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ABSTRACT: Strings on the surface of gift boxes can be modelled as a special kind of cable-and-joint struc-
ture. This paper deals with systems composed of idealised (frictionless) closed loops of strings that provide
stable binding to the underlying convex polyhedron (‘package’). Optima are searched in both the sense of
topology and geometry in finding minimal number of closed loops as well as the minimal (total) length of
cables to ensure such a stable binding for simple cases of polyhedra.

1 INTRODUCTION

1.1 Loops on a polyhedral surface

There are some practical occurrences of closed strings
on polyhedral surfaces. For example, mailed pack-
ages are traditionally bound by some pieces of string.
Another example is from basketry, when a woven
pattern over a polyhedral surface is also formed by
some (mainly closed) strings (Tarnai, Kovács, Fowler,
& Guest 2012, Kovács 2014). In both cases, strings
are driven along geodesics of the underlying surface
(Fuchs & Fuchs 2007) in order to ensure that fasten-
ing of the network should not modify the geometry of
strings.

Figure 1 shows two typical bindings of gift boxes:
the picture to the left with horizontal and vertical
pieces is more common but the skew string to the right
is also applied (mainly in Japan). Although both so-
lutions are well enough for secure wrapping, an ide-
alisation assuming no knotted strings and no friction
makes possible to free the package from both bind-
ings without any damage or even extension of strings,
just by sliding them along the surface of the package:
these loops cannot provide stable equilibrium by pre-
stressing. It is therefore a natural question: which are
the suitable topological and geometrical conditions
for a set of such loops to keep the package tightened
in the above sense?

For further purposes, let us introduce the term sim-
ple loop for a closed string that (i) is interlaced with
each its neighbour exactly once and (ii) has no self-
intersection; otherwise the loop is termed complex. In
another aspect, a loop will be referred to as convex if
it has no change of direction in different senses (left-
right) when followed along the underlying surface,

and concave otherwise (for example, ‘zigzag’ loops
with alternating turns are concave). In these terms, the
loop on the left hand side of Fig. 1 is complex due to
the self-intersection at the top and concave because of
the two rectangular turns with different handedness
at the bottom (such connections will be called self-
binding from now on); whereas the skew string to the
right is simple and convex (by having no turns within
the polyhedral surface at all).

1.2 Mechanical model

Cable-and-joint networks are most commonly mod-
elled as trusses, i.e., with geometric constraint func-
tions on the distances of connected nodes. There are
well-known methods to detect inextensional mecha-
nisms as well as states of self-stress as some left and
right singular vectors of the compatibility matrix of
the assembly, see e.g. Pellegrino (1993). Even in the
presence of mechanisms and a state of self-stress, it
may occur that this latter one results in an increasing
potential energy when mobilising the structure in any
possible directions of mechanisms. It means that none
of such mechanisms can be higher than second-order
infinitesimal, and pre-stressing yields a stable equilib-
rium of the assembly (Connelly & Whiteley 1996).

For frictionless loops on polyhedral surfaces it is
necessary to insert extra nodes into the described
model at edge crossings and turn points of loops (i.e.,
where a loop changes its direction either together with
or within the polyhedral surface). At the same time,
geometric constraint should be written for the full
length of the loop instead of all straight segments
(‘bar-length constraints’), which means that all rows
in the compatibility matrix C pertaining to segments
of a loop should be summed up instead in a single



Figure 1: Typical wrappings (bindings) of packages with vertical-horizontal strings (left) and with a skew string (right).

row. Likewise, when testing the structure for second-
order rigidity, second derivatives of such a summa-
rized loop-length constraint should be calculated as
the sum of second derivatives of each bar-length con-
straint Fi times the member force Si involved (it is
quite straightforward to see that member forces in
each segment of a loop are the same without fric-
tion). Such derivatives form the Hessian matrix H of
the expression

∑

SiFi. If the column vector space of
infinitesimal mechanisms is denoted by v, then sign
definiteness of W = v

T
Hv is a sufficient condition

for the existence of second-order stiffness (imparted
by pre-stressing) against any mechanism (Tarnai &
Szabó 2002).

If similar questions arise on strings on a spheri-
cal rather than polyhedral surface, note that an analo-
gous method for spherical trusses has been developed
in Kovács & Tarnai (2009). For nonsmooth (poly-
hedral) surfaces we adopt two assumptions: (a) no
strings can pass any vertex of the polyhedron, (b) no
connections of strings can appear on any edge of the
polyhedron (in this sense, ‘connection’ can mean ei-
ther a simple under/overcrossing of strings or a point
when two pieces of string change their directions by
twisting upon each other; this latter kind of point will
be termed binding point). Before presenting numeric
tests for loops, some statements will be proved in the
following chapter.

2 GENERAL CONVEX POLYHEDRA WITH A
SINGLE LOOP

Consider a rectangular block bound by a simple loop
as shown in Fig. 2 in dashed lines. If such a bind-
ing is in equilibrium along the surface of the block,
any angle between the string and a crossed edge must
be the same before and after that crossing; therefore
any simple loop on any convex surface can obviously
be developed into a straight line between two parallel
copies of an edge. Let us now translate that develop-
ment along the respective edge until the loop reaches
a vertex (the sum of angles of polygons or simply ver-
tex angles at any vertex must be less than 2π due to
convexity): any further translation resul ts in a defini-
tive loosening of the loop (shown in solid lines). From
this observation we can formulate

Theorem 1. Simple closed loops can provide no sta-
ble binding on any convex polyhedron.

This theorem can easily be extended to any single
loop with arbitrary number of self-bindings with the
following argument. Consider a point of self-binding
as a joint of our generalized truss: because of the con-
stant force in all four segments adjacent to our point,
those four forces must appear with pairwise coinci-
dent lines of action. This makes possible to change
connectivity from angulated to straight without mod-
ifying the equilibrium of such a joint, yielding thus

Theorem 2. A complex closed loop can provide no
stable binding on any convex polyhedron.

3 RECTANGULAR BLOCKS WITH MULTIPLE
LOOPS

If at least two loops are used in a binding, they must
meet at some binding points. It results then in several
changes in directions of strings, making impossible to
follow a single development of the polyhedron as seen
in Fig. 2: geometry of loops in equilibrium turns to be
highly sensitive to the geometry and topology of the
underlying polyhedron. Considering only rectangular
blocks (with edges a, b, c) bound by at least two loops
from now on, let us depart from the traditional (rect-
angular) but obviously neutral binding pattern shown
in Fig. 3a. The first idea can be to bind two simple
loops together following the sample of Fig. 3b, but it
is easy to prove that such a pair of loops is still in-
sufficient: consider a synchronised finite translation
of the binding point along the bisector of right angles
marked by the arrow. If one departs from three mutu-
ally perpendicular simple loops then all simple cross-
ings are replaced by binding points, configurations of
Fig. 3c-d can also be obtained (the term completely
bound is used to show that no simple crossings re-
mained).

Numeric tests filtered 21 independent infinitesi-
mal mechanisms for the case c) with W being sign-
definite. It is easy to proof even by inspection that no
piece of strings can be transformed into an oblique po-
sition since it would result in a total length of strings
larger than 4(a+ b+ c). Consequently, any given dis-
placement of a binding point determines uniquely all
other four binding points on the adjacent two loops



Figure 2: Binding a rectangular block: simple loop corresponding to a simple (non-intersecting) geodesic and its development is shown
in dashed lines. The development in solid line is obtained by translation, notice its missing segments and corresponding loose parts of
the string on the block.

Figure 3: Different bindings on a rectangular box: unbound, neutral double loop (a), doubly bound, neutral double loop (b), completely
bound, stable quadruple loop (c), completely bound triple loop with a zigzag (d); convex loops in cases c-d are highlighted; six small
arrows mean concerted displacements with a single degree of freedom.

etc. that leads to contradictory displacement vectors
just in the next step.

It is quite straightforward to see again that if there
are only three loops in such a rectangular arrange-
ment, they either correspond to a set of three mutu-
ally bound loops (as if two bound ones in the case (c)
were transformed into a single one by self-binding)
or two loops are disjoint and the topology of case
(d) is obtained. Even without a computational proof,
one can see here that finite displacements of binding
points according to the figure (oblique motions occur
along bisectors) results in no change either of joint
equilibria or loop lengths: it is a neutral configura-
tion. Interestingly, however, if the rest-length of two
convex loops decreases but the zigzag loop is elon-
gated accordingly, a stable equilibrium with oblique
segments can be found by any iterative form-finding
procedure (such geometries, except those having D3d

metric symmetry on a cube, are not obvious to get an-
alytically).

In summary, for configurations where each face of
the box contains exactly one binding point and each
edge of the box is crossed by exactly one string, we
can state

Theorem 3. The minimal total length of strings that
can be achieved by four loops is 4(a+ b+ c), and the
same optimal value can be arbitrarily approximated
(but never achieved) by three loops with one being a
zigzag loop in any stable configuration.

4 SIMPLE SOLIDS WITH TWO LOOPS

As far as Section 3 dealt with bindings derived from
some simple closed geodesics, now a different con-

cept will be introduced. Consider a point at random
on the polyhedral surface and start drawing a geodesic
from there at random again. The geodesic (typically
not a simple closed one) will sooner or later intersect
itself, let us denote that point of intersection by A.
Consider now the segment AA as a closed loop with
a turn at A: the internal angle 0 < γ < π measured
here is determined by the total angular defect of ver-
tices inside the loop according to the Gauss-Bonnet
formula for polyhedral surfaces:

∑

Di +
∑

(π− γj) = 2χπ, (1)

where Di stands for the angular defect (2π minus the
sum of vertex angles) at the ith vertex; χ is the Euler
characteristic of the surface (χ= 1 for any polyhedral
domain with a single continuous boundary); and γj
measures the (oriented) angular deviation at the jth
turn within the surface.

4.1 Rectangular blocks

A rectangular block has Di = π/2 at any vertex, so
the turn at A can only be of γ = π/2, as well as the
number of vertices inside the loop is exactly three.
Such a loop with only one turn cannot be in equilib-
rium in itself but may be balanced by another one if
bisectors of both turn angles γ coincide. For the exis-
tence of a two-loop system in equilibrium for rectan-
gular blocks it is therefore a necessary and sufficient
condition that string segments should follow a closed
geodesic with at least one self-crossing (where the
loops are then split). Fig. 4 shows a 3D image and
the development of such a loop with point A located
at a face centre, which results in a C2 symmetry for



Figure 4: Stable binding of a rectangular block by two simple convex loops. Each loop encompasses three vertices and has therefore a
rectangular turn at point A (a); development of the block along the string: any finite displacement of the chord AA along the arc with
a central angle π/2 preserves compatibility (b). Small grey markers help identification of faces.

the entire (two-loop) configuration (symmetry is used
here to ensure that the other loop also runs along a
closed geodesic). It is left only now to check whether
or not a finite displacement exists for such a pair of
loops: it is relatively easy since the displacement of a
(straight) development of the loop is sufficient to look
at. Keeping in mind that two identical faces marked
at their corner must be transformable into each other
by a rotation by π/2, the centre C of rotation is lo-
cated a+ b/2 to the right and a+ b+ c/2 down from
the leftmost face centre A. If (and only if) line AA is
moved into the position A′A′ (with smaller thickness
in the figure) along the circle centered at C, the closed
shape of the loop with rectangular turn is preserved.
Thus, a compatible path of point A of one loop is con-
vex from the side of the loop itself, but the same holds
for its neighbour; therefore no finite motion exists for
such a pair of loops. It allows us to formulate

Theorem 4. For some dimensions a, b, c there exists
a pair of closed, simple and convex loops aligned to
some self-intersecting geodesics such that they pro-
vide a stable binding for the rectangular block.

Five comments should be made to this result:
(i) The total length obtained by double loops is indeed
smaller than that found in Theorem 3, since

(2AA)2 = (4a+ 3b+ c)2 + (b+ c)2

≤ (4a+ 3b+ c+ (b+ c))2 < (4a+ 4b+ 4c)2. (2)

(ii) This optimum does not belong to an unique shape:
as closed geodesics can be translated (see the proof of
Theorem 1), the binding point can be moved from the
symmetric position (the symmetry itself can be lost)
but finite motions still cannot exist for the two-loop
assembly for reasons quite similar to those given at
Theorem 4.
(iii) The net and geodesic segment AA shown in
Fig. 4b do not always exist. Fig. 5 shows 6 possibil-
ities for individual (simple) loops with three internal
vertices, from which case (a) corresponds to Fig. 4.
One can check by these schematic ‘geodesics’ that
such loops on a cube can only be of type (c), since

no other lines are straight on a cubic net.
(iv) Just for the sake of completeness, let us remark
that two-loop configurations for general a, b, c may
appear aligned with generically asymmetric complex
geodesics (i.e., for which no translation of binding
point to either a face centre or edge midpoint exists)
but this is left out of consideration here.
(v) A detailed parametric study proves that all six
cases presented above are possible for values c not ex-
cessively large compared to a and b: long and slender
packages can only be bound in this way by pairs of
complex loops; making thus possible infinitely many
developments of those loops in addition to two cases
shown in Fig. 5a,d. This problem is not discussed here
either.

4.2 Some numeric optima

This section compares some newly found optimal
configurations in terms of total length of loops. The
basis of comparison will be the minimum length
4(a+ b+ c) for four-loop solutions discussed in Sec-
tion 3. Consider first the case (c) of Fig. 5 for testing
the optimum of the cube. In general, the ratio rc of
optimal and rectangular binding can be written as

rc =

√

(4a+ 3b+ 2c)2 + (b+ 2c)2

4(a+ b+ c)
. (3)

Although it is always smaller than 1 because of the
triangle inequality (even smaller for data where c is
predominant, but c is limited by the net of block), a
particular number can be given for the cube, i.e., when
a = b = c:

rc,cube =

√
10

4
. (4)

Another example we look at is of case (b). The rea-
son for doing so is that there is a loop over less faces,
hopefully, with a ‘better’ optimum. Check first the
minimum value of c in function of a and b (the straight
geodesic should pass above the left angle 3π/2 of the
net):

c

2a+ 2b
>

2b

2a+ c
→ c > 2b. (5)



Figure 5: Possible arrangements of loops pertaining to a symmetric pair on rectangular blocks: three dots indicate vertices inside a
loop. Cases (a)-(c) and (d)-(f) are different in the relative position of the binding point to the three vertices; binding points in cases(a)
and (d) are face centres, otherwise edge midpoints. case (g) shows 3D realisation of (c) with cubic geometry; binding points can be
moved off the edge by a small translation of the entire geodesic according to the initial assumptions.

Let us choose now for simplicity this lower limit of c
and a = b = c/2; now the ratio rb is

rb =

√

(4a+ 2b+ c)2 + (2b+ c)2

4(a+ b+ c)
=

√
5

4
. (6)

It is clearly visible therefore that a prism of aspect
ratio 1:1:2 can be bound even more efficiently by two
oblique strings than a cube.

4.3 Tetrahedra

Regular tetrahedra have no complex (non-simple)
geodesics (Fuchs & Fuchs 2007), therefore no state-
ment like of Theorem 4 holds for them. By intuition,
a four-fold binding similar to that shown in Fig. 3c
seems to be stable and indeed proves to be rigid to the
second order, see Fig. 6a. We note that such configu-
ration does not obey to the initial assumption that all
bindings are lie off the edges. Interestingly, the lack of
self-crossing geodesics excludes only two-loop con-
figurations with a single binding (more precisely, if
the angular defect is more than π at two or more ver-
tices, two loops with a single binding could occur
even with different angles γ at turns), it is still possi-
ble, however, to look for two-loop solutions with two
or more bindings. Intuitively again, let us use sym-
metry and look at the configuration shown in Fig. 6b:
both loops are triangular, convex and complex (due to
triple connection). Numeric tests showed its second-
order rigidity against any mobilisation, which is a
proof for the following

Theorem 5. There exists a stable binding for a regu-
lar tetrahedron by two convex and complex loops.

Remarks: (i) If the perimeter of the central (grey)
loop approaches zero, the total length of loops ap-
proaches four times the height of triangular faces. In
the course of this transition, no angles are modified,
therefore stability can be extended to all this family
of two-loop configurations. Compared to the length of
loops in the case (a), the following ratio is obtained:

rtetra =
4(a

√
3/2)

12(a/2)
=

√
3

3
. (7)

(ii) The configuration (b) seems to be realizable as a
stable binding for irregular tetrahedra or even other
n-gonal pyramids but it is not proved here.

5 DISCUSSION

Following the common style of package binding with
rectangular crossings on rectangular boxes, four- and
three-loop stable configurations were found by bind-
ing strings upon each other; theoretical minimum of
their total length was found at 4(a + b + c). In an-
other type of binding, a minimum of two simple con-
vex loops (aligned with self-crossing geodesics) were
found for such blocks in the neighbourhood of six
symmetric configurations. The possible development
of loops and the net of block is sensibly dependent
on block edge lengths, and the categorization into
six configuration types is not proved to be complete.
Without the aim of completeness again, numeric op-
tima (with respect to the length of four rectangular
loops) were calculated for some geometries, which
showed considerable reduction in total length com-
pared to the traditional binding patterns. In parallel,
some regular tetrahedral bindings have also been in-
vestigated: an optimal solution both in number (two)
and total length of loops is found. The results seem to
be extendible to irregular solids as well but still no rig-
orous proof is found for that. It must be emphasized
that, even conjectured, no rigorous proofs are given
either for the statement that solutions described as op-
timal cannot be improved in some way; it is left for
future investigations. Another open question is the op-
timum analysis of irregular solids topologically iden-
tical to the cube: there may not exist close geodesics
at all, but pairs (or triplets) of loops in a stable config-
uration might still be found.
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Figure 6: Binding regular tetrahedra: with four simple convex loops (a); with two convex loops and 3 binding points (b).
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