ρ = lim
α→1

Ĩα(R;B)ρ = I(R;B)ρ. (3.31)

(iii) For every channel N , Iα(N ) and Ĩα(N ) are monotone increasing in α, and

lim
α→1

Iα(N ) = lim
α→1

Ĩα(N ) = I(N ). (3.32)

Proof. See Appendix A.

The channel Rényi mutual informations also have the following geometric interpretation, as the
“distance” of the channel from the set of all replacer channels, where the “distance” is measured
by the channel Rényi divergences. See Section 4.3 for the relevance of this geometric picture.

Lemma 11 For every channel NA→B, and every α ∈ [1/2,+∞),

Ĩα(N ) = inf
σB∈S(HB)

D̃α(N‖RσB ). (3.33)

Proof. See Appendix A.

4 The strong converse theorem for adaptive quantum channel dis-
crimination

4.1 Quantum Stein’s lemma for adaptive channel discrimination

This section provides a proof of Theorem 1. In the setting of this theorem, we seek to distinguish
between an arbitrary quantum channel N and a “replacer” channel R that maps all states ωA to
a fixed state σ, i.e., R(ωA) = Tr{ωA}σB. We allow the preparation of an arbitrary input state
ρR1A1 = τR1A1 , where R1 is an ancillary register. The ith use of a channel accepts the register Ai
as input and produces the register Bi as output. After each invocation of the channel, an adaptive
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operation A(i) is applied to the registers Ri and Bi, yielding a quantum state ρRi+1Ai+1 or τRi+1Ai+1

in registers Ri+1Ai+1, depending on whether the channel is equal to N or R. That is,

ρRi+1Ai+1 ≡ A
(i)
RiBi→Ri+1Ai+1

(ρRiBi), ρRiBi ≡ NAi→Bi(ρRiAi) (4.1)

τRi+1Ai+1 ≡ A
(i)
RiBi→Ri+1Ai+1

(τRiBi), τRiBi ≡ RAi→Bi(τRiAi) (4.2)

for every 1 ≤ i < n on the left-hand side, and for every 1 ≤ i ≤ n on the right-hand side. Finally,
a quantum measurement {QRnBn , IRnBn − QRnBn} is performed on the systems RnBn to decide
which channel was applied. Such a general protocol is depicted in Figures 1 and 2. Note that since
R is a replacer channel, we can write

τRiBi = τRi ⊗ σBi , 1 ≤ i ≤ n. (4.3)

Recall the hypothesis testing relative entropy Dε
H(ρ‖σ) from (1.6) and the “adaptive hypothesis

testing relative entropy”Dε
H,ad(N⊗n‖R⊗n) from (2.1). So Dε

H(NAn→Bn(ρRnAn)‖τRn⊗σBn) denotes
the hypothesis testing relative entropy in which there is a fixed initial state ρR1A1 and fixed adaptive

maps {A(i)
RiBi→Ri+1Ai+1

}i∈{1,...,n−1}.
Clearly, we have that

lim inf
n→∞

1

n
Dε
H,ad(N⊗n‖R⊗n) ≥ sup

ψRA

D(NA→B(ψRA)‖ψR ⊗ σB), (4.4)

by employing a tensor-power strategy with no adaptation (i.e., we can simply invoke the direct part
of the usual quantum Stein’s lemma). In more detail, the initial state of this strategy is the optimal

ψRA in (4.4) and each map A(i)
RiBi→Ri+1Ai+1

simply prepares the state ψRA at the input of the i+1st

channel while acting as the identity map on the i states (NA→B(ψRA))⊗i or (RA→B(ψRA))⊗i (so
the strategy is non-adaptive). After the nth channel has acted, the discriminator performs a binary
collective measurement on the state (NA→B(ψRA))⊗n or (RA→B(ψRA))⊗n to decide which channel
was applied. So the lower bound in (4.4) follows directly from the state discrimination result
in (1.7).

The more interesting part is to show that this strategy is asymptotically optimal, i.e., that

lim sup
n→∞

1

n
Dε
H,ad(N⊗n‖R⊗n) ≤ sup

ψRA

D(NA→B(ψRA)‖ψR ⊗ σB). (4.5)

Since this inequality is trivial when supψRA D(NA→B(ψRA)‖ψR ⊗ σB) = +∞, we assume the con-
trary for the rest. We start by bounding the adaptive hypothesis testing relative entropy in terms
of the sandwiched Rényi relative entropy.

Throughout this section, the parameter α is assumed to be strictly larger than one and we fix
some constant ε ∈ (0, 1). We fix some input state ρR1A1 and an adaptive strategy (A(1), · · · ,A(n−1)).
Lemma 5 implies that

Dε
H(NAn→Bn(ρRnAn)‖τRn ⊗ σBn) ≤ D̃α(NAn→Bn(ρRnAn)‖τRn ⊗ σBn)

+
α

α− 1
log

(
1

1− ε

)
. (4.6)
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We now focus on the D̃α term. Let Θω denote the completely positive map Θω(X) = ω1/2Xω1/2

that conjugates X by a positive operator ω1/2. From (3.21), it follows that

D̃α(NAn→Bn(ρRnAn)‖τRn ⊗ σBn)

=
α

α− 1
log
∥∥∥(τRn ⊗ σBn)

1−α
2α NAn→Bn(ρRnAn) (τRn ⊗ σBn)

1−α
2α

∥∥∥
α

(4.7)

=
α

α− 1
log

∥∥∥∥∥
(

Θ
σ

1−α
α

Bn

◦ NAn→Bn

)(
τ

1−α
2α
Rn

ρRnAnτ
1−α
2α
Rn

)∥∥∥∥∥
α

. (4.8)

Let us focus on the expression inside the logarithm:∥∥∥∥∥
(

Θ
σ

1−α
α

Bn

◦ NAn→Bn

)(
τ

1−α
2α
Rn

ρRnAnτ
1−α
2α
Rn

)∥∥∥∥∥
α

=

∥∥∥∥∥
(

Θ
σ

1−α
α

Bn

◦ NAn→Bn

)(
τ

1−α
2α
Rn

ρRnAnτ
1−α
2α
Rn

)∥∥∥∥∥
α∥∥∥∥τ 1−α

2α
Rn

ρRnτ
1−α
2α
Rn

∥∥∥∥
α

·
∥∥∥∥τ 1−α

2α
Rn

ρRnτ
1−α
2α
Rn

∥∥∥∥
α

(4.9)

≤

 sup
XRnAn≥0

∥∥∥∥∥
(

Θ
σ

1−α
α

Bn

◦ NAn→Bn

)
(XRnAn)

∥∥∥∥∥
α

‖XRn‖α

 ·
∥∥∥∥τ 1−α

2α
Rn

ρRnτ
1−α
2α
Rn

∥∥∥∥
α

(4.10)

=

∥∥∥∥Θ
σ

1−α
α

B

◦ N
∥∥∥∥

CB,1→α
·
∥∥∥∥τ 1−α

2α
Rn

ρRnτ
1−α
2α
Rn

∥∥∥∥
α

. (4.11)

The equality in (4.11) follows from the characterisation of the completely bounded (1 → α)-norm
given in (3.20). Rewriting this inequality in terms of the sandwiched Rényi relative entropy, we
have that

D̃α(NAn→Bn(ρRnAn)‖τRn ⊗ σBn)

≤ α

α− 1
log

∥∥∥∥Θ
σ

1−α
α

B

◦ N
∥∥∥∥

CB,1→α
+

α

α− 1
log

∥∥∥∥τ 1−α
2α
Rn

ρRnτ
1−α
2α
Rn

∥∥∥∥
α

(4.12)

=
α

α− 1
log

∥∥∥∥Θ
σ

1−α
α

B

◦ N
∥∥∥∥

CB,1→α
+ D̃α(ρRn‖τRn) (4.13)

≤ α

α− 1
log

∥∥∥∥Θ
σ

1−α
α

B

◦ N
∥∥∥∥

CB,1→α
+ D̃α(NAn−1→Bn−1(ρRn−1An−1)‖τRn−1 ⊗ σBn−1), (4.14)

where the last inequality follows from monotonicity of the sandwiched Rényi relative entropy under

the map TrAn ◦A
(n−1)
Rn−1Bn−1→RnAn .

Note that we are now left with the quantity D̃α(NAn−1→Bn−1(ρRn−1An−1)‖τRn−1⊗σBn−1), which
corresponds to applying the first n− 1 rounds of the adaptive discrimination process. We can thus

16



iterate the above argument through all n steps of the adaptive strategy. Noting that ρR1 = τR1 ,
and thus D̃α (ρR1‖τR1) = 0, we obtain the bound

D̃α (NAn→Bn(ρRnAn)‖τRn ⊗ σBn) ≤ n · α

α− 1
log

∥∥∥∥Θ
σ

1−α
α

B

◦ N
∥∥∥∥

CB,1→α
(4.15)

= nD̃α(N‖R), (4.16)

where (4.16) follows from Lemma 8. This bound is independent of any particular adaptive strategy
used for discriminating these channels. Thus, we can conclude that

1

n
Dε
H,ad

(
N⊗n

∥∥R⊗n) ≤ D̃α(N‖R) +
1

n
· α

α− 1
log

(
1

1− ε

)
. (4.17)

Taking the limsup as n→∞, we get the ε-independent bound

lim sup
n→∞

1

n
Dε
H,ad

(
N⊗n

∥∥R⊗n) ≤ D̃α(N‖R). (4.18)

Taking now the infimum over α > 1, the assertion follows due to Lemma 10.

4.2 The strong converse exponent for adaptive channel discrimination

Having just proven a quantum Stein’s lemma for adaptive channel discrimination, it is then natural
to study the trade-off between error probabilities, when we impose the condition that the Type II
error probability has exponential decay rate r for

r > sup
ψRA

D(NA→B(ψRA)‖ψR ⊗ σB). (4.19)

One expects the Type I error to tend to one exponentially quickly. Building on the above results, we
identify the strong converse exponent for the channel discrimination problem (where, as before, we
assume that the alternative hypothesis is a replacer channel). Our result generalizes the quantum
state discrimination result from [36, Theorem IV.10]. The notation is the same as in the previous
section; in particular, ρRnBn and τRnBn are as in (4.1) and (4.2), respectively. Recall the definitions
of sc(r) and sc(r) from (2.6)–(2.7), and the definition of αAn,r from (1.13). We will need the following
lemma:

Lemma 12 Let N be a quantum channel from system A to system B, and σB ∈ S(HB). The
following are equivalent:

(i) For every k ∈ N, every system R, and every ψRAk ∈ S(HRAk), suppN⊗k(ψRAk) ⊆ suppψR⊗
σ⊗kB .

(ii) For every ρA ∈ S(HA), suppN (ρA) ⊆ suppσB.

(iii) D̃α(N‖RσB ) < +∞ for all α ≥ 1.

(iv) D̃α(N‖RσB ) < +∞ for some α ≥ 1.
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Proof. (i)=⇒(ii) is trivial (by taking HR = C and k = 1). By Lemma 7,

D̃α(N‖RσB ) = sup
ρA′∈S(HA′ )

D̃α

(
ρ

1/2
A′ N (ΓA′A)ρ

1/2
A′

∥∥ρA′ ⊗ σB) .
(ii)=⇒(i) because suppN⊗k(ψRAk) ⊆ suppψR ⊗

⊗k
i=1N (ψAi) ⊆ suppψR ⊗ σ⊗kB , which follows

by iterating the general inclusion suppωCD ⊆ suppωC ⊗ ωD (see, e.g., [46, Appendix B.4]) and

applying (ii). If (ii) is satisfied then ρA′ 7→ D̃α

(
ρ

1/2
A′ N (ΓA′A)ρ

1/2
A′

∥∥ρA′ ⊗ σB) is a continuous finite-

valued function on the compact set S(HA′), and hence its supremum is finite, proving (iii). The
implication (iii)=⇒(iv) is trivial. Finally, (iv)=⇒(ii) by applying the definition of D̃α.

Proof of Theorem 2. The statement is empty when D(N‖R) = +∞, and hence for the rest we
assume the contrary.

We begin by proving the optimality part

sc(r) ≥ lim inf
n→+∞

− 1

n
log(1− αad

n,r) ≥ sup
α>1

inf
ψRA

α− 1

α

[
r − D̃α(NA→B(ψRA)‖ψR ⊗ σB)

]
. (4.20)

Note that if Sn, n ∈ N, is a sequence of adaptive strategies such that lim infn→∞− 1
n log βn(Sn) >

r then for all large enough n, βn(Sn) ≤ 2−nr, and thus 1−αn(Sn) ≤ 1−αad
n,r, which yields the first

inequality in (4.20).
To prove the second inequality in (4.20), consider the output states ρRnBn , τRnBn , and the test

QRnBn , at the end of the adaptive discrimination strategy. By Lemma 5 and (4.16), we get

1

n
log Tr {QRnBnρRnBn} ≤

α− 1

α

[
1

n
log Tr {QRnBnτRnBn}+ sup

ψRA

D̃α(N (ψRA)‖R(ψRA))

]
. (4.21)

Taking the supremum of both sides of (4.21) over all strategies such that the Type II error is at
most 2−nr, we obtain

1

n
log(1− αad

n,r) ≤
α− 1

α

[
−r + sup

ψRA

D̃α(N (ψRA)‖R(ψRA))

]
, (4.22)

which yields the second inequality in (4.20).
We now establish the achievability part

lim sup
n→+∞

− 1

n
(1− αad

n,r) ≤ sc(r) ≤ sup
α>1

inf
ψRA

α− 1

α

[
r − D̃α(NA→B(ψRA)‖ψR ⊗ σB)

]
. (4.23)

The first inequality follows the same way as the first inequality in (4.20). Let R be an arbitrary
system. According to Theorem IV.10 and Remark IV.11 in [36], for every state ψRA ∈ S(HR⊗HA)
and every r′ > 0, there exists a sequence of tests QRnBn ,n ≥ 1, such that

lim sup
n→+∞

1

n
log Tr

{
QRnBnR(ψRA)⊗n

}
≤ −r′, and (4.24)

lim inf
n→+∞

1

n
log Tr

{
QRnBnN (ψRA)⊗n

}
≥ −H∗r′(N (ψRA)‖R(ψRA)). (4.25)
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Thus,
sc(r) ≤ inf

r′>r
H∗r′(N (ψRA)‖R(ψRA)). (4.26)

From the definition (1.10) of the Hoeffding anti-divergence, it is clear that r 7→ H∗r (N (ψRA)‖R(ψRA))
is a monotone increasing convex function on (0,+∞). Moreover, Lemma IV.9 in [36] implies that
H∗r (N (ψRA)‖R(ψRA)) is finite for every r > 0. Thus, r 7→ H∗r (N (ψRA)‖R(ψRA)) is continuous on
(0,+∞), and (4.26) yields

sc(r) ≤ H∗r (N (ψRA)‖R(ψRA)). (4.27)

Since this is true for every ψRA, we finally get

sc(r) ≤ inf
ψRA

sup
α>1

α− 1

α

[
r − D̃α(N (ψRA)‖R(ψRA))

]
. (4.28)

The last step is to show that the RHS of (4.20) and (4.28) are equal to each other. First, note
that the RHS of (4.20) can be written as

sup
α>1

inf
ρA′

α− 1

α

[
r − D̃α

(
ρ

1/2
A′ N1(ΓA′A)ρ

1/2
A′

∥∥ρA′ ⊗ σB)] ,
where the infimum is taken over S(HA′) with A′ ∼= A, due to Lemma 7. Moreover, the RHS of
(4.28) can be trivially upper bounded by

inf
ρA′

sup
α>1

α− 1

α

[
r − D̃α

(
ρ

1/2
A′ N1(ΓA′A)ρ

1/2
A′

∥∥ρA′ ⊗ σB)]
(see the proof of Lemma 7 in Appendix A). Next, define

F (α, ρA′) ≡ (α− 1)D̃α

(
ρ

1/2
A′ N1(ΓA′A)ρ

1/2
A′

∥∥ρA′ ⊗ σB) (4.29)

for α > 1 and ρA′ ∈ S(HA′). Introducing the new variable u ≡ α−1
α , we have to show that

sup
0<u<1

inf
ρA′

f(u, ρA′) = inf
ρA′

sup
0<u<1

f(u, ρA′), (4.30)

where

f(u, ρA′) ≡ ur − F̃ (u, ρA′), F̃ (u, ρA′) ≡ (1− u)F

(
1

1− u
, ρA′

)
. (4.31)

By Lemmas 3 and 4 in [18], ρA′ 7→ F (u, ρA′) is concave, and hence ρA′ 7→ f(u, ρA′) is convex, for
any fixed u ∈ (0, 1). On the other hand, u 7→ F (u, ρA′) is convex by Corollary 3.11 in [36], and
Lemma 13 below yields that u 7→ F̃ (u, ρA′) is also convex, which in turn implies the concavity
of u 7→ f(u, ρA′) for any fixed ρA′ . By assumption, D(N‖R) < +∞, and taking into account
Lemma 12, it is easy to see that ρA′ 7→ f(u, ρA′) is continuous for any u ∈ (0, 1). Since the state
space of HA is compact, the Kneser-Fan minimax theorem [30, 16] yields (4.30).

Lemma 13 Let f : (0, 1)→ R be a convex function. Then

f̃ : u 7→ (1− u)f

(
1

1− u

)
is convex as well.
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Proof. Since f is convex, it can be written as the supremum of affine functions, i.e., f(x) =
supi{aix+ bi} for some ai, bi ∈ R, and thus

f̃(u) = (1− u) sup
i

{
ai

1

1− u
+ bi

}
= sup

i
{ai + bi(1− u)} .

As a supremum of affine functions, f̃ is convex.

Remark 14 It is not too difficult to see that Theorem 1 can be reformulated the following way:

[Direct part] For every r < D(N‖R), there exists a sequence of adaptive strategies such that the
type I error goes to 0 and the type II error decays exponentially with a rate at least r.

[Strong converse part] For every r > D(N‖R), and any sequence of adaptive strategies such that
the type II error decays exponentially with a rate at least r, the type I error goes to 1.

As we have seen, the direct part is an immediate consequence of Stein’s lemma for state dis-
crimination. For the proof of the strong converse part and for the proof of the optimality part of
Theorem 2, we followed the same argument of first using the monotonicity of the Rényi relative en-
tropies under measurements and then applying (4.15). In fact, one could first prove the optimality
part of Theorem 2 and obtain the optimality part of Theorem 1 from it in the limit r ↘ D(N‖R).
Indeed, Lemma 10 implies that for any r > D(N‖R), there exists an α > 1 such that r > D̃α(N‖R),
and hence the RHS of (4.20) is strictly positive, from which the strong converse part of the channel
Stein’s lemma is immediate.

4.3 Related results

Hayashi and Tomamichel recently published their independently obtained results about a hypoth-
esis testing scenario somewhat similar to ours [24]. Both our paper and theirs generalise the task
of binary state discrimination but in different and not directly comparable directions. They con-
sider the problem of composite hypothesis testing, where the null hypothesis is the presence of a
fixed bipartite state and the alternative hypothesis is the presence of a product state that shares
one marginal with the null hypothesis. Considered as a channel discrimination problem, the null
hypothesis is that the i.i.d. channel N⊗n1 is applied to the A systems of the input, where the input
state is restricted to be a fixed tensor-power state of the form ψ⊗nRA. The alternative hypothesis is
that a general “worst-case” replacer channel is applied to the A systems, which leads to an output
ψ⊗nR ⊗ σBn , where σBn could be any state on the B systems. Not only do they allow for this more
general alternative hypothesis, but they also determine both the direct and the strong converse
exponents in their scenario. On the other hand, one has to note that when the above result is
considered as a channel discrimination problem, allowing only the tensor powers of one fixed state
as an input is extremely restrictive. In contrast, our results do allow for more general input states
and for the adaptive strategies that distinguish the problem of quantum channel discrimination
from binary state discrimination.

While the results of the two papers go in quite different directions, there is also a natural
combination of them, which enables us to obtain a Stein’s lemma with strong converse for the
following channel discrimination problem with composite alternative hypothesis. For every n ∈ N,
the null hypothesis is that the channel is N⊗n, where N is a fixed channel, and the alternative
hypothesis is that the channel belongs to the set R(n) ≡ {Rσn : σn ∈ Σn}, where

{σ⊗n : σ ∈ S(HB)} ⊆ Σn ⊆ S(H⊗nB ). (4.32)

20



For Stein’s lemma, one is interested in the asymptotics of the optimal Type II error

βxε ≡ βxε (N⊗n‖R(n)) ≡ inf

{
sup
σn∈Σn

βn(Sn|σn) : αn(Sn) ≤ ε
}
, (4.33)

where the infimum is over all strategies in the class x with Type I error below ε. Combining
Theorem 11 in [24] and Theorem 1 in this paper, we obtain the following:

Theorem 15 In the above setting, for every ε ∈ (0, 1),

lim
n→+∞

− 1

n
log βad

ε (N⊗n‖R(n)) = lim
n→+∞

− 1

n
log βpr

ε (N⊗n‖R(n)) = inf
σB∈S(HB)

D(N‖RσB ) (4.34)

= I(N ), (4.35)

where D(N‖RσB ) is the channel relative entropy (1.14), and I(N ) is the channel mutual informa-
tion (2.13).

Proof. Just as in (4.45)–(4.48) (see below), we have

βad
ε ≤ βpr

ε = inf
ψRA

inf
Qn

{
sup
σn∈Σn

Tr
{
Qn(ψ⊗nR ⊗ σn)

}
: Tr

{
(In −Qn) (NA→B(ψRA))⊗n

}
≤ ε
}

(4.36)

≤ inf
Qn

{
sup
σn∈Σn

Tr
{
Qn(ψ⊗nR ⊗ σn)

}
: Tr

{
(In −Qn) (NA→B(ψRA))⊗n

}
≤ ε
}

(4.37)

≡ βε(ψRA), (4.38)

where Qn runs over all Qn ∈ B(H⊗nRA)+ such that Qn ≤ In, and the second inequality holds for
every ψRA. By [24, Theorem 11], for any ψRA and any rate r, there exists a sequence of binary
measurements (Qn, In −Qn), for which

sup
σn∈S(H⊗nB )

Tr
{
Qn(ψ⊗nR ⊗ σn)

}
≤ 2−nr, (4.39)

lim sup
n→+∞

1

n
log Tr

{
(In −Qn) (NA→B(ψRA))⊗n

}
= − sup

α∈(0,1)

α− 1

α

[
r − Iα(R;B)N (ψ)

]
. (4.40)

By Lemma 10, the RHS of (4.40) is strictly negative for every r < I(R;B)N (ψ), and hence

lim sup
n→+∞

1

n
log βε(ψRA) ≤ −I(R;B)N (ψ). (4.41)

When combined with (4.38), this yields

lim sup
n→+∞

1

n
log βad

ε ≤ lim sup
n→+∞

1

n
log βpr

ε ≤ inf
ψRA
−I(R;B)N (ψ) = −I(N ). (4.42)

Suppose now that

lim inf
n→+∞

1

n
log βad

ε < −r (4.43)
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for some r ∈ R. For every σ ∈ S(HB), βad
ε = βad

ε (N⊗n‖R(n)) ≥ βad
ε (N⊗n‖R⊗nσ ). Hence the

assumption yields that lim infn→+∞
1
n log βad

ε (N⊗n‖R⊗nσ ) < −r, and by Theorem 1 this is only
possible if r ≤ D(N‖Rσ). Since this is true for every σ ∈ S(HB), we finally get that r ≤
infσ∈S(HB)D(N‖Rσ) = I(N ), completing the proof of (4.34).

The equality of (4.35) and (4.34) is due to Lemma 11.

It is now natural to ask whether the exact strong converse exponent can be determined for this
problem, analogously to Theorem 2. Below we give lower and upper bounds for the strong converse
exponent. We conjecture that these bounds in fact coincide, and thus give the exact strong converse
exponent; indeed, this could be proved if one could justify interchanging the order of infima and
suprema in (4.52) and (4.56) below.

The problem can be formulated as follows. For any adaptive discrimination strategy Sn, and
any σn ∈ S(H⊗nB ), let αn(Sn) and βn(Sn|σn) be the Type I and Type II error probabilities for
discriminating between N⊗n and Rσn , as given in (1.11). We consider the optimal Type I error

αxn,r ≡ αx2−nr(N
⊗n‖R(n)) ≡ inf

{
αn(Sn) : sup

σn∈Σn

βn(Sn|σn) ≤ 2−nr
}
, (4.44)

where x denotes the set of allowed discrimination strategies and the optimisation is over all strategies
in the class x. As before, we take x = pr and x = ad, for product and adaptive strategies,
respectively. We have

αpr
n,r = inf

ψRA
inf
Qn

{
Tr
{

(In −Qn) (NA→B(ψRA))⊗n
}

: sup
σn∈Σn

Tr
{
Qn(ψ⊗nR ⊗ σn)

}
≤ 2−nr

}
(4.45)

≤ inf
ψRA

inf
Qn

{
Tr
{

(In −Qn) (NA→B(ψRA))⊗n
}

: sup
σn∈S(H⊗n)

Tr
{
Qn(ψ⊗nR ⊗ σn)

}
≤ 2−nr

}
(4.46)

≤ inf
Qn

{
Tr
{

(In −Qn) (NA→B(ψRA))⊗n
}

: sup
σn∈S(H⊗n)

Tr
{
Qn(ψ⊗nR ⊗ σn)

}
≤ 2−nr

}
(4.47)

≡ αn,r(ψRA), (4.48)

where Qn runs over all Qn ∈ B(H⊗nRA)+ such that Qn ≤ In, and the second inequality holds for
every ψRA. Applying now the results of [24], we get that

lim sup
n→+∞

− 1

n
log(1− αad

n,r) ≤ lim sup
n→+∞

− 1

n
log(1− αpr

n,r) (4.49)

≤ inf
ψRA

lim sup
n→+∞

− 1

n
log(1− αn,r(ψRA)) (4.50)

= inf
ψRA

sup
α>1

α− 1

α

[
r − inf

σ∈S(HB)
D̃α(NA→B(ψRA)‖ψR ⊗ σ)

]
(4.51)

= inf
ψRA

sup
α>1

sup
σ∈S(HB)

α− 1

α

[
r − D̃α(NA→B(ψRA)‖ψR ⊗ σ)

]
, (4.52)

where (4.51) is due to [24, Theorem 13]. On the other hand,

αad
n,r ≥ inf

{
αn(Sn) : βn(Sn|σ⊗n) ≤ 2−nr

}
= αad

2−nr(N
⊗n‖R⊗nσ ), σ ∈ S(HB), (4.53)
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and hence

lim inf
n→+∞

− 1

n
log(1− αad

n,r) ≥ sup
σ∈S(HB)

lim inf
n→+∞

− 1

n
log(1− αad

2−nr(N
⊗n‖R⊗nσ ) (4.54)

= sup
σ∈S(HB)

sup
α>1

inf
ψRA

α− 1

α

[
r − D̃α(NA→B(ψRA)‖ψR ⊗ σ)

]
(4.55)

= sup
σ∈S(HB)

inf
ψRA

sup
α>1

α− 1

α

[
r − D̃α(NA→B(ψRA)‖ψR ⊗ σ)

]
(4.56)

where the two equalities are due to Theorem 2. If one had joint concavity in the variables α > 1
and σ, then one could interchange the optima and show that (4.52) and (4.56) are equal to each
other, obtaining strong converse exponents for this channel discrimination problem. However, it
remains unclear to us if the joint concavity holds or more generally if the exchange is possible.

Remark 16 Theorem 15 gives an operational interpretation to the channel mutual information
I(N ), and its geometric representation given in Lemma 11. If (4.52) and (4.56) could be shown
to be equal, that would give an analogous operational interpretation to the channel Rényi mutual
informations Ĩα(N ) and their geometric representation in Lemma 11, for every α > 1.

5 Strong converse for quantum-feedback-assisted classical com-
munication

In this section, we give a detailed proof of Theorem 4, which identifies a strong converse exponent
for quantum-feedback-assisted communication and states that a strong converse theorem holds for
the quantum-feedback-assisted classical capacity of a quantum channel.

In an n-round feedback-assisted protocol Pn, Alice and Bob initially share an entangled state on
Alice’s system X0 and Bob’s system B′0. If Alice wants to transmit message m ∈ {1, . . . ,Mn}, where
Mn ∈ N is the number of messages, she applies a quantum channel E1

m with output system A′1A1 to
her part of the entangled state; the result is a state ρmA′1A1B′0

= τmA′1A1B′0
on systems A′1A1B

′
0, where

A1 is sent over the channel to Bob, with an output in system B1, while A′1 is kept at Alice’s side for
possible later use. After this, Bob may apply a quantum channel D1 on B1B

′
0 with an output on

X1B
′
1, of which system X1 contains the feedback information, that is sent back to Alice, while B′1 is

kept at Bob’s side for possible later use. This procedure is repeated n times, as depicted in Figure 3
(with n = 3). At each round, an encoding channel E im : A′i−1Xi−1 → A′iAi corresponding to the
same fixed message m is applied, but the E im may be different channels for different i’s. At the end
of the protocol, the Dn channel is a POVM on BnB

′
n−1 with outcomes in {1, . . . ,Mn}, specified

by the POVM elements {Dm
BnB′n−1

}Mn
m=1. In the last round, A′n can be taken one-dimensional, since

whatever information may be stored there does not influence the outcome of the final measurement
on Bob’s systems. We assume for simplicity that the feedback channel is noiseless, although it is
not necessary to do so; indeed, we are looking for an upper bound on the success probability, and
noisy feedback can only decrease the success probability.

For every stage of the communication process, let ρm with the appropriate labels denote the state
obtained from ρmA′1A1B′0

by the action of all channels E im,N i,Di up to that stage; e.g., ρmA′1B1B′0
=

NA1→B1(ρmA′1A1B′0
), etc. Similarly, let τm with the appropriate labels denote the state obtained from

τmA′1A1B′0
up to a certain stage of the process, where all uses of N are replaced by Rσ for some fixed
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Figure 3: A general quantum feedback-assisted communication protocol for the channel N .

Figure 4: A general quantum feedback-assisted communication protocol, with a replacer channel
instead of the channel N .

state σ; see Figure 4. Moreover, we introduce an auxiliary system R with an orthonormal basis
{|m〉R}Mn

m=1, and define

ρRL ≡
1

Mn

Mn∑
m=1

|m〉〈m|R ⊗ ρmL , τRL ≡
1

Mn

Mn∑
m=1

|m〉〈m|R ⊗ τmL , (5.1)

where L is any set of indices that can occur at a certain stage of the communication process, and

TRBnB′n−1
≡

Mn∑
m=1

|m〉〈m|R ⊗Dm
BnB′n−1

, (5.2)

such that 0 ≤ TRBnB′n−1
≤ IRBnB′n−1

. For every 1 ≤ i ≤ n, we define E i : RA′i−1Xi−1 → RA′iAi as

E i
(

Mn∑
m=1

|m〉〈m|R ⊗ ψA′i−1Xi−1

)
≡

Mn∑
m=1

|m〉〈m|R ⊗ E im(ψA′i−1Xi−1
). (5.3)

If the outcome of the final measurement Dn is m′ then Bob concludes that the message m′ was
sent. The success probability psucc(Pn) of the protocol is given by

psucc(Pn) ≡ 1

Mn

Mn∑
m=1

Tr
{
Dm
BnB′n−1

ρmBnB′n−1

}
= Tr

{
TRBnB′n−1

ρRBnB′n−1

}
. (5.4)

Note that for every round k, τmBkB′k−1
is independent of m, and we have

τRBkB′k−1
= τR ⊗ σBk ⊗ τB′k−1

, where τR =
1

Mn
IR. (5.5)
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This is because all information about the identity of the message is kept at Alice’s side all through
the protocol, as one can easily see in Figure 4. Hence,

Tr
{
TRBnB′n−1

τRBnB′n−1

}
=

1

Mn

Mn∑
m=1

Tr
{
Dm
BnB′n−1

(σBn ⊗ τB′n−1
)
}

=
1

Mn
. (5.6)

Now we can apply Nagaoka’s method [38], and use the monotonicity of D̃α to get

D̃α(ρRBnB′n−1
‖τRBnB′n−1

) ≥ 1

α− 1
log

[
psucc(Pn)α

(
1

Mn

)1−α
]

(5.7)

=
α

α− 1
log psucc(Pn) + logMn. (5.8)

We will use the same iterative method as in Section 4.1 to complete the proof of Theorem 4.
For every k > 1,

D̃α(ρRA′kBkB
′
k−1
‖τRA′kBkB′k−1

) (5.9)

= D̃α(NAk→Bk(ρRA′kAkB
′
k−1

)‖τRA′kB′k−1
⊗ σBk) (5.10)

=
α

α− 1
log

∥∥∥∥∥
(

Θ
σ

1−α
α

Bk

◦ NAk→Bk

)(
τ

1−α
2α

RA′kB
′
k−1

ρRA′kAkB
′
k−1

τ
1−α
2α

RA′kB
′
k−1

)∥∥∥∥∥
α

(5.11)

≤ α

α− 1
log sup

XRA′
k
AkB

′
k−1
≥0

∥∥∥∥∥
(

Θ
σ

1−α
α

Bk

◦ NAk→Bk

)
XRA′kAkB

′
k−1

∥∥∥∥∥
α∥∥∥XRA′kB

′
k−1

∥∥∥
α

∥∥∥∥τ 1−α
2α

RA′kB
′
k−1

ρRA′kB
′
k−1

τ
1−α
2α

RA′kB
′
k−1

∥∥∥∥
α

(5.12)

=
α

α− 1
log

∥∥∥∥∥Θ
σ

1−α
α

Bk

◦ NAk→Bk

∥∥∥∥∥
CB,1→α

+ D̃α(ρRA′kB
′
k−1
‖τRA′kB′k−1

). (5.13)

Now, if k = 1 then ρRA′kB
′
k−1

= τRA′kB
′
k−1

by definition, and the last term above is zero. Otherwise

we can upper bound the last term above as

D̃α(ρRA′kB
′
k−1
‖τRA′kB′k−1

) ≤ D̃α(ρRA′k−1Bk−1B
′
k−2
‖τRA′k−1Bk−1B

′
k−2

), (5.14)

where the inequality is due to the monotonicity of D̃α under TrAk ◦Ek ◦ Dk−1.
Using the above steps iteratively, we finally get

α

α− 1
log psucc(Pn) + logMn ≤ D̃α(ρRBnB′n−1

‖τRBnB′n−1
) (5.15)

≤ n α

α− 1
log
∥∥∥Θ

σ
1−α
2α
◦ N

∥∥∥
CB,1→α

(5.16)

= n sup
ψÂA

D̃α(NA→B(ψÂA)‖ψÂ ⊗ σB), (5.17)

where the last identity is due to (3.23), and the supremum is over all pure states on ÂA, where Â
is a copy of A. Since this is true for every σB ∈ S(HB), we get

α

α− 1

1

n
log psucc(Pn) +

1

n
logMn ≤ inf

σB∈S(HB)
sup
ψÂA

D̃α

(
NA→B(ψÂA)‖ψÂ ⊗ σB

)
= Ĩα(N ). (5.18)
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Hence, if Pn is a feedback-assisted coding scheme such that 1
n logMn ≥ R then

1

n
log psucc(Pn) ≤ − sup

α>1

α− 1

α

(
R− Ĩα(N )

)
, (5.19)

where we used that (5.18) holds for every α > 1. This proves (2.14) of Theorem 4.
By (5.19), the success probability goes to zero exponentially fast for any rate R > Rmin ≡

infα>1 Ĩα(N ). By the monotonicity of the Rényi relative entropies in α, infα>1 Ĩα(N ) = limα↘1 Ĩα(N ),
and the latter is equal to I1(N ) = I(N ), due to Lemma 10. This proves the last assertion of The-
orem 4.

6 Conclusion

This paper establishes a quantum Stein’s lemma and identifies the strong converse exponent when
discriminating an arbitrary channel from the replacer channel. The conclusion is that a tensor-
power, non-adaptive strategy is optimal in this regime. This result has implications in the physical
setting of quantum illumination, as described in Section 2.3. We have also proven that a strong
converse theorem holds in the setting of quantum-feedback-assisted communication, strengthen-
ing a weak converse result due to Bowen [9]. This strong converse theorem also strengthens the
main result of [18], in which a bound on the strong converse exponent was established for the
entanglement-assisted communication setting. We show here that this same bound holds in the
more general quantum-feedback-assisted communication setting. We also briefly discussed how to
combine our results in adaptive channel discrimination with those of Hayashi and Tomamichel from
[24] to obtain a quantum Stein’s lemma in a more general setting than that considered in either
paper. It remains an open question to determine the strong converse exponent for this more general
setting.

There are several other open questions to consider going forward from here. First, is the strong
converse exponent bound in (2.14) optimal? That is, does there exist an entanglement-assisted
communication protocol that achieves this bound? Encouraging for us here is that a full solution
is known for the classical version of this problem [3, 15, 12]. Next, can we say anything about
the direct domain for either the adaptive channel discrimination setting or the quantum-feedback-
assisted communication setting? Any results obtained in the latter setting would be a counterpart to
the error exponents found in [10, 27, 21] for classical communication. Finally, would the conclusions
of this paper extend to the setting of symmetric hypothesis testing? That is, would it be possible
to show that non-adaptive strategies suffice here?
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A Channel divergences

Proof of Lemma 6. We only prove the assertion for D̃α, as the proof for Dα goes the same way.
For every system R, |ΓA′A〉 defines an isomorphism between HR ⊗HA and B(HA′ ,HR), under

which X ∈ B(HA′ ,HR) corresponds to (X ⊗ IA)|ΓA′A〉 =
∑

i(Xei)⊗ ei. Given a pure state ψRA, it
can be written as ψRA = |ψRA〉〈ψRA|, with |ψRA〉 = (X ⊗ IA)|ΓA′A〉, where X ∈ B(HA′ ,HR), and
TrX∗X = 1. Thus, for any channel NA→B,

NA→B(ψRA) = N ((X ⊗ IA)ΓA′A(X∗ ⊗ IA)) = (X ⊗ IA)N (ΓA′A) (X∗ ⊗ IA). (A.1)

Let V : HA′ → HR be a partial isometry such that X = V |X|. Then it is easy to see that

D̃α (N1(ψRA)‖N2(ψRA)) (A.2)

= D̃α ((X ⊗ IA) (N1(ΓA′A)) (X∗ ⊗ IA)‖(X ⊗ IA) (N2(ΓA′A)) (X∗ ⊗ IA)) (A.3)

= D̃α ((V |X| ⊗ IA) (N1(ΓA′A)) (|X|V ∗ ⊗ IA)‖(V |X| ⊗ IA) (N2(ΓA′A)) (|X|V ∗ ⊗ IA)) (A.4)

= D̃α ((|X| ⊗ IA) (N1(ΓA′A)) (|X| ⊗ IA)‖(|X| ⊗ IA) (N2(ΓA′A)) (|X| ⊗ IA)) (A.5)

= D̃α

(
ρ

1/2
A′ N1(ΓA′A)ρ

1/2
A′ ‖ρ

1/2
A′ N2(ΓA′A)ρ

1/2
A′

)
(A.6)

= D̃α

(
N1

(
ρ

1/2
A′ |ΓA′A〉〈ΓA′A|ρ

1/2
A′

)∥∥∥N2

(
ρ

1/2
A′ |ΓA′A〉〈ΓA′A|ρ

1/2
A′

))
, (A.7)

where ρA′ := |X|2 = X∗X. The equality of the last two expressions follow from the fact that the
channels only act on the A system. This completes the proof.

Proof of Lemma 8. Let Θ denote the conjugation by σ
1−α
2α
B . With the notations in the proof of

Lemma 6, every pure state ψA′A can be written as ψA′A = |ψA′A〉〈ψA′A|, |ψA′A〉 = (X ⊗ I)|ΓA′A〉.
Then ψA′ = XX∗, and hence

D̃α (N (ψA′A)‖RσB (ψA′A)) = D̃α (NA→B(ψA′A)‖ψA′ ⊗ σB) (A.8)

=
1

α− 1
log Tr

{[
(ψA′ ⊗ σB)

1−α
2α (NA→B(ψA′A)) (ψA′ ⊗ σB)

1−α
2α

]α}
(A.9)

=
1

α− 1
log Tr

{[(
(XX∗)

1−α
2α ⊗ σ

1−α
2α
B

)
(X ⊗ I) (N (ΓA′A)) (X∗ ⊗ I)

(
(XX∗)

1−α
2α ⊗ σ

1−α
2α
B

)]α}
.

(A.10)

Let X = V |X| for some unitary V ; then XX∗ = V |X|2V ∗, and (XX∗)
1−α
2α X = V |X|

1−α
α V ∗V |X| =

V |X|
1
α . Thus

D̃α (NA→B(ψA′A)‖ψA′ ⊗ σB)

=
1

α− 1
log Tr

{[
(V ⊗ IB)

(
|X|

1
α ⊗ σ

1−α
2α
B

)
(N (ΓA′A))

(
|X|

1
α ⊗ σ

1−α
2α
B

)
(V ∗ ⊗ IB)

]α}
(A.11)

=
1

α− 1
log Tr

{[(
|X|

1
α ⊗ σ

1−α
2α
B

)
(N (ΓA′A))

(
|X|

1
α ⊗ σ

1−α
2α
B

)]α}
(A.12)

=
1

α− 1
log Tr

{[(
|X|

1
α ⊗ IB

)
(Θ ◦ N )(ΓA′A)

(
|X|

1
α ⊗ IB

)]α}
(A.13)

=
α

α− 1
log
∥∥∥(Y 1

2α ⊗ IB
)

(Θ ◦ N )(ΓA′A)
(
Y

1
2α ⊗ IB

)∥∥∥
α
, (A.14)
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where we used the notation Y ≡ X∗X ∈ B(HA′). Hence, optimizing (A.11) over all bipartite pure
states ψA′A is equivalent to optimizing (A.14) over all Y ∈ B(HA′)+ such that Tr{Y } = 1, i.e., all
states Y on HA′ . The latter yields

sup
Y ∈S(HA′ )

∥∥∥(Y 1
2α ⊗ IB

)
(Θ ◦ N )(ΓA′A)

(
Y

1
2α ⊗ IB

)∥∥∥
α

= sup
Y ∈B(HA′ )+\{0}

1

(Tr{Y })
1
α

∥∥∥(Y 1
2α ⊗ IB

)
(Θ ◦ N )(ΓA′A)

(
Y

1
2α ⊗ IB

)∥∥∥
α

(A.15)

= sup
U

sup
Y ∈B(HA′ )+\{0}

1

(Tr{Y })
1
α

∥∥∥(UY 1
2α ⊗ IB

)
(Θ ◦ N )(ΓA′A)

(
Y

1
2αU∗ ⊗ IB

)∥∥∥
α

(A.16)

= sup
Z∈B(HA′ )\{0}

1

(Tr{(Z∗Z)α})
1
α

‖(Z ⊗ IB) (Θ ◦ N )(ΓA′A) (Z∗ ⊗ IB)‖α (A.17)

= sup
|z〉∈HA′⊗HA\{0}

‖(Θ ◦ N )|z〉〈z|‖α
‖TrA′{|z〉〈z|}‖α

= ‖Θ ◦ N‖CB,1→α , (A.18)

where the first supremum in (A.16) is taken over all unitaries U on HA′ , and the second equality
in (A.18) is due to (3.20). This finishes the proof. �

To prove Lemma 10, we will need the following minimax theorem from [35, Corollary A2]:

Lemma 17 Let X be a compact topological space, Y be a subset of the real line, and let f : X×Y →
R ∪ {−∞,+∞} be a function. Assume that

(i) f(., y) is lower semicontinuous for every y ∈ Y , and

(ii) f(x, .) is monotonic increasing for every x ∈ X, or f(x, .) is monotonic decreasing for every
x ∈ X.

Then

inf
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

inf
x∈X

f(x, y). (A.19)

It is easy to see that for any fixed ρ, σ, ε 7→ Dα(ρ‖σ+ εI) and ε 7→ D̃α(ρ‖σ+ εI) are monotone
decreasing on (0,+∞), and

Dα(ρ‖σ) = sup
ε>0

Dα(ρ‖σ + εI), D̃α(ρ‖σ) = sup
ε>0

D̃α(ρ‖σ + εI); (A.20)

for these latter relations see, e.g. [35] and [37]. Since for any fixed ε > 0, (ρ, σ) 7→ Dα(ρ‖σ + εI)
and (ρ, σ) 7→ D̃α(ρ‖σ + εI) are continuous, we get that

(ρ, σ) 7→ Dα(ρ‖σ) and (ρ, σ) 7→ D̃α(ρ‖σ) are lower semicontinuous. (A.21)

Now we are ready to prove Lemma 10.

Proof of Lemma 10. The assertions about monotonicity are obvious from the definitions and
(3.4).
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(i) We only prove the assertion for D̃α, as the proof for Dα goes exactly the same way. Let
N1,N2 : B(HA)→ B(HB) be channels. By the monotonicity (3.4), we have

lim
α↗1

D̃α(N1‖N2) = sup
α∈(0,1)

D̃α(N1‖N2) (A.22)

= sup
α∈(0,1)

sup
ψRA

D̃α(N1(ψRA)‖N2(ψRA)) (A.23)

= sup
ψRA

sup
α∈(0,1)

D̃α(N1(ψRA)‖N2(ψRA)) (A.24)

= sup
ψRA

D(N1(ψRA)‖N2(ψRA)) (A.25)

= D(N1‖N2). (A.26)

Note that for any α > 1, D̃α(N1‖N2) = +∞ ⇐⇒ D(N1‖N2) = +∞, and hence for the rest
we assume that all these quantities are finite, since otherwise limα↘1 D̃α(N1‖N2) = D(N1‖N2) is
trivial. Let S denote the set of pure states on HA′A, where A′ is a copy of A; then S is a compact
set, and ψ 7→ D̃α(N1(ψ)‖N2(ψ)) is lower semicontinuous on S by (A.21), while for a fixed ψ ∈ S,
α 7→ D̃α(N1(ψ)‖N2(ψ)) is monotone increasing (3.4). Using now Lemma 17, we get

lim
α↘1

D̃α(N1‖N2) = inf
α>1

D̃α(N1‖N2) (A.27)

= inf
α>1

sup
ψ∈S

D̃α(N1(ψRA)‖N2(ψRA)) (A.28)

= sup
ψ∈S

inf
α>1

D̃α(N1(ψRA)‖N2(ψRA)) (A.29)

= sup
ψ∈S

D(N1(ψRA)‖N2(ψRA)) (A.30)

= D(N1‖N2). (A.31)

(ii) We only prove the assertion for Iα(R;B)ρ, as the proof for Ĩα(R;B)ρ goes exactly the same
way. First, we have

lim
α↘1

Iα(R;B)ρ = inf
α>1

Iα(R;B)ρ = inf
α>1

inf
σB
Dα(ρRB‖ρR ⊗ σB) (A.32)

= inf
σB

inf
α>1

Dα(ρRB‖ρR ⊗ σB) (A.33)

= inf
σB
D(ρRB‖ρR ⊗ σB) = I(R;B)ρ. (A.34)

Next, note that by (A.21), D(ρRB‖ρR ⊗ σB) is lower semicontinuous in σB on the compact set
S(HB), and it is monotone increasing in α. Hence, by Lemma 17,

lim
α↗1

Iα(R;B)ρ = sup
α∈(0,1)

Iα(R;B)ρ = sup
α∈(0,1)

inf
σB
Dα(ρRB‖ρR ⊗ σB) (A.35)

= inf
σB

sup
α∈(0,1)

Dα(ρRB‖ρR ⊗ σB) (A.36)

= inf
σB
D(ρRB‖ρR ⊗ σB) = I(R;B)ρ. (A.37)
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(iii) We only prove the assertion for Ĩα(N ), as the proof for Iα(N ) goes exactly the same way.
First,

lim
α↗1

Ĩα(N ) = sup
α∈(0,1)

Ĩα(N ) = sup
α∈(0,1)

sup
ψRA

Ĩα(R;B)N (ψ) = sup
ψRA

sup
α∈(0,1)

Ĩα(R;B)N (ψ) (A.38)

= sup
ψRA

Ĩ(R;B)N (ψ) = I(N ). (A.39)

Next, let Â be a fixed copy of A. Note that ψÂA 7→ infσB∈S(H)++
D̃α

(
NA→B(ψÂA)‖ψÂ ⊗ σB

)
=

Ĩα(Â;B)N (ψ) is the infimum of continuous functions, and hence it is upper semi-continuous on the
compact set of pure states on HÂA. On the other hand, it is monotone in α by (3.4), and hence we
can use Lemma 17 and (A.32)–(A.34) to obtain

lim
α↘1

Ĩα(N ) = inf
α>1

Ĩα(N ) = inf
α>1

sup
ψÂA

Ĩα(R;B)N (ψ) = sup
ψÂA

inf
α>1

Ĩα(R;B)N (ψ) = sup
ψÂA

I(R;B)N (ψ) = I(N ).

(A.40)

�

Proof of Lemma 11. Let Â be a copy of A. By Lemma 9, we have

Ĩα(N ) = sup
ρÂ∈S(HÂ)

inf
σB∈S(HB)++

D̃α

(
ρ

1/2

Â
NA→B(ΓÂA)ρ

1/2

Â

∥∥∥ρÂ ⊗ σB) . (A.41)

Let ΓN ≡ NA→B(ΓÂA). According to [18, Lemma 3], the Rényi divergence in (A.41) can be written
as

1

α− 1
log s(α)Q̃α(ρÂ, σB), (A.42)

where

Q̃α(ρÂ, σB) = s(α) Tr

{(
[ΓN ]1/2

(
ρ

1
α

Â
⊗ σ

1−α
α

B

)
[ΓN ]1/2

)α}
, (A.43)

and s(α) := −1 for α ∈ (0, 1), and s(α) := 1 for α > 1. For α ∈ [1/2, 1), x 7→ x
1−α
α is operator

concave on R+, and X 7→ Tr{Xα} is monotone increasing and concave on positive semidefinite
operators. Thus Q̃α(ρÂ, σB) is convex in σB. Note that ρÂ 7→ ρÂ ⊗ IB is affine, and applying

Theorem 1.1 in [11], with p := 1
α , q = 1, B = IÂ ⊗ σ

1−α
2α
B [ΓN ]1/2, to the quantity (1.3) in [11], we

get that Q̃α(ρÂ, σB) is concave in ρÂ. Similarly, for α > 1, x 7→ x
1−α
α is operator convex on R++,

and X 7→ Tr{Xα} is monotone increasing and convex on positive semidefinite operators. Thus
Q̃α(ρÂ, σB) is convex in σB, and again by Theorem 1.1 in [11], it is concave in ρÂ. Hence, we can
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use the Kneser-Fan minimax theorem [16, 30] to obtain

Ĩα(N ) = sup
ρÂ∈S(HÂ)

inf
σB∈S(HB)++

1

α− 1
log s(α)Q̃α(ρÂ, σB) (A.44)

=
1

α− 1
log s(α) sup

ρÂ∈S(HÂ)
inf

σB∈S(HB)++

Q̃α(ρÂ, σB) (A.45)

=
1

α− 1
log s(α) inf

σB∈S(HB)++

sup
ρÂ∈S(HÂ)

Q̃α(ρÂ, σB) (A.46)

= inf
σB∈S(HB)++

sup
ρÂ∈S(HÂ)

1

α− 1
log s(α)Q̃α(ρÂ, σB) (A.47)

= inf
σB∈S(HB)

sup
ρÂ∈S(HÂ)

1

α− 1
log s(α)Q̃α(ρÂ, σB) (A.48)

= inf
σB∈S(HB)

D̃α(N‖RσB ) (A.49)

for every α ∈ [1/2,+∞) \ {1}. The case α = 1 follows by

I(N ) = I1(N ) = inf
α>1

Ĩα(N ) = inf
α>1

inf
σB∈S(HB)

D̃α(N‖RσB ) = inf
σB∈S(HB)

inf
α>1

D̃α(N‖RσB ) (A.50)

= inf
σB∈S(HB)

D̃(N‖RσB ), (A.51)

where the second and the last identities are due to Lemma 10. �

References

[1] Tsuyoshi Ando. Convexity of certain maps on positive definite matrices and applications to
Hadamard products. Linear Algebra and its Applications, 26:203–241, 1979.

[2] K. M. R. Audenaert, M. Nussbaum, A. Szkola, and F. Verstraete. Asymptotic error rates in
quantum hypothesis testing. Communications in Mathematical Physics, 279:251–283, 2008.
arXiv:0708.4282.

[3] U. Augustin. Noisy channels. Habilitation thesis, Universitat Erlangen-Nurnberg, West Ger-
many, September 1978.
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