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Abstract: Elements of the nucleoside system (nucleoside levels, 5’-nucleotidases (5’NTs) and other nucleoside metabolic 
enzymes, nucleoside transporters and nucleoside receptors) are unevenly distributed in the brain, suggesting that nucleo-
sides have region-specific functions in the human brain. Indeed, adenosine (Ado) and non-Ado nucleosides, such as 
guanosine (Guo), inosine (Ino) and uridine (Urd), modulate both physiological and pathophysiological processes in the 
brain, such as sleep, pain, memory, depression, schizophrenia, epilepsy, Huntington’s disease, Alzheimer’s disease and 
Parkinson’s disease. Interactions have been demonstrated in the nucleoside system between nucleoside levels and the ac-
tivities of nucleoside metabolic enzymes, nucleoside transporters and Ado receptors in the human brain. Alterations in the 
nucleoside system may induce pathological changes, resulting in central nervous system (CNS) diseases. Moreover, sev-
eral CNS diseases such as epilepsy may be treated by modulation of the nucleoside system, which is best achieved by 
modulating 5’NTs, as 5’NTs exhibit numerous functions in the CNS, including intracellular and extracellular formation of 
nucleosides, termination of nucleoside triphosphate signaling, cell adhesion, synaptogenesis and cell proliferation. Thus, 
modulation of 5’NT activity may be a promising new therapeutic tool for treating several CNS diseases. The present arti-
cle describes the regionally different activities of the nucleoside system, demonstrates the associations between these ac-
tivities and 5’NT activity and discusses the therapeutic implications of these associations. 
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1. INTRODUCTION 

Adenosine and non-Ado nucleosides, such as Guo, Ino 
and Urd, regulate neuronal and glial functions in the brain 
[1-6] and participate in the modulation of different physio-
logical (e.g., sleep and memory) and pathophysiological 
(e.g., epilepsy, Parkinson’s disease and Alzheimer’s disease) 
processes in the brain [2, 3, 7-13]. Thus, nucleoside deriva-
tives, nucleoside uptake inhibitors and inhibitors of nucleo-
side metabolic enzymes have been used in drug development 
against various diseases, such as neurodegenerative disorders 
[9, 11, 14, 15].  

Elements of the nucleoside system are unevenly distrib-
uted in the brain and are dependent on age and gender [11, 
16-22]. Interactions have been demonstrated in the nucleo-
side system, such as the interaction of local nucleoside levels 
with the activities of nucleoside metabolic enzymes and the 
distribution of Ado receptors in the human brain [20] as well 
as the interaction of A1 Ado receptor (A1 receptor) density 
with equilibrative nucleoside transporter (ENT; ENT1 sub-
type) density [23] and 5’NT levels [24, 25]. Alterations in 
the nucleoside system including the level, distribution and/or  
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activity of nucleosides, nucleoside metabolic enzymes and 
nucleoside transporters as well as Ado receptors may induce 
pathological changes, resulting in CNS diseases such as epi-
leptic seizures, schizophrenia, sleep disorders, among others 
[26-40]. Indeed, several CNS diseases can be treated by 
modulation of the nucleoside system [9, 11, 40-52], suggest-
ing that (i) a close correlation exists between regional differ-
ences in elements of the nucleoside system and their 
(patho)physiological functions; (ii) nucleosides have region-
ally different roles in the brain, which may be modulated by 
age and gender; (iii) changes in the ‘purinome’ (in which 
receptors, transporters, metabolic enzymes and ligands of 
nucleosides and nucleotides together generate purinergic 
signaling) [53] may evoke pathological consequences, result-
ing in different diseases in the CNS; and (iv) the nucleoside 
system may be a promising drug target to treat several CNS 
diseases [9-12, 54, 55].  

5’-nucleotidases play a role in the intracellular and ex-
tracellular formation of nucleosides from their nucleoside 
monophosphates (NMPs) [56-59], cell adhesion, cell prolif-
eration and synaptogenesis [60-68], as well as regeneration 
and neuronal development [69, 70]. Recently, it was demon-
strated that 5’NTs may be promising drug targets against 
several CNS diseases such as epilepsy [68, 71-80].  

In this review, we briefly discuss (i) 5’NTs in the CNS; 
(ii) nucleoside metabolism (with an emphasis on Ado, Ino, 
Guo and Urd), nucleoside transporters and nucleoside recep-
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tors and their area-, age- and gender-dependence in the hu-
man brain; and (iii) the potential of the nucleoside system 
modulation in the development of pharmacological therapies
with an emphasis on the relationships between 5’NTs and 
nucleoside levels, nucleoside transporters and nucleoside 
(Ado) receptors. 

2. 5’-NUCLEOTIDASES  

5’-nucleotidases (5’-ribonucleotide phosphohydrolases, 
EC 3.1.3.5) catalyze the conversion of (deoxy)nucleoside 
monophosphates into (deoxy)nucleosides and inorganic 
phosphates via hydrolysis of a phosphoric ester bond [81, 
82]. Intracellularly and extracellularly, 5’NTs, which are 
integrant components of the endo- and ectonucleotidase en-
zyme cascade, catalyze the final step of nucleotide dephos-
phorylation (from NMPs to its corresponding nucleosides) 
[56-58, 83-86]. This process contributes to the maintenance 
of nucleoside/nucleotide levels and the balance necessary to 
ensure their physiological functions in the brain and modu-
lates the nucleoside effects on brain tissue cells via nucleo-
side levels, nucleoside transporters and their receptors [82, 
87]. In addition, the synaptic ectonucleotidase cascade sys-
tem plays a role in the rapid termination of the activities of 
nucleoside di- and triphosphates on their receptors and in 
nucleoside recycling in the brain. Processes of nucleoside 
recycling consist of (i) intracellular synthesis of nucleoside 
triphosphates from nucleosides; (ii) release of nucleoside 
triphosphates into the extracellular space; (iii) extracellular 
degradation of nucleoside triphosphates into their corre-
sponding nucleosides, which may exert their effects via nu-
cleoside receptors (such as Ado receptors); and (iv) uptake of 
nucleosides into the cells, which contributes to the termina-
tion of nucleoside signaling via their receptors and the 
prompt re-utilization (salvage) of nucleosides. Consequently, 
intracellularly and extracellularly localized enzymatic chain 
reactions involving 5’NTs catalyzed reactions form a cros-
stalk between intracellular and extracellular nucleoside me-
tabolism in the brain [56-59, 88-90].  

Seven types of 5’NTs have been cloned, characterized 
[81, 91] and distinguished in cell extracts/micropunches us-
ing nucleotidase assays [92-94]. 5’-nucleotidases have been 
demonstrated in various tissues including brain tissue [81, 
91, 95-99]. Five enzymes are cytoplasmic (cytoso-
lic/soluble/cNs: cN-IA, cN-IB, cN-II, cN-III and cdN), one 
enzyme is mitochondrial (mdN) and one enzyme (e5’NT) is 
located on the outer side of the plasma membrane [81]. In 
this review article, we briefly discuss the main general fea-
tures and role of 5’NTs. As (i) network of 5’NTs is complex 
(see the text below) and (ii) it is not clear whether results 
(derived from e.g., enzyme histochemistry) refer to only 
e5’NT, cNs or e5’NT plus cNs and so forth, it is sometimes 
impossible to ascribe an AMP hydrolyzing activity to a par-
ticular kind of 5’NT. Thus, when referring to generic 5’NTs 
in the text (and in the Table (1) without any further specifica-
tion) we do not identify any specific 5’NT.  

2.1. General Properties and Functions of 5’NTs 
The ecto-5’-nucleotidase (aliases: e5’NT, CD73, ecto-5’-

NT, eNT, NT5 and low Km-5’-NT) gene is located on chro-
mosome 6q14-q21 [81, 100]. e5’NT is ubiquitously ex-
pressed and present on both neurons and glial cells. It con-

tains two glycoprotein subunits (the molecular mass of the 
subunit is 60-80 kDa) and is anchored to the plasma mem-
brane by a glycosylphosphatidyl-inositol molecule [81, 82, 
101]. Furthermore, the existence of its soluble extracellular 
form has also been demonstrated [82, 86, 101, 102]. The 
substrate specificity of e5’NT is broad, as it can hydrolyze 
both ribo- and deoxyribonucleoside monophosphates. How-
ever, e5’NT exhibits the highest affinity for Ado monophos-
phate (AMP) (low Km-nucleotidase: Km for AMP is 1-50 
�M) [82, 86, 103-106]. Its optimal pH is approximately 6.8-
9.0 depending on the type of tissue [81, 82]. Both Mg2+ and 
Mn2+ increase the activity of e5’NT [82, 103, 105], whereas 
Ado diphosphate (ADP) and Ado triphosphate (ATP) (and to 
a lesser extent Urd diphosphate/UDP, Urd triphosphate/UTP, 
Guo diphosphate/GDP, Guo triphosphate/GTP, cytidine 
(Cyd) diphosphate/CDP, Cyd triphosphate/CTP, concana-
valin A and �,�-methyleneadenosine-5’-diphosphate 
(APCP)) inhibit e5’NT activity [82, 103, 105, 107]. Ecto-
5’NT plays a role in (i) the extracellular generation of nu-
cleosides [56-58, 86] and, as a consequence, nucleoside (e.g., 
Ado) receptor activation, neurotransmission modulation, and 
the regulation of learning and memory, sleep, psychomotor 
coordination, cardiac and renal function, platelet aggrega-
tion, nociception and so forth [7, 12, 82-84, 101, 108-116]; 
(ii) the termination of nucleoside di- and triphosphates activ-
ity on their receptors [63, 82, 117, 118]; (iii) the uptake of 
extracellular nucleosides [56-58]; (iv) T-cell activation (as a 
coreceptor) [119-121]; (v) cell-cell adhesion and cell prolif-
eration [60, 62, 66, 121, 122]; (vi) synaptic malleabil-
ity/arrangements and information processing, neuro-
glial/cell-matrix interactions and synaptogenesis [61, 63-68, 
82]; (vii) neuronal regeneration and development [67, 70, 82, 
86, 101]; (viii) the regulation of glial cell volume [123]; and 
(ix) epithelial ion and fluid transport, adaptation to hypoxia, 
ischemic preconditioning, vasodilatation and inflammation 
[124-127]. 

The cytosolic 5’-nucleotidase IA (cN-IA, cN-I, AMP-
specific 5’NT) and cytosolic 5’-nucleotidase IB (cN-IB, 
AIRP, cN-IA homologue: high homology between cN-IA 
and cN-IB was demonstrated) genes are located on chromo-
some 1p33-p34.3 and 2p24.3, respectively [96, 97]. Both cN-
IA and cN-IB are ubiquitously expressed in human tissues 
[96, 97], and their optimum pH is between 6.5 and 7.0 [81, 
82]. Cytosolic 5’-nucleotidase IA exhibits a high affinity for 
(deoxy)nucleoside monophosphates, but its preferred sub-
strate is AMP (Km 1.2-8.3 mM; cytosolic AMP specific 5’-
nucleotidase, form A) [81, 82, 96, 128, 129]. This enzyme 
demonstrates a tetrameric structure (subunit molecular mass 
is 40-43 kDa) [81, 82, 129] and is activated by ADP and 
GTP [96, 128, 129]. Moreover, cN-IA is Mg2+ dependent 
[96, 129], does not show phosphotransferase activity [130], 
and may be inhibited by 5-ethynyl-2',3'-dideoxyuridine 
[131]. This enzyme plays a role in the increase of Ado levels 
under ischemic and hypoxic conditions [132] and controls 
(together with cN-II) the intracellular level/pools of NMPs 
and nucleosides [57-59, 81, 96, 133]. Cytosolic 5’-
nucleotidase IB catalyzes the hydrolysis of AMP (cytosolic 
AMP specific 5’-nucleotidase, form B), and it may be acti-
vated via ADP [97]. Furthermore, 5-ethynyl-2',3'-
dideoxyuridine may inhibit not only cN-IA but also cN-IB 
[81, 131].  
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Cytosolic 5’-nucleotidase II (cN-II, Ino monophos-
phate/IMP-Guo monophosphate/GMP specific NT, purine 
5’NT, high Km 5’NT, IMPase), which is localized on chro-
mosome 10q24.32 [81, 134], is ubiquitously expressed in 
human tissues [81, 82, 135, 136] and has a tetrameric struc-
ture (the molecular mass of the subunit is 52-70 kDa) [82, 
137-139]. Cytosolic 5’-nucleotidase II is Mg2+ dependent 
[139] and prefers 6-hydroxypurine (deoxy)nucleoside mono-
phosphates, such as IMP and GMP (IMP-GMP specific 5’-
nucleotidase; Km for IMP is 0.1-0.6 mM) [82, 134, 139]. The 
optimal pH of cN-II is 6.0-7.0 [81, 82]. The activity of cN-II 
may be enhanced by (deoxy)ATP, GTP and ADP [82, 139-
141]. Cytosolic 5’-nucleotidase II has a phosphotransferase 
activity from 6-hydroxypurine monophosphates (phosphate 
donors) to phosphate acceptors, such as Guo, (deoxy)Ino and 
nucleoside analogs, to form monophosphate derivatives [85, 
133, 140-143], and plays a role in (i) purine nucleotide inter-
conversion, (ii) the maintenance/modulation of intracellular 
5-phosphoribosyl-1-pyrophosphate (PRPP) and purine nu-
cleotide pools and (iii) the survival of cultured astrocytoma 
cells [81, 133, 144].  

The cytosolic 5’-nucleotidase III (cN-III, P5’-NT, P5’N-
1, PN-I, UMPH, UMPH-I) gene is localized on chromosome 
7p14.3 [81, 98, 143]. Cytosolic 5’-nucleotidase III is widely 
expressed in mouse, rat and human tissues [98, 145, 146], is 
Mg2+ dependent [147], functions as a monomer (the molecu-
lar mass is 34 kDa) [98, 148], and hydrolyzes pyrimidine 
monophosphates [147]. However, cN-III shows the highest 
affinity for Cyd monophosphate (CMP) (Km 10-150 �M) [81, 
91, 147]. The optimal pH for cN-III is 7.5, and the activity of 
cN-III may be inhibited by nucleosides (e.g., Urd), phos-
phates and heavy metals [147]. Similar to cN-II, cN-III dem-
onstrates phosphotransferase activity, where it transfers a 
phosphate from pyrimidine monophosphates (phosphate do-
nors) to Urd, Cyd and deoxycytidine (dCyd) (phosphate ac-
ceptors) [147]. It has been shown that cN-III is involved in 
the degradation of RNA during erythrocyte maturation [147, 
148] and the catabolism of pyrimidine (deoxy)nucleosides 
[81, 148]. Genetic mutations (deficiencies) of cN-III in re-
ticulocytes cause hemolytic anemia [147, 148]. 

Cytosolic 5’(3’)-deoxyribonucleotidase (cdN, PN-II, 
dNT-1, UMPH-2) is widely distributed in human, mouse and 
rat tissues [99, 145, 149-151]. Its gene has been localized on 
chromosome 17q25 [151]. Cytosolic 5’(3’)-
deoxyribonucleotidase exhibits a dimeric structure (the mo-
lecular mass of the subunit is approximately 23 kDa) [148, 
150], is Mg2+ dependent [150], and prefers 2’- and 3’-
monophosphates containing pyrimidine basis uracil (Ura) or 
thymine (Thy), such as 3’-deoxyuridine monophosphate (Km

for 2’- and 3’-monophosphates is approximately 0.3 mM) 
[81, 150]. However, lower nucleotidase activities of cdN 
have also been demonstrated for 5’-deoxynucleotides (e.g., 
5’-deoxyuridine monophosphate, 5’-dUMP) and 5’-
ribonucleoside monophosphates (e.g., UMP) [92, 150]. Its 
optimal pH is between 5.5 and 7.5 [81, 149, 150]. Phosphate, 
deoxyinosine (dIno) and deoxyuridine (dUrd) may inhibit 
cdN activity, whereas deoxyguanosine monophosphate 
(dGMP) and deoxythymidine monophosphate (dTMP) may 
increase cdN activity depending on different substrate mole-
cules [81, 150]. Human erythrocyte cdN exhibits phos-
photransferase activity [91, 152]. Both PMcH-U ((±)-1-

trans-(2-phosphonomethoxycyclohexyl)uracil) and PMcP-U 
((±)-1-trans-(2-phosphonomethoxycyclopentyl) uracil) in-
hibit cdN activity [92, 153]. The physiological function of 
cdN may be involved in the regulation of pyrimidine (de-
oxy)nucleotide levels [148, 154] as well as nucleotide recy-
cling in dying cells [81, 155].  

Genes of mitochondrial 5’(3’)-deoxyribonucleotidase 
(mdN, dNT-2) are located on chromosome 17p11.2 [99, 
151]. The expression of mdN has been demonstrated in 
mouse, rat and human tissues [99, 151, 156, 157]. It has a 
dimeric structure (the molecular mass of the subunit is 26 
kDa) [99, 151, 157] and prefers pyrimidine monophosphates 
with Ura or Thy bases, such as 5’-dUMP (Km 0.1 mM) [81, 
153, 157]. Mitochondrial 5’(3’)-deoxyribonucleotidase is 
Mg2+ dependent [157] and its pH optimum may be 5.0-5.5 
[99, 153]. BPE-T (1-[2-deoxy-3,5,-O-(2-bromo-1-
phosphono) ethylidene-�-D-threo-pentofuranosyl]thymine), 
PMcH-U, PMcP-U and DPB-T ((S)-1-[2’-deoxy-3’,5’-O-(1-
phosphono)benzylidene-�-D-threo-pentofuranosyl] thymine) 
inhibit mdN activity [92, 153]. In addition, mdN may be 
protective against excessive deoxythymidine triphosphate 
(dTTP) accumulation, which induces a mutagenic effect in 
mitochondrial DNA replication [91, 157].  

Anti-viral and anti-cancer nucleoside analogs (i.e., pro-
drugs) may be transported to the cells via nucleoside trans-
porters and activated (as a triphosphate) via phosphorylation 
by kinases [81, 153, 158-160]. Triphosphorylated nucleoside 
analogs exert their therapeutic effects mainly by termination 
of DNA chains via inhibition of DNA polymerases and in-
corporation into DNA. Thus, increased activity of 5’NTs 
(mainly cNs and indirectly, e5’NT) [81, 158, 159] may in-
hibit the activation of nucleoside analogs by dephosphoryla-
tion, which results in drug resistance. Dephosphorylated nu-
cleoside analogs are not able to terminate DNA chains and 
may be transported into the extracellular space from the cells 
[81, 159]. The involvement of cN-I and cN-II in drug resis-
tance has been previously demonstrated. For example, the 
phosphorylated form of the anti-viral nucleoside analogue 
3’-azido-2’,3’-dideoxythymidine (AZT) is the substrate of 
these enzymes [81, 96, 147, 153]. Thus, development of new 
5’NT inhibitors and nucleoside analogs, which are weakly 
metabolized by 5’NTs, may improve the therapeutic efficacy 
of some anti-viral and anti-cancer nucleoside analogs by 
decreasing resistance [81, 91]. Nevertheless, cN-II may also 
have a role in drug activation (e.g., the anti-viral nucleoside 
analog 2’,3’-dideoxyinosine, ddI and AZT) via its phos-
photransferase activity [81, 140, 161]. In addition, cN-III and 
cdN may be involved in nucleoside analog resistance (cN-III 
and cdN) and activation (cN-III), and mdN may reduce the 
toxic side effects of activated (phosphorylated) nucleoside 
analogs in mitochondria [81, 147]. 

2.2. Structure-Activity Relationships 
Considerable substrate specificity characterizes several 

5´NTs. The preferred substrate is AMP for cN-I, IMP for 
cN-II, and pyrimidine nucleotides for cN-III. The phosphate 
moiety is present in all substrates and is important for its 
binding to the enzymes. Hydrolysis was dramatically re-
duced when modifications were introduced into the phos-
phate group. However, if the structure around the phosphor 
atom is not changed, but the oxygen connecting it with the 
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ribose moiety is converted into a carbon, the resulting non-
hydrolyzable phosphates represent promising antagonists of 
5´NTs [162]. Consequently, the sugar moiety appears to be 
less important for substrate binding since its modifications 
affect the rate of hydrolysis to a lesser degree. Indeed, de-
oxynucleotides are also hydrolyzed by 5´NTs [163], albeit 
with a much lower activity for e5’NT. The substrate specific-
ity of 5´NTs is based on its recognition of the nucleobase. 
Not surprisingly, hydrogen-bond formation with the sub-
stituent in the 6-position of the purine ring and the hydro-
phobic attractions play major roles in the substrate specific-
ity of 5´NTs [164]. The electron pair on N-1 is important in 
substrate binding of cN-II but is not a prerequisite for cN-I. 
However, hydrogen bonding with N-7 is not essential to sub-
strate binding for either cN-I or cN-II [164] compared to 
Ado deaminase (ADA) [165]. Recent crystallographic ap-
proaches have provided a more detailed description of struc-
ture-activity relationships for 5´NTs. The structures of four 
of the seven human 5�NTs, cN-II, cN-III, mdN and e5’NT, 
have been previously described. Intracellular 5�NTs share 
three conserved motifs that have been identified in members 
of the haloacid dehalogenase superfamily of enzymes, sug-
gesting divergent evolution from a common progenitor. The 
three motifs constitute the catalytic phosphate-binding site in 
these enzymes [166]. The first Asp in Motif I 
(DXDX[T/V]L) induces a nucleophilic attack on the phos-
phate of the NMP, and the second Asp donates a proton to 
the remaining nucleoside. This mechanism is thought to in-
volve a stabilized pentacovalent phosphorane and a phos-
phoenzyme intermediate [167, 168], suggesting phos-
photransferase activity, which has been demonstrated in cN-
II and cN-III [137]. In cN-III and mdN the active site is lo-
cated in a cleft between two different domains [157], in con-
trast, cN-II is a homotetrameric protein consisting of two 
identical dimers. The smallest active oligomerization state of 
the protein is dimer [137]. Unlike other 5�NTs, cN-II is allos-
terically activated by adenine/guanine nucleotides, which 
couple its activity to the metabolic state of the cell. This en-
zyme is also activated by millimolar concentrations of NaCl, 
KCl and LiCl, whereas inorganic phosphate demonstrated 
the opposite effect [137]. Activation of cN-II involved the 
transition of a catalytically essential Asp356. The substrate 
specificity of cN-II was determined by Arg202, Asp206 and 
Phe157 [169]. For cN-III, the structure and sequence analy-
sis coupled with enzymatic characterization of several mu-
tants revealed how cN-III achieved specificity for pyrimidine 
5'NTs: the aromatic ring was stabilized by parallel pi-
stacking interactions with Trp113 and His68 and by T-
shaped stacking with Tyr114, as well as by polar contacts 
with side chains of Thr66 and Ser117. Two water molecules 
helped to stabilize the nucleotide binding by bridging it to 
protein residues Asp72 and His68 via hydrogen bonds [170]. 

Interestingly, the eukaryotic e5’NT but not the cytosolic 
5´NT is structurally related to bacterial 5'NT enzymes in 
terms of sequence similarity. Monomeric bacterial 5’NT 
enzymes consist of distinct N-terminal metal binding and C-
terminal substrate-binding domains, which together form the 
active site [171, 172]. The N- and C-terminal domains un-
dergo extensive domain rotations relative to each other and 
thereby switch between the open and closed structural con-
formations [173]. Ecto-5'-nucleotidase is a dimeric extracel-
lular glycoprotein with similar open and closed conforma-

tions to bacterial enzymes [121]. A crystal structure of the 
closed and open formations of human e’5NT have been ob-
tained [174, 175]. Structural control of the domain move-
ment may be responsible for the selectivity of monophos-
phate nucleotides [176]. 

3. REGIONAL DIFFERENCES AND CORRELATIONS 
IN THE NUCLEOSIDE SYSTEM OF THE HUMAN 
BRAIN  

Age- and gender-modulated regional differences in the 
brain nucleoside system [11, 16-22] suggest (i) the existence 
of specific nucleoside pools in different brain areas, (ii) sig-
nificant spatial differences in the nucleoside metabolic (ana-
bolic and catabolic) network and signaling mechanisms in-
duced by Ado and non-Ado nucleosides (i.e., Urd and Guo), 
(iii) fine and highly regulated modulation of different 
physiological processes in different human brain areas by 
nucleosides, (iv) the effect of nucleoside microenvironment 
on aging, which may be modulated by gender and (v) patho-
logical consequences of changes in the nucleoside system, 
which may be related to the development of different CNS 
diseases, such as major depression, bipolar disorders, 
schizophrenia, Huntington’s disease, Parkinson’s disease and 
Alzheimer’s disease as well as frontotemporal dementia [7, 
50, 177-186]. 

3.1. Nucleoside Metabolism and Nucleoside Levels 

Ribonucleic acids (RNA) and deoxyribonucleic acids 
(DNA) consist of nucleotides that are synthesized from nu-
cleosides and phosphate moieties. The major purine and 
pyrimidine ribonucleosides are Ado, Guo, Ino, and Cyd, Urd 
and thymidine (Thd) [187], which contain purine or 
pyrimidine bases that are connected to a pentose moiety. 
Nucleosides are obtained from food and are partially synthe-
sized de novo in the liver, which may be transported into the 
brain by nucleoside transporters and anabolized into their 
corresponding nucleotides intracellularly [56-58, 133, 188-
190]. Since limited de novo synthesis of nucleosides has 
been observed in the adult brain [191], salvage mechanisms 
have the predominant role in the preservation of purine and 
pyrimidine nucleosides and bases in the human brain (Fig. 
(1)). Hypoxanthine phosphoribosyltransferase (HGPRT; 
hypoxanthine-guanine phosphoribosyltransferase), Ado 
kinase (ADK), adenine (Ade) phosphoribosyltransferase 
(APRT), Cyd deaminase (CDA) and Urd-Cyd kinase (UCK) 
catalyze the conversion of (i) hypoxanthine (Hyp) to IMP 
and guanine (Gn) to GMP, (ii) Ado to AMP, (iii) Ade to 
AMP and (iv) Cyd and Urd to CMP and Urd monophosphate 
(UMP), respectively (Fig. (1)) [56-58, 189, 192-194]. The 
intracellular degradation of ATP and ADP by nucleoside tri- 
and diphosphate phosphatases followed by the catabolism of 
AMP occurs via two degradation pathways: AMP to IMP-
Ino-Hyp (IMP pathway) or to Ado-Ino-Hyp (Ado pathway) 
(Fig. (1)) by AMP deaminase (AMPDA), cNs (cN-I and cN-
II, the rate-limiting enzymes of intracellular Ado formation), 
ADA and purine nucleoside phosphorylase (PNP). Adeno-
sine is also synthesized from S-adenosylhomocysteine 
(SAH) by adenosylhomocysteinase (SAHH, S-
adenosylhomocysteine hydrolase) (Fig. (1)). The steady-state 
concentration of Ado is maintained by the simultaneously 
active cNs, ADK and ADA [56, 58, 195]; thus, an alteration 



5'-Nucleotidases and Nucleoside System Regionality Current Medicinal Chemistry, 2013, Vol. 20, No. 34    4221

Fig. (1). Intracellular and extracellular metabolism of purine and pyrimidine nucleosides in the brain. 

Abbreviations: cN: cytoplasmic 5’-nucleotidases; ADA: adenosine deaminase; Ade: adenine; ADK: adenosine kinase; Ado: adenosine; 
AMP: adenosine monophosphate; AMPDA: AMP deaminase; APRT: adenine phosphoribosyltransferase; ASL: adenylosuccinate lyase; ASS: 
adenylosuccinate synthetase; ATP: adenosine triphosphate; BBB: blood brain barrier; CDA: cytidine deaminase; CMP: cytidine monophos-
phate; CTP: cytidine triphosphate; Cyd: cytidine; DHT: dihydrothymine; DHU: dihydrouracil; DPD: dihydropyrimidine dehydrogenase;
dThd: deoxythymidine; dTMP: deoxythymidine monophosphate; dTTP: deoxythymidine triphosphate; dUMP: deoxyuridine monophosphate; 
e5’NT: ecto-5’-nucleotidase; eNSp: ecto-nucleoside pyrophosphatase diphosphohydrolase; eNTPd: ecto-NTP diphosphohydrolase; GDA:
guanine deaminase; GMP: guanosine monophosphate; GMPR: GMP reductase; GMPS: GMP synthetase; Gn: guanine; Gs/i/q/olf: G proteins; 
GTP: guanosine triphosphate; Guo: guanosine; Hcy: homocysteine; HGPRT: hypoxanthine phosphoribosyltransferase (hypoxanthine-guanine 
phosphoribosyltransferase); Hyp: hypoxanthine; IMP: inosine monophosphate; IMPDH: IMP dehydrogenase; Ino: inosine; MTA: 5’-deoxy-
5’-methylthioadenosine; MTAP: 5’-deoxy-5’-methylthioadenosine phosphorylase; NDPs: nucleoside diphosphates; NMPs: nucleoside mono-
phosphates; NRs: nucleoside receptors; NSr: nucleoside release (via nucleoside transporters); NSs: nucleosides; NTPs: nucleoside triphos-
phates; NTr: nucleotide release (via e.g. ATP channels and transporters as well as synaptic release); PNP: purine nucleoside phosphorylase; 
RNR: ribonucleotide reductase; SAH: S-adenosylhomocysteine; SAHH: adenosylhomocysteinase; S-AMP: adenylosuccinate; Thy: thymine;
TK: thymidine kinase; TP: thymidine phosphorylase; TS: thymidylate synthetase; UA: uric acid; UCK: uridine-cytidine kinase; UDP: uridine 
diphosphate; UMP: uridine monophosphate; UP: uridine phosphorylase; Ura: uracil; Urd: uridine; UTP: uridine triphosphate; Xao: xanthos-
ine; XMP: xanthosine monophosphate; Xn: xanthine; XO: xanthine oxidase; we didn’t show intracellular nucleoside mono- and diphosphate 
kinases or nucleoside di- and triphosphate phosphatases.
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in these enzymes’ activity may change Ado levels and the 
effects of Ado on brain cells. Guanine-ribonucleotides may 
degrade via two pathways in the brain: the GMP-Guo-Gn-
xanthine (Xn) pathway, which is catalyzed via cN-II, PNP 
and Gn deaminase (GDA) (Fig. (1)); or the GMP-IMP-Ino-
Hyp-Xn pathway, which is regulated by GMP reductase 
(GMPR), cN-II, PNP and Xn oxidase (XO). Since uricase 
enzyme activity has disappeared from the mammalian brain 
during evolution, the final step of purine catabolism is the 
conversion of Xn into uric acid (UA) by XO in the human 
brain [95, 188, 196].  

Extracellular nucleoside triphosphates (ecto-NTPs) may 
degrade into nucleoside diphosphates (NDPs), NMPs and 
nucleosides via an ectonucleotidase cascade system involv-
ing ecto-NTP diphosphohydrolases (eNTPd), ecto-
nucleoside pyrophosphatase diphosphohydrolase (eNSp) and 
e5’NT (Fig. (1)) [56, 83-86, 197]. The extracellular levels of 
Ado are formed extracellularly from ATP and released from 
cells that are regulated by e5’NT, ecto-adenosine kinase 
(ecto-ADK) and ecto-adenosine deaminase (ecto-ADA) [56, 
86, 101, 198-202]. 

Similarly to purine nucleotides, pyrimidine nucleotides 
(UTP; CTP; Thd triphosphate, TTP) are also intracellularly 
metabolized into their di- and monophosphate derivatives as 
well as nucleosides (Urd, Cyd and Thd) by nucleoside tri- 
and diphosphate phosphatases and cNs. The end products of 
pyrimidine nucleotide metabolism are dihydrothymine 
(DHT) and dihydrouracil (DHU) (Fig. (1)). Degradation of 

extracellular pyrimidine nucleotides into their corresponding 
nucleosides is catalyzed by eNTPd, eNSp and e5’NT [22, 56, 
57, 189]. 

Several nucleoside metabolic enzymes, such as 5’NT, 
ADA, ADK, PNP and GDA, are unevenly distributed in the 
human brain [22, 203-207] (Table 1). High activities of 
5’NT, ADA, ADK, PNP and GDA have been previously 
demonstrated in several human brain areas (e.g., thalamus, 
hypothalamus and amygdala), whereas low levels have been 
detected in other brain areas (e.g., cerebellum and medulla 
oblongata). Most human brain areas demonstrate intermedi-
ate activity of 5’NT (e.g., parietal lobe, cingulate cortex, 
insula, caudate nucleus, putamen, pallidum (internal), thala-
mus (anterior), subthalamic nucleus, nucleus ruber, substan-
tia nigra, amygdala and hypothalamus), ADA (e.g., gray 
matter of the frontal, occipital, orbital, parietal and temporal 
lobes; pons; putamen; hippocampus; caudate nucleus; globus 
pallidus; thalamus; and midbrain), ADK (e.g., cerebellum, 
temporal cortex and occipital cortex), PNP (e.g., caudate 
nucleus, medulla oblongata, white matter of the frontal lobe 
and gray matter of the temporal, parietal and frontal lobes) 
and GDA (e.g., parietal cortex, caudate nucleus, putamen, 
hippocampus and substantia nigra) (Table 1). These results 
indicate spatial differences in the complex nucleoside meta-
bolic network in relation to their functions in the CNS. Vo-
lonté and Ambrosi [53] have proposed that several elements 
of the purinergic (and likely the pyrimidinergic) system are 
tightly integrated with each other and modulate neuronal 
function together. For example, changes in one or more ele-

Table 1.  Activity of Some Nucleoside Metabolizing Enzymes and their Distribution in the Human CNS.  

Activity level (5’NT: nmol/h/mg protein; ADA: nmol of ammonia/min/g of wet weight; ADK: nmol/min/g wet weight; PNP: sub-
strate transformed (�mol)/min/g wet weight; GDA: substrate transformed (�mol)/min/mg protein) and distribution of nucleoside 

metabolic enzymes in the CNS 

5’NT1 ADA2 ADK3 PNP4 GDA5 

High 749-1123: temporal cortex, 
thalamus (medial and lat-

eral), colliculus superior 

387-579: white matter of 
frontal, orbital and temporal 

lobe 

16.4-19.4: hypothala-
mus, pons, hind brain 

223-261: pons, mid-
brain, thalamus, white 

and gray matter of oc-

cipital lobe, amygdala 

12.9-19.2: 
thalamus, mamil-

lary body 

Intermediate 375-748: parietal lobe, cin-
gulate cortex, insula, caudate 

nucleus, putamen, pallidum 

(internal), claustrum, thala-
mus (anterior), subthalamic 

nucleus, nucleus ruber, sub-

stantia nigra, amygdala, 

hypothalamus, midbrain 

(paramedian) 

194-386: gray matter of 
frontal, occipital, orbital, 

parietal and temporal lobe; 

pons, putamen, hippocam-
pus, caudate nucleus, globus 

pallidus, thalamus, mid-

brain, cerebellar white mat-

ter, white matter of parietal, 

cingulate and occipital lobe; 

corpus callosum 

13.1-16.3: cerebellum, 
temporal cortex, corpus 

callosum, occipital 

cortex 

183-222: caudate nu-
cleus, white matter of 

cerebellum, medulla 

oblongata, white matter 
of frontal lobe, gray 

matter of temporal, 

parietal and frontal lobe; 

corpus callosum 

6.5-12.8: parietal 
cortex, caudate 

nucleus, pu-

tamen, pons 
(basis), hippo-

campus, substan-

tia nigra 

Low 210-374: cerebellar cortex, 
lateral geniculate body, 

pallidum (external), centrum 

semiovale, corpus callosum, 

mamillary body, internal 

capsule 

16-193: gray matter of cin-
gulate cortex and cerebel-

lum; hypothalamus, medulla 

oblongata, spinal cord 

9.8-13.0: parietal lobe, 
frontal cortex 

143-182: gray matter of 
cerebellum, white matter 

of temporal and parietal 

lobe, putamen, spinal 

cord 

0.005-6.4: cere-
bellum, olivary 

nucleus, corpus 

callosum, lateral 

geniculate body 

References: 1[204]; 2[205]; 3[207]; 4[206]; 5[203]; Abbreviations: 5’NT: 5’-nucleotidase; ADA: adenosine deaminase; ADK: adenosine kinase; GDA: guanine deaminase; PNP: 
purine nucleoside phosphorylase. 
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ments of the nucleoside system may result in an alteration(s) 
in its function. An increase or decrease in the extracellular 
and intracellular concentration of nucleosides may also 
change nucleoside uptake via their transporters and thereby 
alter nucleoside function via nucleoside receptors in the 
brain. Thus, regionality in nucleoside metabolic enzyme ac-
tivity in different human brain areas, and their changes may 
reflect different roles of these enzymes in physiological 
functions and may cause pathophysiological processes in the 
brain. 

It has been revealed that nucleoside concentrations are 
unevenly distributed in different human brain areas and that 
they may be age and gender dependent [16, 20-22]. On the 
basis of the extrapolation method [19], Kovács and col-
leagues prepared the first [57] nucleoside map of the human 
brain [20]. High Ado and/or Ino, Guo and Urd levels were 
calculated in the cochlear nuclei, vestibular nuclei, temporal 
and occipital cortices, cerebellar cortex, caudate nucleus and 
nucleus basalis (Table 2), and the lowest concentrations were 
measured in the entorhinal cortex, zona incerta, substantia 
nigra, locus coeruleus, and habenula, among others (Table 
2). The highest and lowest nucleoside levels were measured 
in the cochlear nuclei and zona incerta, respectively. Moreo-
ver, both the nucleosides and their metabolites (e.g., Hyp, Xn 
and Ura) were unevenly distributed in the human brain [20].  

Levels of Ino and Ado increased with age in the human 
frontal cortex, whereas lower Ado levels and higher Urd, Ino 
and Guo concentrations were measured in middle-aged 
and/or elderly female cortical samples when compared to 
middle-aged and older males [21]. Taken together, these 
findings indicated that (i) increased levels of Ado may result 
from increased activity of 5’NTs (mainly e5’NT and/or cN-I) 
according to age and that (ii) different human brain 5’NTs 
activities may exist between females and males, consistent 
with findings obtained from previous animal studies [118, 
208-213]. These results suggested that (i) age and gender 
may modulate nucleoside levels and nucleoside metabolic 
enzymes activities and that (ii) the nucleosides may have a 
role in aging processes in the brain and in decreasing the 
effects of excitotoxic insults on the female brain [21]. 

3.2. Nucleoside Transporters 
Nucleoside transporters control the levels of nucleosides 

required to maintain the nucleoside balance in the extracellu-
lar and intracellular space and to exert their functions in 
brain tissue. Nucleosides are transported via the membranes 
of brain cells by two types of nucleoside transporters [15, 54, 
214]. The ENT family consists of four ENT transporter types 
(ENT1-ENT4), which achieve bidirectional facilitated 
(equilibrative) diffusion depending on extracellu-
lar/intracellular concentration gradient [15, 56]. Equilibrative 
S-(4-nitrobenzyl)-6-thioinosine (NBTI)-insensitive ENT 
types (‘ei’; e.g., ENT2) are inhibited by �M concentrations 
of NBTI, whereas NBTI-sensitive ENT types (‘es’; e.g., 
ENT1) are inhibited by three orders of magnitude lower lev-
els (nM concentration) of NBTI. Different types of ENT 
transporters can transport purines and pyrimidines (e.g., 
ENT1-ENT3) and their bases (e.g., ENT2 and ENT3). The 
concentrative nucleoside transporter (CNT) family consists 
of six CNT transporter types (N1-N6), which transport nu-
cleosides unidirectionally and in a sodium/proton-dependent 

manner (symport of sodium ions or sodium ions and protons 
with nucleosides into the cells) in the brain. Concentrative 
nucleoside transporters are classified on the basis of their 
transported nucleosides (e.g., CNT3 transports purines and 
pyrimidines, whereas CNT1 transports pyrimidines, Ino and 
Ado) and sodium/proton transport coupling [15, 23, 215-
218]. Nucleoside analogs with anti-viral and anti-tumor ef-
fects are transported via both ENT and CNT transporters 
[160, 214]. 

The uneven distribution of nucleoside transporters has 
also been demonstrated in the human brain [23, 215-218], 
which showed different expression patterns of ENT1-ENT4 
transporters (e.g., high ENT1, intermediate ENT3 and low 
ENT2 and ENT4 transporter density was demonstrated in the 
frontal cortex) with the exception of the thalamus, where 
ENT transporters are expressed at uniformly intermediate 
levels (Table 3). The distribution of CNT1 transporters was 
uniform, but the expression of CNT2 and CNT3 transporters 
were uneven in the human brain (Table 3). Relatively high 
expression of CNT2 and CNT3 transporters was demon-
strated in the cerebellum, putamen, hippocampus, medulla 
oblongata and pituitary gland, whereas intermediate/low 
activities were demonstrated in other brain areas, including 
the amygdala; frontal, occipital and temporal lobe; substantia 
nigra; thalamus; spinal cord; cerebellum; caudate nucleus; 
putamen; and nucleus accumbens (Table 3). This uneven 
distribution of nucleoside transporters may reflect the differ-
ent roles of nucleoside transporter types in neuromodulation 
at functionally different brain areas [23, 215-218]. 

3.3. Nucleoside Receptors 
Four known G-protein-coupled Ado receptor (P1 recep-

tors) subtypes (A1, A2A, A2B and A3) have been shown in 
neurons and glial cells [9, 23, 219, 220]. A1 and A3 receptors 
inhibit adenylate cyclase (AC) activity via Gi-proteins, 
thereby inhibiting cyclic AMP (cAMP)/protein kinase A 
(PKA)-evoked signaling processes. A1 receptors also stimu-
late phospholipase C (PLC) and can increase and decrease 
the activity of K+ and Ca2+ channels, respectively. Conse-
quently, this receptor subtype may inhibit synaptic transmis-
sion and hyperpolarize neurons, which can result in neuro-
protective effects. Furthermore, A1 receptors are involved in 
the regulation of sleep, cognition and memory and decrease 
cell metabolism (homeostatic functions). Importantly, both 
Ado and AMP are full agonists of A1 receptors [221]. A2A

and A2B receptors stimulate AC via GS- (A2A and A2B) and/or 
Golf- proteins (A2A) and facilitate neurotransmitter release. 
A2A receptors can modulate the processes of sleep, motor 
activity, cognition and memory, and both A2A and A2B recep-
tors mediate vasodilatation. Moreover, A3 receptors are in-
volved in neuroinflammation [1, 9, 13, 220, 222]. Gq pro-
teins can couple to both A2B and A3 receptors and stimulate 
PLC activity. A novel Ado receptor (A4) and receptors of 
Urd, Guo and Ade (UrdR, GuoR, and AdeR, respectively) 
have also been postulated [223-230].  

The expression level of Ado receptors is also region spe-
cific in the human brain [23, 25, 220, 231] (Table 4), which 
may reflect the different effects of Ado in brain structures 
under physiological conditions. Thus, alterations in Ado re-
ceptor density may result in pathological processes [24, 25, 
50, 183, 232]. High expression of A1 and/or A2A and A3
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Table 2.  Levels and Distribution of Nucleosides in the Human CNS.  

Concentration (pmol/mg wet weight) and distribution of nucleosides in the CNS 

Ado1 Ino1 Guo1 Urd1 

High 15.9-23.9: cochlear nuclei, 
vestibular nuclei, cerebellar 

cortex, supraoptic nucleus, 

flocculo-nodular lobe 

107.7-161.5: cochlear nuclei, 
spinal trigeminal nucleus 

17.7-26.4: cochlear nuclei; 
temporal and occipital cor-

tex; caudate nucleus, nucleus 

basalis, medial geniculate 
body, amygdala 

44.1-66.2: cochlear nuclei; temporal 
and occipital cortex; cerebellar 

cortex, amygdala, spinal central 

gray, spinal cord (ventral horn) 

Intermediate 8.0-15.8: spinal cord (ventral 
and dorsal horn), amygdala, 

temporal and prefrontal cortex, 

caudate nucleus, mediodorsal 

thalamic nucleus 

53.9-107.6: frontal, temporal, 
somatosensory, prefrontal, 

cingulate and occipital cortex; 

caudate nucleus, substantia 

innominata, nucleus basalis, 

nucleus accumbens, reticular 

formation (medulla oblongata), 
amygdala, cerebellar nuclei, 

spinal cord (ventral and dorsal 

horn), mediodorsal thalamic 

nucleus, spinal cord (white 

matter) 

8.9-17.6: insular, prefrontal, 
entorhinal, cingulate and 

somatosensory cortex; white 

matter (cerebral and cerebel-

lar), nuclei of diagonal band, 

substantia innominata, lat-

eral geniculate body, hippo-
campus, nucleus accumbens, 

cerebellar nuclei, mediodor-

sal thalamic nucleus, spinal 

cord (ventral and dorsal 

horn) 

22.1-44.0: cerebral and cerebellar 
white matter; somatosensory, pre-

frontal, cingulate, insular and en-

torhinal cortex; hippocampus, cau-

date nucleus, globus pallidus ex-

terna, anterior nuclei (thalamus), 

substantia nigra, inferior colliculus, 
nucleus accumbens, locus coeruleus, 

inferior olive, reticular formation 

(medulla oblongata), cerebellar 

nuclei, mediodorsal thalamic nu-

cleus, spinal cord (white matter), 

spinal cord (dorsal horn) 

Low 1.4-7.9: frontal, somatosen-
sory, cingulate and entorhinal 

cortex; hippocampus, nuclei of 

diagonal band, septum, globus 

pallidus externa, ventral lateral 

nucleus, habenula, pulvinar, 
zona incerta, preoptic area, 

paraventricular nucleus, dor-

somedial nucleus (hypothala-

mus), lateral hypothalamic 

area, substantia nigra, inferior 

colliculus, locus coeruleus, 
dorsal vagal nuclei, nucleus 

accumbens, spinal central gray 

29.8-53.8: entorhinal and 
parahippocampal cortex; hip-

pocampus, nuclei of diagonal 

band, habenula, pulvinar, zona 

incerta, paraventricular nu-

cleus, substantia nigra, inferior 
colliculus, locus coeruleus 

4.1-8.8: septum, habenula, 
pulvinar, zona incerta, 

paraventricular nucleus, 

lateral hypothalamic area, 

substantia nigra, superior 

colliculus, inferior collicu-
lus, locus coeruleus, spinal 

cord (white matter) 

15.7-22.0: ventral anterior nucleus, 
zona incerta, preoptic area, motor 

facial nucleus 

References: 1[20]; Abbreviations: Ado: adenosine; Guo: guanosine; Ino: inosine; Urd: uridine. 

receptors has been demonstrated in several human brain ar-
eas (e.g., in the parietal, temporal and occipital cortices, cau-
date nucleus; putamen; globus pallidus; nucleus accumbens; 
and hippocampus), whereas other brain areas showed inter-
mediate or low expression of A1, A2A and A3 receptors (e.g., 
in the frontal cortex, thalamus, medulla oblongata, midbrain 
and pons). A2B receptors are uniformly distributed in the 
human brain (Table 4).  

Age-related changes in Ado receptor distribution have 
been shown in the brains of both animals and humans. Since 
A1 receptor density was decreased and A2A receptor activity 
was increased by age, the excitatory(A2A)/inhibitory(A1)
effects/balance may also shift toward excitation via A2A re-
ceptors with aging [182, 233-240]. Consequently, increased 
Ado levels in the aged human brain may increase the release 
of neurotransmitters, which may have both positive (e.g., 
increasing acetylcholine release in dementia) and negative 
(e.g., increasing the risk of excitotoxicity) effects [12, 118, 
241, 242]. 

3.4. Correlations Between Elements of the Nucleoside 
System 

Interactions have been demonstrated between (i) regional 
differences in the nucleoside concentrations and the distribu-
tion of nucleoside metabolic enzyme activities and Ado re-
ceptor expression [20], (ii) NBTI binding site and the density 
of ADA immunoreactive neurons [243], (iii) ENT1 trans-
porters and A1 receptor density [23], (iv) 5’NT levels and A1

receptor density [24, 25] and (v) ADA and A1 receptor func-
tionality [201] in the nucleoside system. In contrast, the dis-
tribution of ENT2 transporters has not shown a correlation 
with either A1 or A2A receptor density in the human brain 
[23]. In this review, we discuss the association of 5’NTs with 
nucleoside levels, nucleoside transporters and Ado receptors.  

The nucleoside metabolic enzyme activity may be related 
to the uneven distribution of nucleosides in the human brain 
[20, 203-207] (Table 1 and 2). Intermediate or high 5’NT 
activity and/or low or intermediate ADA/ADK activity may 
increase the concentration of Ado, Ino, Guo and Urd 
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Table 3.  Relative Density of Nucleoside Transporters and their Distribution in the Human CNS.  

Relative density and distribution of nucleoside transporters in the CNS 

ENT transporters  

ENT11 ENT21 ENT32 ENT43

High frontal and parietal cortex midbrain, pons, cerebellum occipital and temporal lobe, 

corpus callosum, medulla 

oblongata, putamen 

temporal lobe, paracentral 

gyrus, amygdala, caudate nu-

cleus, hippocampus, medulla 
oblongata, putamen 

Intermediate temporal and occipital cortex, 
thalamus, midbrain, caudate 

nucleus, putamen, globus pal-

lidus 

medulla oblongata, thalamus frontal lobe, paracentral gyrus, 
pons, hippocampus, nucleus 

accumbens, thalamus, spinal 

cord, cerebellum (right) 

parietal and occipital lobe, 
pons, cerebellum (right), cor-

pus callosum, thalamus, pitui-

tary gland, spinal cord, sub-

stantia nigra, nucleus accum-

bens 

Low medulla oblongata, pons, cere-

bellum, hippocampus 

frontal, occipital, temporal and 

parietal cortex; hippocampus, 
caudate nucleus, putamen, 

globus pallidus 

parietal lobe, cerebellum (left), 

amygdala, caudate nucleus, 
substantia nigra, pituitary gland 

frontal lobe, cerebellum (left) 

CNT transporters  

CNT1 (N2/cit)4 CNT2 (N1/cif)4 CNT3 (N3/cib)5

High cerebellum, putamen, hippocampus, me-
dulla oblongata 

hippocampus, medulla oblongata, pituitary 
gland 

Intermediate 

Low 

Uniform distribution 

amygdala, cerebral cortex, frontal, occipi-
tal and temporal lobe; substantia nigra, 

thalamus, spinal cord 

frontal, parietal and occipital lobe; corpus 
callosum, cerebellum, amygdala, caudate 

nucleus, putamen, thalamus, temporal lobe, 

paracentral gyrus, pons, substantia nigra, 

nucleus accumbens, spinal cord 

References: 1[23]; 2[215]; 3[216]; 4[217]; 5[218]; Abbreviations: CNT transporters: concentrative nucleoside transporters; ENT transporters: equilibrative nucleoside transporters 

Table 4.  Relative Density of Ado Receptors and their Distribution in the Human CNS.  

Relative density and distribution of Ado receptors in the CNS 

A1
1 A2A

2,3 A2B
4 A3

4 

High parietal, temporal, and occipital cortex; caudate nucleus,  
putamen (medial), anterior nuclei (thalamus), medial nuclei 

(thalamus) 

caudate nucleus, putamen, globus 
pallidus, nucleus accumbens 

cerebellum, 
hippocampus 

Intermediate frontal, and cingulate cortex; nucleus accumbens, entorhinal 
cortex, hippocampus, amygdala, thalamic reticular nuclei,  

pulvinar, medial geniculate body 

Low globus pallidus, substantia innominata/nucleus basalis, ventral 

posterior nuclei (thalamus), lateral geniculate body, superior 

colliculus, inferior colliculus, substantia nigra, pons, medulla 
oblongata, spinal cord, cerebellar cortex, cerebellar nuclei 

frontal, temporal, parietal and 
occipital cortex; thalamus, hippo-

campus, medulla oblongata, mid-

brain, pons, cerebellum 

Uniform 
distribution 

other brain 
areas 

References: 1[25]; 2[23]; 3[231]; 4[220]; Abbreviations: A1/A2A/A2B/A3: A1/A2A/A2B/A3 subtype of adenosine receptors; Ado: adenosine 

(Fig. (1)), such as in the caudate nucleus and temporal cortex 
in humans. In addition, high 5’NT, PNP and GDA activities 
may correspond with low Guo and Ino levels, such as in the 
zona incerta. Low 5’NT and ADA activity and intermediate 
ADK activity may also correspond with high Ado levels, 

such as in the cerebellar cortex. In addition, low 5’NT, PNP 
and GDA activities may enhance the levels of Ino and Guo 
in the human cerebellum. Thus, (i) the activities of only sev-
eral nucleoside metabolic enzymes have been established in 
several human brain areas (e.g., occipital cortex), and (ii) 
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although we have sufficient comparable information of the 
nucleoside metabolic enzyme activities in different human 
brain areas, we do not have data on the nucleoside levels 
(e.g., in the parietal cortex) (Table 1 and 2); however, we can 
conclude that regionally different activities of nucleoside 
metabolic enzymes may generate regionally altered nucleo-
side concentrations in the human brain. Moreover, different 
nucleoside metabolism and neuron/glia ratios have been 
demonstrated in neurons and glial cells and in human brain 
areas, respectively [244-249]. These results suggest that spa-
tial differences in nucleoside distribution may result from (i) 
different neuron/glia ratios and different neuronal/glial nu-
cleoside metabolisms, (ii) spatially organized nucleoside 
metabolisms and (iii) different activities of nucleoside meta-
bolic enzymes in functionally different human brain areas 
[20]. Importantly, changes in the glia/neuron ratio may cause 
regional alterations of nucleoside metabolism and nucleoside 
levels [20], which may evoke different CNS diseases, such 
as major depressive disorder, bipolar disorders, Huntington’s 
disease, Alzheimer’s disease, schizophrenia and frontotem-
poral dementia [177-181].  

Functional relationships were revealed between different 
elements of the nucleoside system and its function under 
physiological and pathophysiological (e.g., hy-
poxic/ischemic) conditions. Intracellular levels of nucleoside 
triphosphates (NTPs) were approximately 0.2-10.0 mM, 
whereas the concentrations of the nucleosides were at least 
three orders of magnitude lower in the human brain. Thus, a 
small decrease in NTPs levels and/or changes in enzymatic 
activity of the nucleotide/nucleoside metabolic systems may 
cause a dramatic alteration in the nucleoside levels [20, 250-
255]. Extracellular nucleoside triphosphates (such as ATP 
and UTP) competitively inhibit the activity of e5’NTs, caus-
ing a delay in the onset of nucleoside production [58, 118, 
256-258]. Thus, the increased extracellular nucleotide levels 
(e.g., ATP) in the synaptic cleft (e.g., under hy-
poxic/ischemic conditions) may cause an accumulation of 
NMPs (e.g., AMP) to a greater extent compared to nucleo-
sides (e.g., Ado). The decrease in nucleoside triphosphate 
levels may result in relief of e5’NT inhibition and thereby 
elevate nucleoside levels and nucleoside transport into the 
brain cells anabolized into nucleoside mono-, di- and 
triphosphates derivatives [58, 84, 85, 257]. During normoxic 
conditions (at 3.6 mM ATP levels) [133], extracellular nu-
cleotides (e.g., ATP) are mainly catabolized into nucleosides 
(e.g., Ado) since the level of e5’NT inhibitor nucleoside 
triphosphates are lower than under ischemic conditions. Un-
der these conditions, intracellular ATP is catabolized into Ino 
via IMP (IMP pathway; AMPDA and cN-II may be activated 
by ATP) rather than into Ado, which maintained low cyto-
plasmic Ado levels [57]. Decreased levels of intracellular 
ATP under ischemic conditions (less than 2 mM ATP levels) 
[59] may slow down the nucleoside recycling system [88, 
133]. In addition, AMP is also degraded into Ino, but it is 
degraded via the Ado pathway since the degradation of ATP 
decreases the activation of AMPDA and cN-II [57, 59, 133] 
(Fig. (1)). In addition, under these circumstances, the Km

value for IMP increases from micromolar to millimolar 
[140]. As a consequence of the increased Ado levels, Ado 
may be released into the extracellular space via ENT trans-
porters and contribute to the protection of brain tissue cells 
via A1/A2 receptor activation (e.g., reduction of ischemic 

injury by vasodilatation and inhibition of glutamate release) 
[1, 13, 79, 118, 259-262].  

A tight interplay between extracellular ATP metabolism 
(involving AMP catabolism by e5’NT), activation/inhibition 
of Ado receptors and function of nucleoside transporters and 
nucleotide/neurotransmitter release has also been demon-
strated in rat hippocampal glutamatergic nerve terminals 
[115, 263]. Low frequency nerve stimulation may cause the 
release of a small amount of ATP into the synaptic cleft, 
thereby resulting in low extracellular concentrations of Ado 
from the degradation of ATP via the ectonucleotidase cas-
cade system and the release of Ado via ENT transporters. 
Subsequently, Ado may decrease neurotransmitter (and 
ATP) release via the activation of A1 receptors [115, 264]. 
The greater activation of A1 receptors compared to A2A re-
ceptors by Ado (derived mainly via nucleoside transporters) 
may be associated with the tight proximity of A1 receptors 
and nucleoside transporters in synapses [115, 263]. Indeed, 
the human ENT1 transporter distribution correlated with the 
density of A1 receptors in the brain [23, 265], which also 
strengthened the correlation between human ENT1 trans-
porter-mediated transport processes and A1 receptor-
mediated neuromodulation [23]. However, high frequency 
stimulation also increased the amount of ATP released from 
the cells, which enhanced the extracellular levels of Ado via 
ectonucleotidases resulting in (i) a stronger activation of A2A

receptors compared to A1 receptors and (ii) an A2A receptor-
evoked increase of neurotransmitter and ATP release as well 
as ENT transporter uptake activity [115, 263, 266]. Increased 
activation of A2A receptors by high Ado levels (derived from 
extracellular ATP metabolism) may be due to the close prox-
imity of A2A receptors and e5’NT, whereas decreased activa-
tion of A1 receptors may be due to limited Ado availability to 
A1 receptors via suppression of Ado spreading in synapses 
by the A2A receptor-evoked increase in Ado uptake [115, 
263].  

An increase in the expression and/or synthesis and activ-
ity of e5’NT may enhance neuromodulation by increasing 
Ado levels via Ado receptors [1, 267, 268]. Thus, the e5’NT 
activity may be functionally coupled with an activation of 
Ado receptors [81]. However, only a poor correlation has 
been demonstrated between A1 receptor agonist binding sites 
and e5’NT activity [24, 25, 269]. Intermediate/high activity 
of 5’NT, intermediate/high A1 receptor density, and 
low/intermediate A2A receptor expression have been ob-
served in the temporal cortex and several thalamic nuclei in 
the human brain, whereas brain areas with intermediate 5’NT 
activity, such as in the parietal lobe, putamen and caudate 
nucleus, showed high A1 and intermediate/high A2A receptor 
expression. In addition, low levels of 5’NT activity were 
correlated with low A1 and/or A2A receptor density in the 
human cerebellum and lateral geniculate body [23, 25, 204, 
231] (Table 1 and 4).  

Although the Ado uptake inhibitor dipyridamole showed 
no effect on the activity of e5’NT and e5’NT inhibition by 
anti-5’-nucleotidase IgG did not evoke an alteration in the 
Ado uptake into astrocytes [258], there may be a relationship 
between e5’NT activity and Ado transporters [270-272]. A 
close association between e5’NT and nucleoside transporters 
was demonstrated in vascular endothelial cells, heart cells 
and other cell types [270, 273], which indicated vectorial 
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transport of Ado via nucleoside transporters [258, 271]. 
Transport of Ado from AMP by e5’NT into the cells was 
more rapid compared to Ado in free solution. Consequently, 
e5’NT-catalyzed hydrolysis of AMP may contribute to Ado 
uptake [270, 271]. Taken together, e5’NT may function as an 
integral part of the nucleoside transport process [270, 271], 
and activity of e5’NT may be linked to Ado translocation in 
brain cells. Indeed, the ectonucleotidase system and nucleo-
side transporters may form a cycle for the control of vascular 
tone in vascular cells (release of ATP, ATP catabolism to 
Ado, termination of Ado action/vasodilatation by the uptake 
of Ado) after hypoxia [273]. High 5’NT activity may be at-
tributed to intermediate ENT1 and high ENT3 and ENT4 
expression in the human temporal cortex, whereas enhanced 
5’NT activity in the thalamus showed intermediate ENT 
transporter (ENT1-ENT4) activity [23, 204, 215, 216] (Table 
1 and 3). Importantly, the cerebellum exhibited low 5’NT 
activity and low ENT1, ENT3 and ENT4 density but high 
ENT2 density, which indicates the main nucleoside trans-
porter type(s) differs among functionally different human 
brain areas.  

Modulatory effects of 5’NTs on the puriner-
gic/nucleosidergic system and their physiologi-
cal/pathophysiological effects are dependent not only on 
their distribution/activity in the brain, but also on (i) the 
availability, proximity and distribution of nucleosides, nu-
cleoside transporters and nucleoside receptors in different 
brain areas and (ii) on relationships between nucleoside sys-
tem elements. However, alterations not only in the nucleo-
side levels but also in other elements of the nucleoside sys-
tem, which may modulate nucleoside functionality, such as 
5’NTs, may affect the physiological roles (e.g., cognition 
and memory, motor control, emotions, sensory information 
processing) of nucleosides [12, 265, 274-278] and cause 
pathophysiological conditions and diseases (e.g., Alz-
heimer’s disease, Parkinson’s disease and Huntington’s dis-
ease) [12, 279] in the human CNS.  

4. CONCLUSIONS: THERAPEUTIC TOOLS AND 
PERSPECTIVES 

4.1. Therapeutic Tools Against CNS Diseases Based on 
the Nucleoside System 

Drugs that modulate the nucleoside system are widely 
used, for example, (i) as anti-cancer and anti-viral therapies 
and treatment for gout (e.g., nucleoside metabolic enzyme 
inhibitors and/or synthetic nucleosides), (ii) as coronary 
vasodilators (e.g., nucleoside transport inhibitors), (iii) as 
vasodilators, and (iv) to treat cardiac arrhythmias, acute renal 
failure, carcinomas, rheumatoid arthritis and asthma (e.g., 
Ado receptor agonists and antagonists) [11, 13, 15, 38, 54, 
158, 280-286]. Modulation of the adenosinergic system is 
also effective against several brain disorders, such as multi-
ple sclerosis [287, 288], in which specifically affected brain 
regions are not known. Thus, the identification of brain re-
gions in which changes in one or more elements of the nu-
cleoside system may be associated with these diseases is 
likely impracticable. However, considering the regionally 
different physiological roles of nucleosides in the brain, re-
gional differences in the nucleoside system and its changes 
in affected brain areas may be related to the development of 

CNS diseases as previously discussed [11]. Moreover, re-
gional differences were demonstrated in the nucleoside sys-
tem of human brain areas implicated in several CNS diseases 
in which different drugs effects on the nucleoside system are 
or may be used later in treatment of the following CNS dis-
eases (Table 5): movement disorders such as Parkinson’s 
disease and Huntington’s disease (A1 receptor agonists, A2A

receptor agonists/antagonists and nucleoside transporter in-
hibitors) [13, 55, 183, 289-296], drug addiction and alcohol-
ism (A2A receptor antagonists and nucleoside transporter in-
hibitors) [13, 297-299], pain and migraines (A1 receptor 
agonists, A2A receptor antagonists, ADK inhibitors, recombi-
nant e5’NT and nucleoside transporter inhibitors) [13, 54, 
109, 283, 297, 300-302], mania and anxiety (A1 receptor 
antagonists; ADK, ADA or XO inhibitors, nucleoside trans-
porter inhibitors) [13, 303-305], schizophrenia (A2A receptor 
agonists, ADK, ADA or XO inhibitors and nucleoside trans-
porter inhibitors) [184, 299, 306-309], epilepsy (A1 receptor 
agonists, A2A receptor antagonists, ADK and XO inhibitors 
and nucleoside transporter inhibitors) [13, 46, 50, 51, 54, 
302, 310-316], sleep disorders (A1 receptor agonists, A2A

receptor agonists/antagonists and nucleoside transport inhibi-
tors) [13, 54, 283, 297, 299] and Alzheimer’s disease (A2A

receptor antagonists and nucleoside transport inhibitors) 
[186, 317, 318]. In addition, Urd and/or Guo and Ino may 
also have therapeutic potential against epilepsy, pain, anxi-
ety, schizophrenia, sleep disorders, ischemic injury, multiple 
sclerosis, Alzheimer’s disease and Parkinson's disease, 
among others [3, 6, 79, 319-335]. Thus, elements of the nu-
cleoside system are promising drug targets for the treatment 
of brain disorders, such as epilepsy, schizophrenia, Alz-
heimer’s, Huntington’s and Parkinson’s diseases. However, 
mechanisms underlying the regional differences in the nu-
cleoside system in specific areas of the human brain impli-
cated in CNS diseases have not yet been elucidated (e.g., 
thalamic relay nuclei, periaqueductal gray, rostroventrome-
dial medulla, and thalamic reticular and relay nuclei, tu-
beromamillary nucleus, and so forth, are involved in the 
physiological processes of pain and sleep). Thus, (i) to reveal 
the precise links between the regional differences of the nu-
cleoside system, which are modulated by age and gender, 
and brain diseases, (ii) to obtain evidence that changes in the 
nucleoside system are a consequence of mechanisms under-
lying brain diseases and (iii) to develop effective and safe 
therapeutic strategies against brain diseases based on the 
nucleoside system, future studies on the nucleoside system 
focused on all of the affected human brain areas are required.  

4.2. Modulation of 5’-Nucleotidase Activity: A New 
Promising Therapeutic Tool for the Treatment of Several 
CNS Diseases 

Since e5’NT-generated nucleoside levels may be suffi-
cient to exert modulatory effects via stimulation of their re-
ceptors and provide nucleoside uptake into the cells, an al-
teration of e5’NT activity may be involved in the progression 
of disorders in the brain and, as a consequence, modulation 
of e5’NT activity may be a potential target for the develop-
ment of drugs effective against several CNS diseases. 

It has been demonstrated that the activities of 5’NTs are 
altered under different pathological conditions. Increased 
cN-II (in Lesch-Nyhan patients with HGPRT deficiency) and 
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Table 5.  Regional Differences in the Nucleoside System in Human Brain Areas: Therapeutic Implications for Therapy in CNS Dis-
eases.  

Regional differences in the nucleoside system: therapeutic implications 

Regional differences in the nucleoside system in brain areas  
implicated in CNS diseases 

Diseases 
Drugs name: (pre)clinical, licensed 
or potential therapeutic application 

Ref. 

Thalamus, motor cortex, caudate nucleus, putamen, globus pal-
lidus, substantia nigra:
- different distribution of nucleosides (e.g., intermediate levels of Ado, 

Ino and Urd and high levels of Guo in caudate nucleus; low Ado, Ino 

and Guo and intermediate Urd levels in the substantia nigra) and their 

metabolic enzymes (e.g., intermediate and low activity of PNP in the 

caudate nucleus and putamen, respectively; intermediate 5’NT and 
GDA activity in the substantia nigra) as well as nucleoside transporters 

(e.g., high ENT4, intermediate and intermediate/low ENT1 and CNT3 

expression respectively, as well as low ENT2 and ENT3 density in the 

caudate nucleus; intermediate and low ENT3, ENT4, CNT2 and CNT3 

density in the substantia nigra) 

- high (A1 and A2A: caudate nucleus, globus pallidus and putamen) or 
intermediate/intermediate to low (A1 and A2A: thalamus) density of Ado 

receptors; low density of A1 receptors in the globus pallidus and 

substantia nigra 

- Parkinson’s disease 
and Huntington’s 

disease 

- A1 receptor agonists (in Parkinson’s 
disease) 

- A2A receptor agonists and/or an-

tagonists (in Huntington’s disease; 

e.g., N6-(4-hydroxybenzyl)adenine 

riboside) 

- A2A receptor antagonists (e.g., Is-
tradefylline/ KW6002 and Prelade-

nant in Parkinson’s disease) 
- nucleoside transporter inhibitors 

(e.g., N6-(4-hydroxybenzyl)adenine 

riboside) 

[11, 13, 20, 
23, 55, 183-

185, 203, 

204, 206, 

215-218, 231, 

289-296] 

Nucleus accumbens, prefrontal cortex: 
- intermediate (Ino, Guo and Urd) and low (Ado) levels of nucleosides 

in the nucleus accumbens; intermediate nucleoside (Ado, Ino, Guo and 

Urd) concentrations in the prefrontal cortex 

- intermediate (ENT3 and ENT4) and intermediate/low (CNT3) density 

of nucleoside transporters in the nucleus accumbens 
- intermediate A1 receptor expression and high A2A receptor density in 

the nucleus accumbens 

- drug/alcohol addic-
tion 

- A2A receptor antagonists 
- nucleoside transporter inhibitors 

[11, 13, 20, 
23, 184, 215, 

216, 218, 

231, 297-299] 

No/little data in the specific areas of nociceptive circuitry; e.g., inter-
mediate Ino, Guo and Urd and low Ado levels in the somatosensory 
cortex

- pain and migraine - A1 receptor agonists (e.g., GW-
493838) 

- A2A receptor antagonists 

- ADK inhibitors (e.g., GP-3269) 
- recombinant e5’NT 

- nucleoside transporter inhibitors 

[11, 13, 20, 
54, 109, 283, 

297, 300-302] 

Amygdala, prefrontal and cingulate cortex, locus coeruleus:
- high (Guo and Urd) and intermediate (Ado and Ino) nucleoside levels 

in the amygdala; intermediate to low nucleoside (Ado, Ino, Guo and 

Urd) levels in the prefrontal and cingulate cortices; low Ado, Ino and 
Guo whereas intermediate Urd levels in the locus coeruleus 

- intermediate/high activities of 5´NT and PNP in the amygdala and 

cingulate cortex; intermediate activity of ADA in the cingulate cortex 

- high ENT4 and low ENT3 transporter expression in the amygdala; 

intermediate/low CNT2 and CNT3 transporter density in the amygdala 

- intermediate A1 receptor density in the cingulate cortex and amygdala 

- mania, anxiety - A1 receptor antagonists (e.g., 
FR194921 in anxiety disorders) 

- ADK, ADA or XO inhibitors (e.g., 

allopurinol in mania) 
- nucleoside transporter inhibitors 

[11, 13, 20, 
23, 204-207, 

215-218, 231, 

303-305] 

Prefrontal cortex, nucleus accumbens, mediodorsal thalamic nu-
cleus, hippocampus, entorhinal cortex, amygdala: 
- intermediate level of nucleosides (Ado, Ino, Guo and Urd) in most of 

these brain regions (except e.g., amygdala: high Guo and Urd levels; 

entorhinal cortex and hippocampus: low Ado and Ino concentrations) 

- amygdala: intermediate 5’NT and high PNP activity; hippocampus: 
intermediate ADA and GDA activity 

- high (ENT4: amygdala and hippocampus; CNT2 and CNT3: hippo-

campus), intermediate (ENT3: hippocampus and nucleus accumbens; 

ENT4: nucleus accumbens), intermediate to low (CNT2 and CNT3: 

amygdala; CNT3: nucleus accumbens) and low (ENT1 and ENT2: 

hippocampus; ENT3: amygdala) nucleoside transporter density 

- schizophrenia - A2A receptor agonists 
- ADK, ADA or XO inhibitors (e.g., 

allopurinol) 

- nucleoside transporter inhibitors 

(e.g., dipyridamole) 

[11, 20, 23, 
184, 203-206, 

215-218, 220, 

231, 299, 

306-309] 
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(Table 5) contd…. 

Regional differences in the nucleoside system: therapeutic implications 

Regional differences in the nucleoside system in brain areas  
implicated in CNS diseases 

Diseases 
Drugs name: (pre)clinical, licensed 
or potential therapeutic application 

Ref. 

- high (A2A receptor: nucleus accumbens; A3 receptor: hippocampus), 
intermediate (A1 receptor: nucleus accumbens, amygdala, hippocampus 

and entorhinal cortex) and intermediate/low (A2A receptor: hippocam-

pus) expression of Ado receptors 

   

Hippocampus: 
- low Ado and Ino levels, intermediate Guo and Urd concentrations 
- intermediate ADA and GDA activity 

- high (ENT4, CNT2 and CNT3) and low (ENT1 and ENT2) expres-

sion of nucleoside transporters 

- high (A3), intermediate (A1) and intermediate/low (A2A) Ado receptor 

density 

- epilepsy - A1 receptor agonists 

- A2A receptor antagonists 
- ADK inhibitors (e.g., 5'-

iodotubercidin and GP-3269) 

- XO inhibitors (e.g., allopurinol) 

- nucleoside transporter inhibitors 

(e.g., dipyridamole) 

[11, 13, 20, 

23, 46, 50, 
51, 54, 203, 

205, 216-218, 

231, 302, 

311-316] 

Preoptic area (hypothalamus), nucleus basalis, tegmental nuclei 
(pons), lateral hypothalamus: 
- high to low nucleoside levels (intermediate Ino and high Guo levels in 

the nucleus basalis; low Ado and Guo level in the lateral hypothalamic 

area; low Ado and Urd level in the preoptic area) 

- low ADA, intermediate 5’NT and high ADK activity in the hypo-

thalamus 

- low A1 receptor density in the nucleus basalis 

- sleep disorders - A1 receptor agonists 

- A2A receptor agonists/antagonists 
- nucleoside transport inhibitors 

[11, 13, 20, 

54, 204, 205, 
207, 283, 

297, 299] 

Nucleus basalis, hippocampus, frontal, parietal and temporal cor-
tex: 
- intermediate to high nucleoside levels (Ado, Ino, Guo and Urd) in 

most of these brain regions (except e.g., hippocampus: low Ado and 

Ino level; frontal cortex: low Ado levels) 

- high and intermediate 5’NT (temporal cortex and parietal lobe, re-
spectively) and low and intermediate ADK (frontal cortex, parietal lobe 

and temporal cortex, respectively) activity; intermediate ADA (hippo-

campus, frontal, parietal and temporal lobe), PNP (frontal, parietal and 

temporal cortex) and GDA (hippocampus and parietal cortex) activity 

- high (ENT1: frontal and parietal cortex; ENT3: temporal lobe; ENT4: 

temporal lobe and hippocampus; CNT2 and CNT3: hippocampus) and 
intermediate to low (e.g., ENT1, ENT2 and ENT3 in the hippocampus) 

nucleoside transporter density 

- high (A1: temporal and parietal cortex; A3: hippocampus), intermedi-

ate (A1: hippocampus and frontal cortex), intermediate/low (A2A: hip-

pocampus, frontal, parietal and temporal cortex) and low (A1: nucleus 

basalis) Ado receptor density 

- Alzheimer’s disease - A2A receptor antagonists 
- nucleoside transport inhibitors (e.g., 

propentofylline) 

[11, 20, 23, 
186, 203-207, 

215-218, 220, 

231, 317, 

318] 

Abbreviations: A1 receptor/A2A receptor/A2B receptor/A3 receptor: A1/A2A/A2B/A3 subtype of adenosine receptors; ADA: adenosine deaminase; ADK: adenosine kinase; Ado: adeno-
sine; CNT transporters: concentrative nucleoside transporters; ENT transporters: equilibrative nucleoside transporters; GDA: guanine deaminase; Guo: guanosine; Ino: inosine; PNP: 
purine nucleoside phosphorylase; Urd: uridine; XO: xanthine oxidase 

e5’NT (in nucleotidase-associated pervasive developmental 
disorders) activity are associated with neurological symp-
toms, such as seizures and ataxia [35, 37, 38, 87, 336-338]. 
Increased serum 5’NT (enhanced AMP hydrolysis by e.g., 
glycosylphosphatidyl-inositol anchored and mainly soluble 
extracellular form of e5’NT) [82, 200] activity have also 
been shown in a chronic animal model of electroconvulsive 
shock [339], in patients with epilepsy and in clozapine-
treated schizophrenic patients [72, 73] and in pentylenetetra-
zol-induced seizures [74, 75]. Moreover, increased e5’NT 
activity has also been demonstrated in the rat striatum after 
chronic clozapine treatment [340], in different rat models of 
epilepsy evoked by administration of pentylenetetrazol, kai-

nic acid and pilocarpine [76-78] and in a rat model of Park-
inson’s disease [71]. Furthermore, 3-mercaptopropionic acid 
induced seizures, which increased e5’NT activity in the rat 
cerebellum [341]. The hippocampus of temporal lobe epilep-
tic patients also showed enhanced e5’NT activity [68]. In 
addition, the pilocarpine-induced increase in e5’NT activity 
may be prevented by anti-epileptic drugs (phenytoin, carba-
mazepine) [342]. These results suggest that e5’NT may play 
a role in (i) sprouting control, (ii) the modulation of epileptic 
activity and (iii) blockade of spontaneous seizures by the 
production of the inhibitory neuromodulator Ado [72, 77, 
343] and (iv) reactive synaptogenesis in temporal lobe epi-
leptic patients [68]. Focal ischemia also increased the activ-
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ity of cerebroprotective e5’NT, which may increase the lev-
els of neuroprotective Ado [63, 118, 126, 344, 345]. Rosu-
vastatin increased the extracellular levels of Ado via an en-
hancement of e5’NT activity and, as a consequence, in-
creased the vasodilatator response to ischemia [346]. 
Upregulation of e5’NT activity was also demonstrated in 
models of brain damage, such as the cortical stub injury 
[347, 348]. Thus, increased activity of e5’NT after brain in-
jury, epilepsy and other conditions may be an adaptive re-
sponse that increases the levels of extracellular Ado and en-
hances its neuroprotective/anti-epileptic/anti-epileptogenetic 
effects via A1 receptors [1, 13, 79, 349]. In addition, modula-
tion of e5’NT activity (e.g., by activators of e5'NT such as 
methotrexate) [350] may be a potential treatment used to 
improve cognitive and motor deficits, chronic inflammation 
associated with neurodegenerative diseases [114, 351], and 
febrile illness [352] via A1 receptors. Moreover, interferon-�
(IFN-�) upregulated e5’NT expression, which may have a 
role in the beneficial effects of IFN-� treatment in patients 
with multiple sclerosis via increased Ado levels-evoked en-
hancement of endothelial barrier function, suggesting the 
important neuromodulatory role of e5’NT in brain inflamma-
tion [126, 353-355]. However, both Ado and non-Ado nu-
cleosides (such as Urd and Guo) continuously form intra- 
and extracellularly from corresponding triphosphates and are 
recycled/transported by nucleoside transporters [57, 59, 88], 
which exhibit anti-epileptic/neuroprotective effects [39, 322, 
325, 356-358]. For example, activity of the ectonucleotidase 
cascade system increased after quinolinic acid-evoked sei-
zures in rat hippocampal slices [359]. Both Guo and GMP 
via metabolism to Guo by e5’NT showed anti-convulsant 
effects in rats [360]. In addition, pentylenetetrazol kindling 
increased GMP hydrolysis in the rat hippocampus [78]. Fur-
thermore, recombinant e5’NT exerted anti-nociceptive ef-
fects in mice via the hydrolysis of AMP and A1 receptor ac-
tivation [361]. Thus, application of recombinant e5’NT may 
be a therapeutic tool used to treat chronic pain [109, 300, 
361, 362] and may likely serve as a treatment approach in 
several other CNS diseases in which increased levels of Ado 
may have beneficial effects, such as epilepsy. Consequently, 
elucidation of the precise role of 5’NTs and changes in its 
activity in the pathomechanism of brain disease may provide 
an opportunity for the application of 5’NT modulation as a 
promising therapeutic tool against several CNS diseases. 

Inhibitors of e5’NT, such as APCP, 3,3�,4�,5,7-
pentahydroxyflavon (quercetin), 1-amino-4-[4-fluoro-2-
carboxyphenylamino]-9,10-dioxo-9,10-dihydroanthracene-2-
sulfonate (PSB-0952), sodium nitroprusside (SNP), and 1-
amino-4-[2-anthracenylamino]-9,10-dioxo-9,10-
dihydroanthracene-2-sulfonate (PSB-0963) as well as anti-
CD73 antibodies may potentially treat several diseases in the 
CNS [62, 124, 144, 254, 280, 363-368]. Indeed, APCP and 
quercetin reduced the proliferation of human glioma cells 
(U138MG cell line) by inhibition of e5’NT activity and, as a 
consequence, decreased the extracellular levels of the glioma 
cell proliferation/adhesion stimulator Ado [62, 367, 369, 
370]. Decreasing e5’NT activity may also serve as a promis-
ing therapeutic target in melanoma, which could be metas-
tatic to the brain [371]. In addition, inhibition of overex-
pressed cN-II may increase the cytotoxic effects of anti-viral 
and anti-cancer nucleoside analogs [159, 372]. However, 

APCP also showed convulsant effects in rats [373], and de-
creased activity of 5’NTs was demonstrated in brain sample 
homogenates obtained from patients with Alzheimer’s dis-
ease [374]. These results suggest that the therapeutic applica-
tion of 5’NTs inhibitors may be limited due to a reduction in 
the neuroprotective/anti-epileptic effects of nucleosides, such 
as Ado, Urd and Guo. 

Taken together, the available data suggest that applica-
tion of drugs effective on nucleoside metabolic enzymes, 
such as 5’NTs, nucleoside transporters and Ado receptors 
(Table 5), may represent effective and safe therapeutic ap-
proaches against different CNS diseases via the re-
establishment of the fine regulation of different physiological 
functions by the nucleosidergic system, which may be al-
tered under pathological conditions in the human brain.  

Since 5’NTs (and nucleoside transporters) are responsible 
for the activation of Ado receptors by increasing the ex-
tracellular Ado level, 5’NTs play a role in the regulation of 
physiological functions of nucleosides such as Ado. How-
ever, widespread distribution of Ado receptors has been 
demonstrated in several organs of human body and nucleo-
side system may be modulated by factors such as age and 
gender. Consequently, modulation of 5’NT activity by syn-
thetic inhibitor/activator drugs (i) may cause an alteration in 
Ado-dependent physiological processes in different organs 
of the human body, (ii) may evoke not only beneficial effects 
but also unwanted side effects and (iii) may cause patho-
physiological changes and diseases in the CNS. Thus, addi-
tional investigations should explore the potential use of 
5’NTs modulation in the treatment of different human dis-
eases.  

Further studies are required (i) to understand the links be-
tween unevenly distributed nucleoside levels and the distri-
bution of nucleoside metabolic enzymes activity, nucleoside 
transporters and Ado receptors under physiological condi-
tions in the human brain, (ii) to reveal changes in the nucleo-
side system induced by different diseases in affected human 
brain areas, (iii) to obtain evidence for the precise role of 
different elements of the nucleoside system in the progres-
sion of human CNS diseases and (iv) to develop useful and 
safe pharmacological strategies based on the nucleoside sys-
tem without (or with minimal) side effects against CNS dis-
eases. To achieve this goal, the generation and comparison of 
functional anatomical brain maps of the nucleoside system 
containing information on (i) extracellular nucleoside levels, 
(ii) intracellular/tissue nucleoside levels, (iii) activity of in-
tracellular nucleoside metabolic enzymes, (iv) activity of 
enzymes in ectonucleotidase cascade system, (v) expression 
of nucleoside transporters and (vi) nucleoside receptor den-
sity based on standard research/methodological conditions 
and simultaneous measurement of the same (age, gender, 
cause of death, etc.) samples from brain areas implicated in 
different brain diseases are required not only in healthy and 
diseased human brains but also in experimental animal mod-
els of different human CNS diseases.  
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ABBREVIATIONS  

5’-dUMP = 5’-deoxyuridine monophosphate 

5’NT = 5’-nucleotidase 

A1 receptor/ 
A2A receptor/ 
A2B receptor/ 
A3 receptor = A1/A2A/A2B/A3 subtype of Ado recep-

tors 
AC = Adenylate cyclase  

ADA = Adenosine deaminase 

Ade = Adenine 

ADK = Adenosine kinase 

Ado = Adenosine 

ADP = Adenosine diphosphate  

AMP = Adenosine monophosphate 

AMPDA = AMP deaminase 

APCP = �-methyleneadenosine-5’-
diphosphate  

ATP = Adenosine triphosphate 

AZT = 3’-azido-2’,3’-dideoxythymidine 

cdN = Cytosolic 5’(3’)-deoxyribonucleoti-
dase  

CDP = Cytidine diphosphate 

CMP = Cytidine monophosphate 

cN = Cytoplasmic nucleotidase 

cN-IA = Cytosolic 5’-nucleotidase IA 

cN-IB = Cytosolic 5’-nucleotidase IB 

cN-II = Cytosolic 5’-nucleotidase II  

cN-III = Cytosolic 5’-nucleotidase III 

CNS = Central nervous system 

CNT transporters = Concentrative nucleoside transporters  

CNT1/CNT2/ 
CNT3 transporters = CNT1/CNT2/CNT3 subtype of con-

centrative nucleoside transporters 
CTP = Cytidine triphosphate 

Cyd = Cytidine 

e5’NT = Ecto-5’-nucleotidase 

ENT transporters = Equilibrative nucleoside transporters  

ENT1/ENT2/ 
ENT3/ENT4  
transporters = ENT1/ENT2/ENT3/ENT4 subtype of 

equilibrative nucleoside transporters 
GDA = Guanine deaminase 

GDP = Guanosine diphosphate  

GMP = Guanosine monophosphate 

GMPR = GMP reductase  

Gn = Guanine 

GTP = Guanosine triphosphate 

Guo = Guanosine 

HGPRT = Hypoxanthine-guanine phosphoribo-
syltransferase 

Hyp = Hypoxanthine 

IFN-� = Interferon-�

IMP = Inosine monophosphate 

Ino = Inosine 

mdN = Mitochondrial 5’(3’)-
deoxyribonucleotidase  

NBTI = S-(4-nitrobenzyl)-6-thioinosine 

NDP = Nucleoside diphosphate 

NMP = Nucleoside monophosphate 

NTP = Nucleoside triphosphate 

PLC = Phospholipase C 

PMcH-U = ((±)-1-trans-(2-
phosphonomethoxycyclo-
hexyl)uracil) 

PMcP-U = ((±)-1-trans-(2-
phosphonomethoxycyclopen-
tyl)uracil) 

PNP = Purine nucleoside phosphorylase 

Thd = Thymidine 

Thy = Thymine 

UDP = Uridine diphosphate 

Ura = Uracil  

Urd = Uridine 

UTP = Uridine triphosphate 

Xn = Xanthine 

XO = Xanthine oxidase 
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