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EVALUATION OF THE PARAMETERS
OF A COMPLEX STATIONARY GAUSS-MARKOYV PROCESS

d{ =~ y¢dt 4 dy. ‘ (1a)
The complex covariance function of our process is of the form '
C(r)zA(r)+iB(r)=M[{(t) £t + r)]-éazcxp(-/\lr{ - iw7), _ 2)
where o2 = /).

If the process is observed on the intetval [0, T], then it is possible to determine its empirical
covariance function o
" Tt
-c(t)=a(-r)+ib(r)=-T?{_ S LT T ar. 3)
0 .

With probability one the empirical covariance fuaction has jts right derivative ar zero

where a is a parameter, introduced above, which characterizes the inteasity of the ‘“‘white noises’’

#'(2) and ¢’ (), and )
sfz';—”g(o)’z““mg” Sg“%S'C(f)l"’dt» ’=%Slcml’de‘.

0 o
The integration is the expression for r is performed widch fespect to the angular vatiable 6, which
is determined from the equation: '

lé(t) =L ()] %D,

In Figure 1 is given the empirical covariance function ¢(7) for Chandler

pates of the earth’s pole,* ,

* The instantaneous axis of the earth’s rotation is displaced relative to the small axis of the earth’s ellip-
soid (the so-called "*free nutation’’). These displacements also contain a periodic component with an angual
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t investigate the problem of estimation of the parameters A and o,
ure in the space of the sample fuactions of our process for the inte
lso iatroduce the standard measure

‘Denote by P the probability meas-
wval [0, 7). In the same space we

V=Lxp,
vhere L is the usual Lebesgue measure on the plane £(0), and W
leasure on the space of increments ()= ¢(0)
he stochastic process X (e).

is the two-dimensional Wiener
with the same characteristics which are assumed for

Figure 1. v = 0,1-n; n = 0,1,...,156

‘an be shown (see [2, 3], that .

dpP 2 2 e

W =C‘lexp[—~ ?’—Zz-m—ng»—%sf‘% AT L %Tr],
re C is a constant. The formula (4) shows that the s
of statistics for this problem.

4

ystem of three statistics is a sufficient sys-

Differentiating the expression

2 o .
L::log%:c’-klogk-—-p;m TSE——-‘;;—SI—I—AT—F-;Tr

respect to @ and A, we get the equations

A oL Or2. T _ 4. '
W= gt gr=0; )
2
oL 1 Aoae S .
A= w T g IsE—o+T=0. - (6

. A
€ equations serve for the determination of the maximum likelihood estimates & and A From equa-
5) we obtain

W = '-—2— . . (*)
52
Figure I was obtained as a result of the data processing of Table 6 from A. Ja. Orclov’s paper [1]. From
aonﬁ‘;a:cs x(t) and y(t) in this table 2 component with an annual period is singled out i

and the residual is

months, A regular character of the obtained spiral may suggest a supposition that the parameter A also can
timated in a very precise way. This, however, is not the case, as will be explained ac the end of this note.

¢ detailed exposition of the Technique of the calculations and a discussion pf the
hed elsewhere. .
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It can be shown that

O—0 LY a
A y (@) = —
¢ (w) (©) Ts?

is normally (0.1) distributed (this is an exact result and not an asymptotic one!). The equatioan (6)

always has a unique positive solution. Denoting AT =«, AT = £, we obtain the following equation -

for X: :

R4 (h -1 R -1 =0,

where hl = s%/aT, hz = s%/aT. ) ' : ,
The distribution of statistics hl and %, and, hence, also the distribution of K depeads only on

the parameter k. Since K has a continuous disuibution, it is possible to find a k such that for any a,

0<a<1 andany k,0 <k <o,

: P> k) = a. . 100
Inverting the function ‘ ) ) :
k=k,(x),
" we get the function
K =k, (k).

(It has been established that the function k (k) varies monotonically from 0 to « as x varies from 0
to oo; thus, the inversion is possible and is unique.)

Clearly,

o Pl <k (R)| K] = a. S (8)
We have organized the calculations of the function ko (K) for a = 0.1; 0.05; 0.025; 0.01; 0.005;
0.001; 0.9; 0.95; 0.975; 0.99; 0.995; 0.999. The results will be published after these calculations

.z

have been completed. .

For small values of X the equation (8) is equivalent to:

P(;€<u>c)=exp(— —3‘—), ®

i.e., the ratio K/x has )(2 distribution with two degrees of freedom.

For large K the equation (8) is equivalent to:

| P(x<,’2 "iL' uV;\)::: ;’712—; \' e—ti2 dt N : (10)

i.e., the estimate of K is asymptotically normal with variance
0?(8) ~ &, (11)
3. In the case of the displacement of the earth’s pole, mentioned at the beginaing of this note, the

following values were obtained on the basis of observations for T = €0 years*

* The introduction of the Wiener functions ¢ and ¥ in the equation (1), i.e., of the perturbations of “white
‘noise’’ .type is, of course, a crude idealization for the case of the earth’s pole displacement. It would have been

more correct to write: , ) ,

E=-M-wn+f n'=ut-)p+g :
However, the data from [1] shows that the values of functions f(t) and g(t) at the periods of time 2, which are
several years apart, are practically independent. Thus, the substitution of functions f and g by the “equivalent
white noise’ is legitimate. The error introduced in the determination of the intensity a of this equivalent
white noise is, apparenty, sufficiently small that it does not significantly influence the results of the estimation
of parameter A The value & is calculated from a discrete analogy of the formula (*), which was obtained using
the maximum likelihood method for the "“sy stem with discrete time,”’

See also [0] concerning the estimation of paramerers ) and @ for the case of the displacement of the earth’s
pole. The results obtained in are close to our results: \ = 1/15, 2n/w= 1.193. Similar values also have been
given by Jeffreys {7. However, in papers [5, 8] sharply differing values are indicared: A=0.3and A=0.01.

The teason for these deviations will be explained elsewhere.
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©=5.274, K=3.6, 2m & = 1.191, o (27: &) = 0.006.

The asymptotical formula (11) gives
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o2(K) = 3.6.

Since « is a fortiori positive, while the formula (10) gives for a <0.03 a negative estimate kg,

1t is evident that the asymptotics of the formula (10) is not yet suitable,

The calculations performed give the following estimates:

Ro.90 = 9.5, 3545 =6.2 » Koo =T7.8,
%010 =127, %05 =0.82, ) 405 = 0.46,

These values correspond to the following estimates of A:

2'o.'.'o = 0.09, ‘ l0.95 = 0.10, )'o.m. =0.13 ’
AO.IO = 0-02 » lo.o,', = 0.0] ’ 7-0‘025 = 0.008 .
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