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ABSTRACT
The existence of multiple subclasses of type Ia supernovae (SNeIa) has been the sub-
ject of great debate in the last decade. One major challenge inevitably met when
trying to infer the existence of one or more subclasses is the time consuming, and
subjective, process of subclass definition. In this work, we show how machine learn-
ing tools facilitate identification of subtypes of SNe Ia through the establishment of
a hierarchical group structure in the continuous space of spectral diversity formed
by these objects. Using Deep Learning, we were capable of performing such identifi-
cation in a 4 dimensional feature space (+1 for time evolution), while the standard
Principal Component Analysis barely achieves similar results using 15 principal com-
ponents. This is evidence that the progenitor system and the explosion mechanism can
be described by a small number of initial physical parameters. As a proof of concept,
we show that our results are in close agreement with a previously suggested classi-
fication scheme and that our proposed method can grasp the main spectral features
behind the definition of such subtypes. This allows the confirmation of the veloc-
ity of lines as a first order effect in the determination of SN Ia subtypes, followed
by 91bg-like events. Given the expected data deluge in the forthcoming years, our
proposed approach is essential to allow a quick and statistically coherent identifica-
tion of SNeIa subtypes (and outliers). All tools used in this work were made publicly
available in the Python package DRACULA (Dimensionality Reduction And Cluster-
ing for Unsupervised Learning in Astronomy) and can be found within COINtoolbox
(https://github.com/COINtoolbox/DRACULA).

Key words: supernovae: general – methods: machine learning, data analysis, statis-
tical

? E-mail: m.sasdelli@ljmu.ac.uk (MS)

1 INTRODUCTION

Type Ia supernovae (SNe Ia) are extremely bright objects,
exhibiting a good degree of spectroscopic and photomet-
ric homogeneity. Among other characteristics, the fact that
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2 Sasdelli et al.

their luminosity correlates with a set of distance indepen-
dent quantities constructed using multi-band light curves
is particularly relevant. These correlations enable the use
of SNe Ia as standard candles, which combined with their
strong luminosity, allows us to probe large cosmological dis-
tances. This played a major contribution to the discovery of
the accelerating expansion of the Universe in the late 20th

century (Riess et al. 1998; Perlmutter et al. 1999).

Although most SNe Ia are spectroscopically quite uni-
form, there is a significant fraction of spectroscopically pecu-
liar objects (Li et al. 2001b), some of which are very different
from the average SN Ia. At this moment, it is still unclear if
there exists different subclasses in the space of SN Ia spectra
that are truly distinct (e.g Benetti et al. 2005) or if subtypes
defined in the literature are just extremes of a continuum
distribution of properties (e.g Blondin et al. 2012).

Parallel to such considerations derived from the analysis
of observed spectra, theoretical developments also investi-
gate multiple hypotheses to explain SN Ia diversity. A large
number of possible progenitor systems and explosion mech-
anisms have been proposed (e.g. Hillebrandt et al. 2013)
leading to an agreement that the origin of the majority of
SNe Ia lies in the thermonuclear runaway of a CO white
dwarf in a binary system. Nevertheless, the nature of the
companion and the explosion mechanism are still fiercely
debated. Proving the existence of well-defined and distinct
subclasses would strongly support the hypothesis of differ-
ent progenitor systems or, qualitatively, different explosion
mechanisms.

To identify which spectral feature(s) might carry the
signature of physically distinct subclasses (if they exist), a
number of different classification schemes have been pro-
posed. SNe Ia have been classified into High and Low Ve-
locity Gradient based on the time gradient of the velocity
of the Si ii 6355Å line (Benetti et al. 2005). They have also
been classified into Shallow and Broad-Silicon classes ac-
cording to the Equivalent Width (EW) of the Si ii 6355Å
line, referred to as Cool when the ratio between the Si ii
5972Å and the Si ii 6355Å is above a certain value at B-
band maximum (Branch et al. 2009). Many of these classi-
fication schemes do not exhibit a clear transition between
its subsets when applied to a large number of observations
(Blondin et al. 2012), suggesting that SNe Ia characteristics
are more a continuum of features than a discretely separable
parameter space. However, most of these schemes are based
on a very small subset of spectral features. The situation is
likely to be quite different if all the information contained
in the spectra is taken into account. Additionally, SNe Ia
are classified in spectroscopic subclasses after the first pe-
culiar object of a certain kind (e.g. Li et al. 2001b). For
example, 91T-like when they are similar to SN 1991T be-
fore maximum, 91bg-like when they are similar to the faint
SN 1991bg, and 02cx-like when they are similar to the faint
and hot SN 2002cx. This is a non-quantitative criterion that
complicates the study of subtype definition (see appendix A
for a detailed description of the jargon used throughout this
paper, including the difference between classes and types).

One main driving force behind the development of clas-
sification schemes based on individual spectral features was
the difficulty in obtaining a large number of high quality
observations. Having only a few observed objects of each
category, the only viable approach was to minutely study

the observations at hand, extrapolating their characteristics
to the entire SN Ia population. Nowadays, the situation is
rapidly changing. In the last few years, data released from a
number of observation campaigns increased the number of
available spectra by at least an order of magnitude (Blondin
et al. 2012; Silverman et al. 2012; Folatelli et al. 2013). In
this new paradigm, we face a different challenge: to develop
methods and tools capable of dealing with a large number
of spectra at once. The overwhelming volume of data defies
dependence on human inspection of individual spectra; the
process must be automatized.

Fortunately, similar problems are at the core of ma-
chine learning research; such tools can be adapted to a large
variety of tasks, as has been reported in other fields (see
e.g. Crisci et al. 2012; Libbrecht & Noble 2015; Vidyasagar
2015). Following this trend, the present work is an additional
effort to popularize modern machine learning techniques
within astronomy (see Ball & Brunner 2010; Krone-Martins
et al. 2014; Ivezic et al. 2014, and references therein).

In what follows, we describe a series of machine learn-
ing tools and demonstrate how they can help automatize
the visualization and classification of a large set of SN Ia
spectra. Our goal is to provide a proof of concept, showing
that the algorithm is able to leverage the same set of spectral
features one would choose by visual recognition, opening the
path for an automatic first screening in a situation where the
number of available spectra far outnumbers the capacity of
the researcher to individually analyse them. Our approach
involves two steps: reducing the dimensionality of an ini-
tially very large space, and subsequently using unsupervised
learning (clustering) to automatically identify subtypes of
SNe Ia. On each step we use state of the art machine learn-
ing techniques, which lead to powerful insights on questions
underlying SN Ia spectral features. The tools used here are
implemented in the DRACULA Python package (Dimension-
ality Reduction And Clustering for Unsupervised Learning
in Astronomy) and are publicly available within the COIN-
toolbox1.

This paper is organized as follows: Section 2 describes
the data used for our analysis; Section 3 explains our ap-
proach to dimensionality reduction; Section 4 demonstrates
how transfer learning can be used in the context of SN Ia
spectral analysis; Section 5 shows the improvement in di-
mensionality reduction achieved by Deep Learning in com-
parison with Principal Component Analysis; Section 6 gives
a brief overview of the methods used for data visualization;
Section 7 reviews the K-Means algorithm; Section 8 goes
over our main results. Lastly, Section 9 gives summary and
discussion. In order to avoid confusion between similar ex-
pressions with distinct meanings in the machine learning
and astronomy communities, we provide a small glossary in
Appendix A with the definitions used throughout the pa-
per. Appendix B describes the DRACULA package, where our
proposed tools are implemented.

1 https://github.com/COINtoolbox
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2 DATA

We compiled a set of publicly available SN Ia spectra from
a variety of sources: the Berkeley Supernova Program (Sil-
verman et al. 2012), the CfA spectroscopic release (Blondin
et al. 2012) and the Carnegie Supernova Project (CSP) (Fo-
latelli et al. 2013). Spectra have been collected from the
SUSPECT2 (Barbon et al. 1990; Mazzali et al. 1995; Patat
et al. 1996; Turatto et al. 1996; Gómez & López 1998; Tu-
ratto et al. 1998; Jha et al. 1999; Li et al. 1999; Cappellaro
et al. 2001; Li et al. 2001a; Salvo et al. 2001; Hamuy et al.
2002; Branch et al. 2003a; Valentini et al. 2003; Benetti et al.
2004; Garavini et al. 2004; Anupama et al. 2005; Gerardy
2005; Kotak et al. 2005; Chornock et al. 2006; Elias-Rosa
et al. 2006; Altavilla et al. 2007; Garavini et al. 2007; Ger-
ardy et al. 2007; Hicken et al. 2007; Krisciunas et al. 2007;
Leonard 2007; Pastorello et al. 2007; Phillips et al. 2007;
Stanishev et al. 2007; Matheson et al. 2008; Pignata et al.
2008; Taubenberger et al. 2008; Wang et al. 2008; Bufano
et al. 2009; Yamanaka et al. 2009; Wang et al. 2009a) and
the WISEREP (Yaron & Gal-Yam 2012) repositories. CSP
spectra are published in rest frame; the remaining spectra
were deredshifted using heliocentric redshifts from Blondin
et al. (2012).

In order to build the input data matrix, the spectra need
to be smoothed, binned in a homogeneous wavelength win-
dow, and systematics must be taken into account. Here we
follow the procedure used by Sasdelli et al. (2015), smooth-
ing the spectra through the use of the Savitzky-Golay filter
(Morrey 1968) and applying the derivative over wavelength
to the logarithm of the measured flux. The Savitzky-Golay
filter is effective in reducing a large amount of the noise
and, at the same time, preserving the shape of the features
present in the spectra. The use of derivative spectroscopy
allows us to remove the systematics due to the uncertainty
in the distance determination and in the global spectrum
calibration. Sasdelli et al. (2015) show that the intrinsic lu-
minosity information is well included in the derivative and
that there is no significant loss of information. This is con-
firmed by the study of Sasdelli et al. (2016). The correlation
between the luminosity and the spectral features is largely
due to the effect of temperature in the behaviour of the spec-
tral lines (e.g. Nugent et al. 1995; Hachinger et al. 2006).

A possible alternative to the Savitzky-Golay filter and
derivative approach is the use of a wavelet decomposition
(see e.g. Madgwick et al. 2003; Paykari et al. 2014), discard-
ing the coefficients heavily affected by reddening and noise
(Arsenijevic 2011). We plan to investigate this further in
future work.

Once the pre-processing is done, it is necessary to de-
sign the data matrix which will be given as input to the
dimensionality reduction algorithm, taking into account the
drastic changes in SN spectra with time and the non-ideal
epoch coverage. Time sampling of SN data is highly irregu-
lar, having large periods without observations, specially at
very early and very late epochs. In Sasdelli et al. (2015) this
problem was dealt with by concatenating spectra along the
same line in the data matrix, thus taking into account the
time evolution of each object. This strategy presents promis-
ing results, but generates a matrix with a large fraction of

2 http://www.nhn.ou.edu/~suspect

missing data. We propose an alternative approach that al-
lows us to exploit all available spectroscopic information (re-
gardless of the epoch of observation) to attain a stable low
dimensional space (Section 4). However, before addressing
the effectiveness of our proposal, we review main concepts
behind dimensionality reduction techniques.

3 DIMENSIONALITY REDUCTION

After the data have been pre-processed, the first step is to
transform it to a low dimensional feature space, that is a
space of parameters describing well the original input space.
We briefly describe below the two main dimensionality re-
duction algorithms used in this work: Principal Component
Analysis (PCA) and Deep Learning (DL).

3.1 Principal Component Analysis

PCA is a method designed to reduce the dimensionality of
a multivariate dataset, by projecting the data onto a lower
dimensional feature space. Given its versatility, PCA and
variations of it have been applied to a broad range of as-
tronomical studies (e.g., Yip et al. 2004a,b; Ferreras et al.
2006; Ishida & de Souza 2011; Mitra et al. 2011; Ishida et al.
2011; Graur & Maoz 2013; Ishida & de Souza 2013; Benitez-
Herrera et al. 2013; De Souza et al. 2014a,b; Sasdelli et al.
2015).

The principal components (PCs) are computed diago-
nalizing the covariance matrix (Σ2), with the eigenvectors
being the PCs and the eigenvalues indicating the fraction
of total variance explained by their corresponding PCs. The
first eigenvector (PC1 - the component associated with the
largest eigenvalue) indicates the direction of greatest vari-
ance, the second eigenvector (PC2 - component with second
largest eigenvalue) points to the second direction holding
highest variance subjected to being orthogonal to PC1, and
so on.

Mathematically, this can be described as follows: given
Γ measured features y1, . . . , yΓ, all of them column vectors
of dimension n (1 for each object in the data set), the first
PC is obtained by finding a unit vector a that maximizes
the variance, S, of the data projected onto it:

a1 = arg max
||a||=1

S2(aty1, · · · ,atyΓ), (1)

where t is the transpose operation and a1 is the direction of
the first PC and arg max

y
f(y) is the set of values of y for

which the function f(y) attains its largest value. Once we
have computed the (k − 1)th PC, the direction of the kth

component, for 1 < k 6 Γ, is given by

ak = arg max
||a||=1,a⊥a1,··· ,a⊥ak−1

S2(aty1, · · · ,atyΓ), (2)

where the condition that each PC must be orthogonal to all
previous PCs ensures a new uncorrelated basis.

It is possible to show that the above is equivalent to
computing the eigenvalues and eigenvectors of the Σ2 (Jol-
liffe 1986, chapter 1). Once the PCs are computed, one can
use the percentage of total variance encoded in the eigen-
values in order to determine the dimensionality of the new
feature space (see Section 2 of Ishida & de Souza 2011).

MNRAS 000, 1–17 (2016)
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Figure 1. A simple auto-encoder where the input X is repro-

duced in the output layer Z. The middle layer Y “compresses”
the input signal X, effectively reducing the dimensionality of the

data.

3.2 Deep Learning

In Deep Learning (DL), we take the input data x =
x1, x2, ..., xn and represent it in the form of a layer of nodes,
or neurons, where each node is a variable xi (see Fig. 1, bot-
tom layer). Additional layers of neurons above the original
input signal are built to ensure that each new layer captures
a more abstract representation of the original input signal.
In DL, each layer constructs new features by forming non-
linear combinations of the features in the layer below. This
hierarchical approach to feature construction has been effec-
tive in disentangling factors of variation in the data (Hin-
ton & Salakhutdinov 2006; Bengio et al. 2013; LeCun et al.
2015). DL has contributed to a rapid advancement in the
field of neural networks through new mechanisms to train
architectures made of many layers of intermediate neurons.

To illustrate these ideas, consider the task of image pro-
cessing. Specifically, assume we have an image with thou-
sands of pixels where we wish to recognize the object de-
picted in the image. We can represent the entire image as
a feature vector p = (p1, p2, ..., pn), where each pixel pi is a
measured feature. The resulting space is not only very large;
in addition, each pixel contains low-level information about
the main object in need of recognition. In DL we make each
pixel pi stand as one node along the first layer of the neural
network. The second layer is made of nodes computing non-
linear combinations of all nodes (pixels) below. The third
layer captures non-linear combinations of the nodes on the
second layer, and so on. Each layer captures more abstract,
global structures of the object under analysis. Starting with
low-level pixel information, upper layers can gradually cap-
ture edges, motifs, and larger structures of the main object.

While different approaches exist to deal with DL archi-
tectures, we focus our attention on the problem of dimen-
sionality reduction. In such unsupervised learning setting,
auto-encoders have played a prominent role (Vincent et al.
2008). An illustration of a simple auto-encoder is shown
in Fig. 1. The goal here is to compress the input signal

by a transformation that reduces the size of the feature
space. Specifically, the first layer corresponds to input vector
x ∈ Rn. The intermediate layer corresponds to a new vec-
tor y ∈ Rd, d < n, where each node computes a non-linear
combination of the input features. The last layer maps the
internal representation back to the original dimensionality
through a new vector z ∈ Rn, with the objective of repro-
ducing the input vector x as best as possible, x ∼ z. The
weight parameters of the auto-encoder are the weight ma-
trices W and W connecting nodes from one layer to the one
above. Weights are optimized during the training phase us-
ing the training sample. We assume weight matrices contain
both weights and bias terms (see Fig. 1). The network is
trained by adjusting the weights to minimize an error func-
tion that computes the distance between input and output:
‖ x − z ‖2. Specifically, the transformation from the first
layer to the second layer “encodes” the input signal through
a non-linear transformation:

yi = fi(x) = σ(wi
tx) (3)

where yi is one intermediate node, wi is the weight vector
(containing the bias term), and σ(u) can vary in nature, a
common choice being the sigmoid function σ(u) = 1

1+e−u .
The new vector y is then “decoded” into a new vector z that
reconstructs the input vector x:

zj = gj(y) = σ(wj
ty) (4)

While learning to reproduce an input signal may appear
as a trivial exercise, the interesting part of the auto-encoder
is that the intermediate layer (vector y) “abstracts” the rep-
resentation of the input layer during the training phase, es-
sentially compressing the input data through a combination
of non-linear representations. This is similar to the goal be-
hind PCA, except here the combination of features is non-
linear, and there is no orthogonality constraint. Each of the
intermediate nodes stands as a new variable in the reduced
dimensionality space.

Notice that the auto-encoder can be divided into two
sections. The “encoder” section generates more compact
representations (Fig. 1; layers 1 and 2), while the “decoder”
section simply unfolds the compact representation in an at-
tempt to reproduce the input signal (Fig. 1; layers 2 and
3).

3.2.1 Stacking Multiple Layers

The ideas above have been extended to “deep” architectures
with many layers of neurons. Fig. 2 shows an example of a
deep auto-encoder. Training such deep architectures can be
done iteratively by stacking several auto-encoders in such a
way that the intermediate layer of nodes becomes input to
the next auto-encoder. Alternatively we can simply build a
deep auto-encoder directly, and let the optimization phase
(gradient descent) look for the weight values that minimize
the distance between input x and output z. The net result
is a vector y (middle layer) that in effect summarizes the in-
put signal in a compact fashion. This technique was recently
used by Huertas-Company et al. (2015) in the construction
of a galaxy morphology catalogue, but its potential in dif-
ferent areas of astronomy still needs to be discovered. This

MNRAS 000, 1–17 (2016)
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Figure 2. A deep auto-encoder where intermediate layers provide

increasingly more abstract representations of the input signal.

The most abstract representation is stored in layer 4 (vector Y).

work represents the first effort to use DL techniques in the
characterization of spectral features.

It is important to emphasize that unlike the eigenvec-
tors from PCA, the elements of the middle layer within a
deep network do not follow a natural ordering. The power
of DL resides on providing a compact representation of the
initial data, preserving relevant information through multi-
ple layers of abstraction. This compact representation has
extraordinary potential in characterizing the data, as will
be made clear shortly.

4 TRANSFER LEARNING

We are interested in a data driven approach to investigate
the diversity of SNe Ia at maximum brightness. Our strategy
consists in reducing the dimensionality of the initial feature
space and subsequently applying an unsupervised learning
algorithm. However, if we follow the traditional approach of
constructing the input matrix only with spectra at maxi-
mum (or in a certain epoch bin around it), we will end up
with a very small matrix (∼150 objects). It would be diffi-
cult for any dimensionality reduction algorithm to grasp the
details of a complex space starting with such a small matrix.
Concatenating spectra according to the observed epoch bin
is a good alternative, but requires a dimensionality reduc-
tion tool armed to cope with missing data, as has already
been demonstrated in Sasdelli et al. (2015).

Here we choose to use transfer learning, a recent area in
machine learning that deals with the general problem of ex-
ploiting information from a variety of different environments
to help with learning, inference, and prediction in a new en-
vironment where training data is scarce (Quionero-Candela
et al. 2009). A simple example is spam filter detection, where
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trix containing spectra from all epochs (with transfer learning).

The horizontal axis stands for the number of features; the vertical
axis shows the deviation between real data and reconstruction.

one could aim at using the feedback (i.e., labeled data) of a
group of existing users to help generating a model for a new
user (Pan & Yang 2010).

Our data scenario fits within the scope of transfer learn-
ing. One is given spectra from the same supernova at vari-
ous epochs, which can be treated as different observations.
Despite being the electromagnetic signature of different as-
trophysical conditions, spectra from different epochs share
common properties (e.g., they all have absorption/emission
lines). Consequently, if we consider each spectrum as an in-
dependent object (a different line in the data matrix) we
can use all of them to train the deep learning network in
recognizing spectral features.

MNRAS 000, 1–17 (2016)
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Following this reasoning, our initial data matrix was
built with all available SN Ia spectra, regardless of the
epoch of the observation. This allows us to exploit all avail-
able spectra, even those with unknown epoch of observa-
tion, in the investigation of spectra properties at maximum.
Closely related strategies, with different goals, were used
by Richards et al. (2012) for semi-supervised photometric
classification of SN curves, Vilalta et al. (2013) for cepheids
classification and Kremer et al. (2015) for photometric red-
shift determination. Despite the increase in data volume, the
resulting feature space is much more stable, less affected by
the inclusion/removal of individual spectra, and provides a
safer ground for spectral feature recognition. Thus, each line
in our data matrix holds the derivative of the flux for an ob-
served spectrum between 4000 and 7000Å, sampled in bins
of 10Å. The complete matrix contains 3677 lines and 300
columns and serves as input to the dimensionality reduction
algorithm (Section 3).

Once the low dimensional space is determined, we select
only those spectra of interest (within 3 days from maximum
brightness, resulting in 486 individual spectra) for the un-
supervised learning phase. Fig. 3 illustrates how the spectra
around maximum occupy a well defined region in the prin-
cipal component parameter space. This configuration can
easily be used to study the time evolution of spectral fea-
tures, as well as to estimate the epoch of a given spectrum.
In this work, we focus on recognizing characteristics of SN Ia
spectra at maximum.

In Fig. 4, we show how this approach impacts the re-
construction power of the DL feature space. The vertical
axis represents residual variance between the reconstruction
and the original data with (black circles) and without (grey
stars) the transfer learning approach. To calculate variance,
both data sets (one with all the spectra and another contain-
ing only spectra at B-maximum) were randomly split in a
training (80%) and a test set (20%). DL was applied to both
training sets with different number of features in the central
layer. Resulting features were than used to reconstruct the
spectra in the test set and the normalized residual variances
between the predictions and the measured derivative spec-
tra in the test set were then calculated. We observe that
with transfer learning, 4 features suffice to converge to a sta-
ble fractional variance. Without transfer learning, the same
performance level cannot be achieved, even if we employ 10
features along the intermediate layer.

5 COMPARING FEATURE SPACES

In order to demonstrate how DL outperforms the standard
PCA algorithm, we provide a detailed comparison between
the two parameter spaces. Fig. 5 shows the reconstruction of
the original spectra using PCA and DL. In black we show a
few examples of SN Ia spectra at three representative epochs.
The first four spectra are at ∼ −13 days from B max. Three
spectra are close to B max and, finally, three spectra are
found in the nebular phase at ∼ +180 days from maximum
(from top left to bottom right).

Reconstructions using DL show very good agreement
with observations at all epochs due to the non-linearity of its
representations. It performs exceptionally well in the earliest
and the latest spectra and on SNe with rare spectroscopic

peculiarities such as, for example, SN 2005hk. The behaviour
of the High Velocity Feature (Mazzali et al. 2005) of the
Si ii 6355Å in the early spectra (for example SN 2002dj and
SN 2002bo) are also finely reproduced by DL when compared
to PCA. The latter is competitive only away from the early
and late epochs, and on objects that are not too peculiar. For
PCA to obtain reconstructions comparable to DL, we would
need a large number of components. From this, it is clear
that DL has an outstanding performance when compared to
PCA, even when the latter uses almost 4 times the number
of parameters.

Fig. 6 confirms this superiority quantitatively and, at
the same time, highlights still another important advantage
of the DL approach: the asymptotic behaviour of residual
variances as the number of features increases. DL greatly
outperforms PCA even when using a small number of fea-
tures. Its reconstruction capability shows steady improve-
ment until ∼ 5 features, after that it remains approximately
constant. PCA only achieves a comparable reconstruction
with ∼ 15 PCs. However, a large fraction of the variance ex-
plained by PCA can be traced to noise, and an unnecessary
large number of components overfits the data (this is repre-
sented by the constant decrease in fractional variance as a
function of the number of PCs). DL behaves robustly, less
affected by noise, and preventing overfitting (the variance
explained remains approximately constant for more than ∼4
features). This suggests that the intrinsic dimension in SN Ia
spectra is ∼ 5, leaving only 4 hidden physical parameters to
characterize the explosion (one of these dimensions is needed
to explain the time evolution of the spectrum). Similar re-
sults concerning the number of significant parameters neces-
sary to describe the spectral features of SN Ia were reported
by Sasdelli et al. (2015). This hints to the apparent simplic-
ity of the space of SN Ia spectra and should be considered
in model development process.

Once we have demonstrated the superiority of DL in re-
ducing the dimensionality of the parameter space we move to
the visualization and unsupervised clustering steps. In what
follows, all analyses where performed on the 4 dimensional
DL feature space.

6 DATA VISUALIZATION

Given that DL is a relatively new technology in machine
learning, and has no precedence in the study of SN Ia spec-
tra, we provide the reader with a couple of visualization
tools to enable analysis of this feature space. The two algo-
rithms described below are part of the field of dimensionality
reduction, but here we employ them as visualization tools.

6.1 Self-organizing maps

Self-Organizing Maps (SOM) are a special kind of artificial
neural networks, often invoked to visualize data in an un-
supervised manner. They are commonly used to find a two-
dimensional embedding of the data and have been exten-
sively employed in astronomy, e.g., in stellar spectra (Mahdi
2011), light curve classification (Brett et al. 2004), and ob-
ject selection and photometric redshift estimation (Way &
Klose 2012; Geach 2012).

MNRAS 000, 1–17 (2016)



SN Ia spectroscopic diversity with DRACULA 7

3500 4000 4500 5000 5500 6000 6500 7000

wavelength (Å)

0

1

2

3

4

5

6

7

8

9

lo
g

10
 f

lu
x
 (

a
rb

it
ra

ry
 u

n
it

s)

SN2006ax 
 0.5d

SN2005hk 
 -3.3d

SN2003du 
 -12.0d

SN2002dj 
 -12.5d

SN2003du 
 -12.7d

SN2002bo 
 -13.6d

3500 4000 4500 5000 5500 6000 6500 7000

wavelength (Å)

0

1

2

3

4

lo
g

10
 f

lu
x
 (

a
rb

it
ra

ry
 u

n
it

s)

SN1991T 
 256.4d

SN2007sr 
 189.8d

SN1990N 
 185.5d

SN2005ke 
 0.5d

measured

reconst. 4PCs

reconst. 15PCs

reconst. DL 
 4 features

Figure 5. Reconstruction of a few examples of measured SN Ia spectra (black) using Deep Learning (thin blue) and PCA using 4

(dot-dashed red) and 15 (dashed green) PCs.

0 5 10 15 20 25 30
features/PCs

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct

io
n
a
l 
v
a
ri

a
n
ce

PCA with TL

DL with TL

Figure 6. Comparison between Deep Learning and PCA in their

capacity to reconstruct the original spectra and robustness to
overfitting. Horizontal axis stands for the number of PCs/fea-

tures and vertical axis shows the deviation between real data and
reconstruction.

The main idea behind SOM is to construct a 2-
dimensional representation of the data where similar ob-
jects are placed close to each other. The algorithm can
be described as follows: consider data in Rd, and a two-

dimensional grid M = S1×S2. Initially each cell of the grid,
C ∈ M , hosts a random vector c ∈ Rd, called prototype
(these are initially random, they iteratively become more
representative of the data vectors assigned to their cell).
One then chooses, at random, one element from the data
set, x ∈ Rd, and compares it to all prototypes in the grid
using, for example, the Euclidean distance in Rd. Let p be
the prototype in the grid that is closest to xi and P ∈ M
denote the grid cell hosting p. Subsequently, p and all proto-
types q of neighbouring cells Q of P are updated according
to the following rule:

q = q + α · h(P,Q) · (x− p), (5)

where h is a neighbourhood function (typical functions are

h ≡ 1, h(P,Q) = ‖P −Q‖, or h(P,Q) = e−(
√

2σ)
−2‖P−Q‖2)

and α, named learning rate, is usually reduced during the
iterative process. Thus, prototypes of P and its neighbour-
ing cells are made “more similar” to x. Another element
from the data set, x', is then compared to this new grid
configuration. If this data vector is very similar to the first,
it is allocated in P or one of its neighbouring cells. Other-
wise, it will populate another cell, P ', defining a new locus
on the grid which will host its characteristics. The compari-
son is repeated for all objects in the data and for the entire
data set until convergence. As a result, we are left with a
2-dimensional re-organization of the initial data, where sim-
ilar objects are allocated in nearby cells, and distinct ones
occupy different extremes of the grid.
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Fig. 7 shows results after applying SOM to the 4-
dimensional DL feature space. As described in Section 4, in
this task we select only spectra close to maximum. The grid
contains 10×10 individual cells showing the mean spectra
(black line), standard deviations (pink/purple), the num-
bers of spectra allocated in each individual cell and the sub-
type of the majority of objects in each cell (when the cell
population is exactly split between subtypes both labels are
shown). We emphasize that Fig. 7 does not show the final
prototypes in each cell, but the mean of all the spectra al-
located in them. We chose this visualization because the
prototypes in our case would relate to the 4-dimensional
DL space, making it impossible to recognize spectral fea-
tures. Different spectroscopic classes are arranged over dif-
ferent parts of the grid. Normal SNe Ia such as SN 1994D
and SN 2011fe are close to the centre of the grid, the pecu-
liar and faint 91bg-like cluster on the top left and the high
velocity SNe are on the bottom left corner. We also recognize
91T-like SNe on the right side of the grid. From this configu-
ration, we can already tell that the DL feature space is able
to grasp crucial differences between different spectral fea-
tures. Literature suggests that 91T-like, High Velocity and
91bg-like SNe are the extremes of SN Ia spectral variabil-
ity, while 91bg-like SNe are possibly a more isolated group
(Cormier & Davis 2011; Blondin et al. 2012). In this con-
text, spectroscopically normal SNe Ia form the bulk of the
data set, connecting the other subtypes together through an
almost continuous change in spectral features. These find-
ings are nicely confirmed by our SOM analysis, which gives
us a glimpse of the potential of this feature space. In the
following sections, we show how this first visual analysis is
in concordance with the more quantitative results obtained
using unsupervised learning.

6.2 Isomap

Isomap belongs to a broader class of dimensionality reduc-
tion techniques known as manifold learning. While PCA
seeks to preserve the variance of the data, Isomap preserves
its intrinsic geometry (Tenenbaum et al. 2000). More pre-
cisely, it can be seen as an extension of another classical
dimensionality reduction method, called multi-dimensional
scaling (MDS), which aims at finding a low-dimensional em-
bedding of the data, such that the distance between any pair
of two points is preserved. Isomap generalizes this idea by
resorting to “geodesic manifold distances”, which are ap-
proximated via, e.g., a neighbourhood graph in which two
points (nodes) are connected if one of the points is within
the set of the K-nearest neighbours of the other one (Tenen-
baum et al. 2000). The geodesic distance, dM (i, j), between
two points i and j can be defined as the shortest path be-
tween the two points in that graph. These distances are then
used as in classical MDS, which usually resorts to the stan-
dard Euclidean distance (“straight lines”). Thus, in contrast
to MDS, Isomap can also capture non-linear manifold struc-
tures. In astronomy, it was recently applied to spectroscopic
classification by Bu et al. (2014).

In what follows, we use Isomap to provide a 2-
dimensional visualization of the 4-dimensional feature space
obtained with DL. It provides a much clearer view of the
distribution of points in the DL feature space and facilitates
a visual comparison with other classifications schemes.

7 UNSUPERVISED LEARNING

In previous sections we introduced efficient dimensionality
reduction techniques. We now turn to the last step of our en-
deavour: unsupervised learning. Our main goal is to show the
feasibility of automatically identifying subtypes of SNe Ia
with minimum assumptions about the physics and dynam-
ics of the SN mechanism. Unsupervised learning techniques
identify clusters in a data set by maximizing the similarity
among objects within the same cluster, and maximizing the
dissimilarity among objects from different clusters.

The computational complexity of a clustering algorithm
increases as the dimension of the data grows larger. This is
because added dimensions quickly increase the volume of
the feature space and the data becomes sparse; the capacity
of finding clusters then deteriorates. This effect is known as
the curse of dimensionality. DL represents our solution to
mitigate this effect.

While there are many clustering algorithms readily
available, K-Means is certainly the most popular. We have
compared different methods using simulated data and found
K-Means to exhibit good performance. We focus on this
method in the following sections.

7.1 K-means

The K-means algorithm is one of the most well-known clus-
tering techniques, yielding intuitive solutions. In its original
form (MacQueen 1967) it begins by choosing at random k
vectors of the same dimensions of the data (with k chosen
by the user). These will act as centres for potential clusters
definition. A distance (Euclidean) is then calculated between
all vectors in the data set and the centre candidates. Each
data point is assigned to the cluster represented by its clos-
est centre candidate. Once the first set of clusters is defined,
the centre candidates are updated to the centroid defined
by all the members in each cluster. The process is repeated
until the centroids are not changed due to further iterations.
In practice, this local search strategy quickly converges to a
solution (e.g., after 50 iterations).

One drawback of K-means is the need to explicitly state
the number of clusters a priori. In our case, we wish to
show that our approach is able to grasp the main spec-
tral features underlying the classification proposed by Wang
et al. (2009b) (which is composed by subtypes normal, high-
velocity, 91T-like and 91bg-like) and, as a consequence, we
will search for up to 4 clusters. A deeper analysis quantifying
the degree of cluster coherence throughout different number
of clusters will be addressed in a subsequent paper.

All the methods described above have been made avail-
able in a single toolbox that enables quick analysis of a (po-
tentially) large initial data set. We present DRACULA (Dimen-
sionality Reduction And Clustering for Unsupervised Learn-
ing in Astronomy) in detail in appendix B.

8 RESULTS

We used DRACULA to analyse the sample of SN Ia spectra
introduced in Section 2. Results shown below correspond to
the 4-dimensional DL feature space (Section 5) ran through
the K-Means algorithm. In order to compare our results with
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the classification proposed by Wang et al. (2009b), we set
K-Means to search for 4 distinct clusters (Section 7).

Fig. 8 shows the 4-dimensional DL feature space con-
figuration. In the upper panel, colours correspond to the
clusters found by K-Means; in the lower panel points are
identified according to Wang et al. (2009b) classification (the
lower panel of Fig. 8 does not show the SNe classified as “pe-
culiar” by Wang et al. (2009b) because there is not a unique
underlying spectral characteristic which defines this group).
Although the two classification schemes are not in complete
agreement, they share some basic characteristics. For exam-
ple, the scatter plot in the feature space formed by features
1 and 2 are quite similar in the upper and lower panels, in-
dicating the correspondence between group 3 (upper panel)
and 1991bg-like SNe (lower panel).

A better visualization of this feature space is achieved
by applying the isomap algorithm (Section 6.2) to the 4-
dimensional DL feature space. Fig. 9 shows the resulting
2-dimensional isomap space with the clusters found by K-
Means (left panel) and the SN Ia subtypes defined by Wang
et al. (2009b, right panel). The spectra of a few SNe lo-
cated at the transition between two subclasses are high-
lighted. This figure not only demonstrates how isomaps can
be a powerful tool in high dimensional data visualization,
but also clarifies the potential of combining DL with un-
supervised learning algorithms. Moreover, it confirms that
currently defined SNe Ia subtypes are extremes of a con-
tinuous distribution of spectral features. Many of the SNe
located between different classes have been recognized as
peculiar (e.g. SN 2006bt Foley et al. 2010), or “unusual”
(SN 1999ac Garavini et al. 2005) objects, and the classifica-
tion of SN 1999ac as a 91T-like is at least dubious (Phillips
et al. 2006). Peculiar characteristics, like a blue B−V colour
typical of 91T-like objects, are recognized even in the cases
where these transitional objects were classified as normal
(e.g. SN 1998aq Branch et al. 2003b). This is a clear evidence
of the existence of intermediary objects in the frontiers of
SNe Ia subclasses and the consequent continuum character-
istics of its spectral features space.

Our goal is to identify which spectral characteristics cor-
respond to the extremes. Fig. 10 shows the mean spectrum
of each cluster in both classification schemes. The agreement
between the mean spectra is proof that DL, when coupled
with unsupervised learning algorithms, is able to automat-
ically identify important spectral features without human
screening. The method recovers classes similar to those de-
fined by visual inspection; this can be used to optimize the
current identification of types or subtypes of SNe.

Our methodology is also capable of identifying a hierar-
chical structure within the data set. Fig. 11 shows the mean
spectrum of all SN Ia spectra at maximum (top-left panel) as
well as the mean spectrum of each cluster found by K-Means
using k = 2 to k = 4 clusters, comparing it with the mean
spectra of subtypes proposed by Wang et al. (2009b). Given
the data set at hand, we see that the velocity at which most
lines form (the velocity of the photosphere) is the first or-
der spectral characteristic which defines subtypes of SNe Ia
(2-cluster configuration). After this, 1991bg-like objects are
kept in a cluster of their own (3-cluster configuration) and
finally 91T-like objects are separated. Depending on the de-
gree of specialization we demand from the data, we are able
to recognize a sequence of spectral features which might be

used to guide the physical basis of future data-driven clas-
sification systems.

Our analysis suggests that the currently defined SN Ia
subtypes are extremes of a continuous distribution of
spectral features and that SNe Ia live in a small multi-
dimensional continuum with no strict boundaries separating
subclasses and likely governed by few key physical parame-
ters.

9 SUMMARY AND DISCUSSION

We propose a framework to automatically identify subtypes
of SNe Ia within a set of measured spectra by combining
modern machine learning techniques. As a first application
of this tool, we investigate how to recover previously re-
ported subtypes of SNe Ia.

The set of public SN Ia spectra (Section 2) was first sub-
mitted to the preprocessing described in Sasdelli et al. (2015)
and the resulting matrix was used as input for the algorithm
which can be summarized in 3 main steps: transfer learning,
dimensionality reduction, and unsupervised learning.

The goal of transfer learning is to ensure the stability of
the low dimensional feature space by adding a large variety
of spectra in the original data matrix. In our example, al-
though the clustering analysis is focused at B-maximum, we
use spectra from all available epochs for training. Once the
low dimensional feature space is constructed, only the pro-
jections corresponding to spectra at maximum are selected
for the next phase (figure 3).

We introduce Deep Learning for dimensionality reduc-
tion on SN Ia spectra. This is a cutting-edge technique only
recently introduced to astronomy (Huertas-Company et al.
2015). We prove its effectiveness in spectroscopy data anal-
ysis and show that it outperforms the PCA algorithm in the
reconstruction of measured spectra, reducing the dimension-
ality of the feature space from ∼ 300 hundreds to 4. Since
this is the first application of Deep Learning for SN Ia spec-
tra characterization, we use Self- Organizing Maps (SOM)
to better understand the potential of the new reduced fea-
ture space (figure 7); this visualization technique shows how
spectral properties vary in the SN Ia spectra space; specifi-
cally it allows the visualization of the peculiarity of subtypes
reported in the literature, e.g., the 91bg-like SNe (Cormier
& Davis 2011; Blondin et al. 2012).

Lastly, we use unsupervised learning techniques to in-
vestigate the possibility of identifying spectroscopic features
in subclasses of SN Ia spectra at maximum light. This allows
us to define a data-driven classification scheme a posteriori
and analyse clusters separately in order to look for their
spectroscopic characteristics. This facilitates the classifica-
tion of a fairly large data set requiring the astronomer to vi-
sually inspect only a handful of possibilities (the mean spec-
tra). We use the low dimensional space from Deep Learning
as an input for the K-Means algorithm. In order to provide
a more friendly visualization of the four dimensional feature
space, we use isomap as a further layer of dimensionality
reduction. Here the separation between the clusters is more
evident; the identification with the Wang et al. (2009b) clus-
ters is also clearer.

We find that the spectral variability of SNe Ia can be
summarized by a low dimensional space. Spectra starting
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spectroscopic variability, including the most “peculiar” ob-
jects, such as 91bg-like and the 02cx-like SNe.

SNe Ia are well known as a uniform class of objects. Our
results prove this claim, and suggest that progenitors should
be a “simple” system with no more than a handful of ini-

tial parameters. Moreover, we also show that the currently
identified SN Ia sub-types are in fact the extremes of a con-
tinuous distribution of spectral features. We also do not find
strong evidences of distinct subclasses.

Our complete software apparatus was built under
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algorithm.

DRACULA, a publicly available Python package that is here
tested on a public data set of SN Ia spectra. Our results show
agreement between mean cluster spectra and those proposed
by Wang et al. (2009b). Our method is also able to iden-
tify a hierarchical structure within the data set, confirming
previous statements that high velocity features are of the
first order effect in separating currently available samples of
SNe Ia (Wang et al. 2013). Future work considers analysis of
time evolution in SN Ia spectra, and the possibility of using
our tool in the classification of other supernova types.
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Overleaf platform4, and made use of the GitHub5, a web-
based hosting service, the git version control software, and
Slack6, a team collaboration platform.

APPENDIX A: GLOSSARY

To avoid confusion due to different nomenclatures used by
the machine learning and astronomy communities, we pro-
vide a list of the terms used in this paper:

• Class/subclass (Supernova Physics): these denote dif-
ferent underlying physical models or characteristics of the
progenitor system.
• Feature (Machine Learning): a recorded property or ob-

servation. In our context it corresponds to the flux (or the
derivative of the flux) of a given wavelength bin.
• Feature space (Machine Learning): commonly known

in astronomy as parameter space. This space is originally of
high dimensionality (∼ 300 wavelength bins), but is reduced
to a 4-dimensional space when we invoke Deep Learning.
• Parameter (Computing): an input variable of a com-

puter algorithm.
• Physical parameter (Supernova Physics): a generic term

to describe one of the initial conditions of the supernova
explosion.
• Prototype (SOM): vectors populating each cell of a

SOM grid. Initially random, they iteratively become more
representative of the data vectors assigned to their cell.
• Spectral feature (Spectroscopy): absorption and/or

emission feature in the spectrum. It originates from a group
of atomic lines with similar energy. It is usually dominated
by the lines of a single ion.
• Type/subtype (Supernova Physics): these denote differ-

ent categories of SNe based on spectral features (e.g. HV,
91T-like, etc.).
• Weight parameter (Deep Learning): weight matrices

connecting adjacent layers of the Deep Learning network.
Weights are optimized during the training phase using the
training sample.

APPENDIX B: DRACULA

We present DRACULA (Dimensionality Reduction And Clus-
tering for Unsupervised Learning in Astronomy), an imple-
mentation of the methods discussed in this paper. The tool-
box is written in Python, is publicly available, and can be
easily adapted to multiple applications. The software relies
heavily on tools developed in scikit-learn (Pedregosa et al.
2011). The DL analysis used the H2O package (Arora et al.
2015) and the SOM routine used the Kajić et al. (2014) im-
plementation. Thanks to its modular design, all main steps,
e.g., dimensionality reduction, unsupervised learning (clus-
tering) and plotting, can be run separately. A flowchart il-
lustrating the code capabilities is shown in Fig. B1.

In what follows, we demonstrate how DRACULA can be
invoked to obtain similar results to those presented in this

4 www.overleaf.com
5 www.github.com
6 https://slack.com

Data Pre-Processing
Graphical Output

SOM grid

Dimensionality Reduction

PCA Deep Learning
EMPCA Isomap
KPCA

SOM

Unsupervised Clustering

k-means
Mean Shift
DBSCAN

Affinity Propagation
Agglomerative Clustering

External Input

Graphical output

2D scatter
Mean input

Mean spectra

External Input

Figure B1. Flow chart describing the capabilities of the DRACULA

package. Cylinders represent external inputs, rectangles denote
package tools, and circles represent independent modules. Red

(full) arrows indicate the complete algorithm, and green (dashed)
arrows indicate points where external inputs can be inserted.

Names marked in blue are the ones used to obtain the results

in Section 8; the ones marked in purple are dimensionality reduc-
tion tools used here for visualization only.

paper7. We avoid a detailed description of all code function-
alities, and focus on main procedures (the documentation8

provides more detailed descriptions). Let us start assuming
an initially big data matrix. In our case, this is composed
of derivatives over the flux logarithm, as described in Sec-
tion 2. We now go through each step described in previous
sections and demonstrate how the user can reproduce our
results using DRACULA.

B1 Dimensionality Reduction

To begin, the user needs to set up a configuration file (which
must be named config.py) to define the type of desired
analysis. This module contains four methods: PCA (Jolliffe
1986), Expectation Maximization PCA (Bailey 2012), Ker-
nel PCA (Schölkopf et al. 1999) and DL (Deng & Yu 2014).
Dimensionality reduction requires as input a list of observed

7 If you want to be updated on DRACULA development send a
request to coin_dracula+subscribe@googlegroups.com
8 https://github.com/COINtoolbox/DRACULA
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features for each object (1 line per object, 1 column per fea-
ture). For clarity, input and output are defined next:

• input: data amenable to reduction (ex: spectra deriva-
tives)
• output: reduced data

In order to perform dimensionality reduction with DL9

the configuration file must contain the keywords: ORG DATA,
that receives the path to the file with uncompressed data
and REDUCTION METHOD that determines the dimensional-
ity reduction algorithm. If no other options are included
in the configuration file, the code will run using default
values10. The user might change default values by mod-
ifying the random seed, DeepLearning seed, number and
structure of hidden layers, DeepLearning_n_layers and
DeepLearning hidden respectively, in the configuration file.

One can run the chosen dimensionality reduction rou-
tine from the command line typing DRAC REDUCTION.
The output containing the reduced data is created in a folder
called red data.

B2 Clustering

Clustering follows using the output file from the last section
or using an externally reduced dataset. In the case of an
external source, ORG DATA should be commented out and the
path to the externally reduced file must be given as

1 REDUCED_DATA_EXTERNAL = "<path to reduced ←↩
data >"

The running format is the same as dimensionality re-
duction, where the input is the reduced data. After clusters
are detected, the algorithm outputs their centres and the
corresponding labels for each object. In short:

• input: reduced data
• output: centers of clusters and labels for each object

in the reduced data file

Available options here are KMeans (MacQueen 1967;
Arthur & Vassilvitskii 2007), Mean Shift (Comaniciu & Meer
2002), Agglomerative Clustering (Voorhees 1986), Affinity
Propagation (Comaniciu & Meer 2002) and DBSCAN (Ester
et al. 1996). For our particular case, the configuration file
contains:

1 CLUSTERING_METHOD = "KMeans"

Analogous to the dimensionality reduction case, the
user can change parameters. An example is the number
of clusters, using variable KMeans_n_clusters. The default
value is KMeans_n_clusters=4. At this stage it is also pos-
sible to use a mask, which is specially important for cases

9 Note that the codes uses R as an interface, which requires in-

stallation of R (https://www.r-project.org/), h2o (http://h2o.
ai/) and rpy2 (http://rpy.sourceforge.net/) packages.
10 Initial random seed: DeepLearning seed = 1; number of hid-

den layers DeepLearning_n_layers=7; structure of hidden lay-
ers: DeepLearning_hidden=’c(120,100,90,50,30,20,4,20,30,

50,90,100,120)’

where transfer learning is applied (e.g., when the dimension-
ality reduction algorithm is applied to a big diverse matrix
and only a subset of the reduced data is intended for clus-
tering). The mask consists of a file with the same number of
lines as the reduced data; in each line “1” indicates objects
included in the clustering analysis and “0” refers to all re-
maining objects. The path for the mask should be provided
as follows:

1 MASK_DATA = ’<path to mask file >’

The clustering routines can be run in the command line
by typing DRAC CLUSTERING.

B3 Varying parameters

In cases where it is necessary to compare the output from a
range of parameters, DRACULA allows the user do it automat-
ically, however, beware that this functionality only permits
to change one parameter at a time. The parameters to be
declared in the configuration file are

1 VAR_TYPE = ’CLUSTERING ’ or ’REDUCTION ’

2 VAR_PAR = ’REDUCTION_METHOD ’ or ’←↩
CLUSTERING_METHOD ’

3 VAR_VALS = [ 1 , 2 , 3 ] or [ ’name1’ , ’name2’ , ’name2←↩
’ ] or [ vec1 , vec2 , vec3 ]

This functionality uses the same configuration file
(config.py) with the above extra keys, and can be run by
typing DRAC COMPARISON.

B4 Plotting

It is useful to plot results to gain insight on the cluster qual-
ity. Plots can be generated for the whole process, from re-
duction to clustering, with input and output given by:

• input: reduced data, cluster centres and labels for each
object in the reduced data file
• output: scatter plot of reduced data coloured according

to labels

Scatter plots, similar to those shown in Fig. 8, are gen-
erated by typing DRAC PLOT. The format of the output
files is selected by setting the keyword PLOT EXT, in the con-
figuration file.

If one wishes to use this tool for plotting clusters as-
signed by an external clustering algorithm, the path to the
corresponding labels should be provided:

1 LABELS_DATA_EXTERNAL = "<path to labels file >←↩
"

Finally, it is useful to visualize the mean input data
within each cluster so features can be compared with ex-
pected patterns. The interface in this case is

• input: reduced data and cluster labels
• output: plot of mean input data for each cluster

If the data for visualization is not in the file used to
make the reduction (in our case the reduction is performed
on the derivative of the spectra, but we would like to observe
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the mean spectrum of each group found by K-Means), it can
be plotted by setting:

1 SPECTRAL_DATA_EXTERNAL = "<path to original ←↩
data file >"

The format of the output file for the mean data (or mean
spectrum) needs to be set separately through the keyword
PLOT SPEC EXT. The plots can be generated using the com-
mand DRAC PLOT SPECS.

We emphasize that the above provides only a glimpse
of the capabilities of DRACULA. The package has other
functionalities (e.g. cluster validation routines) which will
be fully explored, and described, in subsequent work.

B5 SOM

The SOM module (Section 6.1) is independent from the
steps previously described. The interface is as follows:

• input: reduced data
• output: SOM grid

This module requires its own configuration file, which
must be called config som.py. The path to the reduced data
file is given through the keyword ORG DATA. When no other
option is provided in the configuration file, the module will
run a 10×10 matrix through 100 iterations, and the output
plot will show the prototypes populating each cell. If the
user wants the SOM grid to show the mean of the original
data (in our case, the mean of observed spectra assigned
to each cell), the keyword SPECTRAL DATA EXTERNAL must
point to the original data file. The number of iterations can
be set by adding the keyword Niter to the configuration
file. The grid shown in Fig. 7 was constructed with Niter =

10000000. SOM module can be run by typing DRAC SOM.
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