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Abstract

In this paper we show that if Y is a subsemilattice of a finite semilattice indecomposable

semigroup S then |Y | ≤ 2
⌊
|S|−1

4

⌋

+1. We also characterize finite semilattice indecomposable

semigroups S which contains a subsemilattice Y with |S| = 4k+1 and |Y | = 2
⌊
|S|−1

4

⌋

+1 =

2k + 1. They are special inverse semigroups. Our investigation is based on our new result
proved in this paper which characterize finite semilattice indecomposable semigroups with a
zero by only use the properties of its semigroup algebra.

1 Introduction and motivation

It is known ([17]) that every semigroup is a semilattice of semilattice indecomposable (s-indecom-
posable) semigroups. In the literature of the theory of semigroups there are many papers about
s-indecomposable semigroups (see, for example, the papers, [1], [6] - [11], [15], [16], [18], and the
books [4], [12]). Some of them deal with the s-indecomposable semigroups without idempotents,
the others investigate the s-indecomposable semigroups containing at least one idempotent. In
this paper we deal with finite s-indecomposable semigroups in terms of what can be said about the
size of their subsemilattices. The answer is known in special classes of semigroups. In the classes
of semigroups investigated in [1], [6] - [11], [18], the finite s-indecomposable semigroups are ideal
extensions of special completely simple semigroups by nilpotent semigroups. As ef = fe implies
e = f for every idempotent elements e and f of a completely simple semigroup, the cardinality
of the subsemilattices in a finite s-indecomposable completely simple semigroup is one.

The situation is more interesting in general. In our present paper we show that if Y is a

subsemilattice of a finite s-indecomposable semigroup S then |Y | ≤ 2
⌊
|S|−1

4

⌋

+ 1. We also show

that there are finite s-indecomposable semigroups S which contain a subsemilattice Y such that

|Y | = 2
⌊
|S|−1

4

⌋

+ 1. Moreover, these semigroups are characterized here, when |S| = 4k + 1.

∗This work was supported by the National Research, Development and Innovation Office NKFIH, 115288.
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2 Preliminaries

Let S be a semigroup. Let C[S] denote the semigroup algebra of S over the field C of all complex
numbers. The contracted semigroup algebra of a semigroup S with a zero (over C) will be denoted
by C0[S] (see [13, p.35]).

For a finite dimensional algebra A over C, the Jacobson radical of A will be denoted by J(A).
It is known that J(A) is the set of all properly nilpotent elements of A. We will use the following
well-known facts: the factor algebra A/J(A) is semisimple (and so, for a finite semigroup S,
C[S]/J(C[S]) is semisimple), moreover a finite dimensional algebra A over C is semisimple if and
only if A is isomorphic to

⊕k
i=1Mni

(C), where Mn(C) denotes the associative algebra of all n×n
matrices over C.

If a semigroup S has a minimal ideal KS , then KS is called the kernel of S. Every finite
semigroup evidently has a kernel. If a semigroup S has a kernel, thenKS is a simple subsemigroup
of S [2, Cor. 2.30. p.69]. Every finite simple [0-simple] semigroup is completely simple [completely
0-simple] by [2, Cor. 2.56. p.83].

For Rees matrix semigroups we will use the notation of [2, p.88]. Rees Theorem [2, Thm.
3.5. p.94] characterizes the completely simple [completely 0-simple] semigroups. A semigroup is
completely 0-simple if and only if it is isomorphic with a regular Rees matrix semigroup over a
group with a zero. A completely 0-simple semigroup is an inverse semigroup if and only if it is a
Brandt semigroup [2, Thm. 3.9. p.102]. In our investigation a special type of Brandt semigroups
is in the focus. This is the semigroup M0(1; 2, 2; I) where 1 denote the one-element group and I
is the 2× 2 identity matrix. We will denote this Brandt semigroup by B2.

3 Semilattice indecomposable semigroups

A semigroup S is said to be semilattice indecomposable (s-indecomposable) if every semilattice
homomorphic image of S is trivial (that is, it contains only one element). An ideal I of a
semigroup S is called a completely prime ideal if S \ I is a subsemigroup of S. It is known
([14, I.8.3. Prop. p.15]) that a semigroup is s-indecomposable if and only if it does not contain
completely prime ideals. Corollary in [17] gives an other characterization of s-indecomposable
semigroups. A semigroup S is s-indecomposable if and only if, for every a, b ∈ S, there is a
sequence a = a0, a1, . . . , an−1, an = b of elements of S such that ai−1 divides some power of ai
(i = 1, . . . , n).

In Theorem 3.2 we give a new characterization of finite s-indecomposable semigroups S by the
terms of semigroup algebras C[S/KS ]. In our investigation we shall use the next lemma, which
is a special case of Theorem 4.1 of [3].

Lemma 3.1 If Y is a finite semilattice then the algebra C[Y ] is semisimple and isomorphic to
the direct sum

⊕

i∈Y C.

Theorem 3.2 A finite semigroup S is s-indecomposable if and only if, C[S/KS ]/J(C[S/KS ])
has exactly one 1-dimensional ideal.

Proof. Let S be a finite semigroup. First we consider the case when S has a zero z. In this case
KS = {z} and so S/KS

∼= S .
Let α be a semilattice congruence on S. There is a ϕ : C[S] → C[S/α] surjective ho-

momorphism. The algebra C[S/α] is semisimple by Lemma 3.1, and so J(C[S]) ⊆ ker(ϕ).
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Thus there is a surjective homomorphism φ : C[S]/J(C[S]) → C[S/α]. Since every ideal of
C[S]/J(C[S]) ∼=

⊕k
i=1Mni

(C) is a direct summand, then we have

C[S]/J(C[S]) ∼= ker(φ)⊕ C[S/α].

By Lemma 3.1 we get
C[S]/J(C[S]) ∼= ker(φ)⊕ C⊕ · · · ⊕ C

︸ ︷︷ ︸

|S/α| times

,

from which we can conclude that if S is not s-indecomposable then C[S/KS ]/J(C[S/KS ]) has
more than one 1-dimensional ideal.

In the next we show that if S is s-indecomposable then the semigroup algebra C[S]/J(C[S])
has exactly one 1-dimensional ideal. Let S be a finite s-indecomposable semigroup (with a zero
z). The factor algebra C[S]/J(C[S]) is semisimple in which C[z] + J(C[S]) is a 1-dimensional
ideal. To show that this is the only 1-dimensional ideal of C[S]/J(C[S]), it is sufficient to show
that C[S]/(J(C[S]) + C[z]) does not contain 1-dimensional ideals.

Denote A := C[S]/(J(C[S]) +C[z]). We will show A ∼= C0[S]/J(C0[S]). It is easy to see that
J(C[S]) ∩ C[z] = 0. We know that C[S] ∼= C0[S]⊕C[z] ([13, Cor. 9 p.38]). So

A ∼= (C0[S]⊕ C[z])/(J(C[S]) ⊕C[z]) ∼= C0[S]/J(C0[S]).

Since A is semisimple, we get

A ∼=

k⊕

i=1

Mni
(C).

Suppose indirectly that nj = 1 for some j with 1 ≤ j ≤ k. Denote the composition of canonical
homomorphisms C[S] → C0[S] and C0[S] → A by φ. Let π : A → Mnj

(C) ∼= C be the canonical
projection. Let

I := ker(π ◦ φ) ∩ S = {s ∈ S|π(φ(s)) = 0}.

It is easy to see that φ(S) generates A but φ(I) does not. Hence S 6= I. φ(z) = 0 so z ∈ I
which means I is a nonempty proper subset of S. It is easy to check that I is a completely prime
ideal of S which contradicts the assumption that S is s-indecomposable. Thus our assertion is
proved in that case when S has a zero element.

As a finite semigroup S is s-indecomposable if and only if S/KS is s-indecomposable, then
the general case is an easy corollary of the case when S has a zero. �

Remark 3.3 In case of finite semigroups with a zero, the s-indecomposability can be described
only with the property of the semigroup algebra (Theorem 3.2). It is not true for finite semigroups
in general. For example if G is a finite Abelian group and Y is a finite semilattice such that
|G| = |Y | then C[G] ∼=

⊕

i∈GC ∼= C[Y ]. Thus, if 1 < |G| = |Y |, then G is s-indecomposable, Y
is not, but C[G] ∼= C[Y ].

4 Embeddings into semilattice indecomposable semigroups

Let A,B semigroups with zeros zA, zB . A × B has an ideal I = ({zA} × B) ∪ (A × {zB}). Let
A×0 B denote the Rees factor semigroup (A×B)/I.

Proposition 4.1 For arbitrary semigroups A and B with zeros, the semigroup A ×0 B is s-
indecomposable if and only if A or B is s-indecomposable.
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Proof. Let A and B be arbitrary semigroups with zeros zA and zB . Assume that A is s-
indecomposable. Consider the semigroup A ×0 B. We show that A ×0 B is s-indecomposable.
Let ϕ denote the canonical homomorphism of A × B onto A ×0 B. Let x, y ∈ A ×0 B be
arbitrary elements. Let (ax, bx) and (ay, by) be elements of A × B such that ϕ((ax, bx)) = x
and ϕ((ay , by)) = y. As A is s-indecomposable, there are elements ax = a1, . . . , at = zA and
zA = at, at+1, · · · , ak = ay such that ai divides some power of ai+1 for every i = 1, . . . , k− 1 ([17,
Cor.]). From this it follows that

(a1; bx), . . . , (at; bx) = (zA; bx)

and
(zA; by) = (at; by), . . . , (ak; by)

are sequences of A×B such that every elements of the sequences (except the last) divides some
power of the next. Then

x = ϕ((a1; bx)), . . . , ϕ((at; bx)) = ϕ((zA; bx))

and
ϕ((zA; by)) = ϕ((at; by)), . . . , ϕ((ak; by)) = y

are sequences of A×0B such that every elements of the sequences (except the last) divides some
power of the next. As ϕ((zA; bx)) = ϕ((zA; by)), we get that

x = ϕ((a1, bx)), . . . ϕ((zA, bx)) = ϕ((zA; by)), . . . , ϕ((ak, by)) = y

is a sequence of A×0 B such that every elements of the sequence (except the last) divides some
power of the next. Then, by Corollary of [17], A×0 B is s-indecomposable. The proof is similar
in that case when the semigroup B is s-indecomposable.

Conversely, assume that A×0B is s-indecomposable. IfA andB are not s-indecomposable then
there are completely prime ideals PA ⊂ A and PB ⊂ B. It is easy to see that ϕ((PA×B)∪(A×PB))
is a proper completely prime ideal of A ×0 B and so A ×0 B is not s-indecomposable. This is a
contradiction, hence A or B must be s-indecomposable. �

Remark 4.2 We have a different proof of Proposition 4.1 in finite case. Suppose A and B are
finite. By [13, Cor. 9 p.39 and Lemma 10 p.40] we get:

C[A×0 B] ∼= C⊕ C0[A×0 B] ∼= C⊕ (C0[A]⊗ C0[B]),

so
C[A×0 B]/J(C[A×0 B]) ∼= C⊕ ((C0[A]/J(C0[A])) ⊗ C0[B]/J(C0[B])) .

So C[A×0 B]/J(C[A×0 B]) has exactly one 1-dimensional ideal if and only if C0[A]/J(C0[A]) or
C0[B]/J(C0[B]) has no 1-dimensional ideal. C0[A]/J(C0[A]) has no 1-dimensional ideal if and
only if C[A]/J(C[A]) has exactly one. By Theorem 3.2 we get the statement.

We will see that the smallest s-indecomposable semigroup which contains a 2-element sub-
semilattice has 5 elements. Moreover the smallest s-indecomposable semigroup which contains a
3-element subsemilattice is isomorphic to the semigroup B2 (Theorem 5.2, Theorem 6.5). First
we show that there are only two nonisomorphic 5-element s-indecomposable semigroup with a
2-element subsemilattice.
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Corollary 4.3 Let S be an s-indecomposable semigroup such that |S| ≤ 5, and S has at least

two commuting idempotents. Then S ∼= B2 or S ∼= M0(1; 2, 2;P ), where P =

[
1 1
0 1

]

.

Proof. By Theorem 3.2 we get C[S/KS ]/J(C[S/KS ]) is isomorphic to C or C ⊕ M2(C). If
C[S/KS ]/J(C[S/KS ]) ∼= C then C0[S/KS ] is nilpotent. If C0[S/KS ] is nilpotent then all idem-
potents of S contained in KS . So there are two commuting idempotents in KS which contradicts
the fact that KS is completely simple. Hence C[S/KS ]/J(C[S/KS ]) ∼= C ⊕ M2(C). Moreover
dim(C[S/KS ]/J(C[S/KS ])) = dim(C[S]) and so J(C[S/KS ]) = 0 and |KS | = 1. Thus S has a
zero z and C[S] ∼= C⊕M2(C). If I is an ideal of S then C[I] is an ideal of C[S]. C[S] has exactly
two proper ideals: one of them is the augmentation ideal (see [13, p.35]) and the other is spanned
by z. Consequently S is a (finite) 0-simple semigroup, so it is completely 0-simple. Using the
Rees Theorem, it is a matter of checking to see that S is isomorphic to one of the two semigroups
listed in the corollary. �

Corollary 4.4 Every finite semigroup S can be embedded into an s-indecomposable semigroup
containing 4|S| + 1 elements.

Proof. Let S be an arbitrary finite semigroup. Denote S0 the semigroup S with a zero adjoined
(also in that case when S has a zero). Let T be a 5-element s-indecomposable semigroup with
a zero and an other idempotent e (these semigroups are described in Corollary 4.3). Since T is
an s-indecomposable semigroup with a zero, then S0 ×0 T is s-indecomposable by Proposition
4.1. Moreover |S0 ×0 T | = 4|S| + 1. Let ϕ denote the canonical homomorphism of S0 × T onto
S0 ×0 T . Define the homomorphism π : S → S0 × T by π(s) := (s, e). It is obvious that ϕ ◦ π is
an embedding of S into the s-indecomposable semigroup S0 ×0 T . �

Proposition 4.5 Every finite s-indecomposable semigroup S with a zero can be embedded into
an s-indecomposable semigroup containing |S|+ 1 elements.

Proof. Let z ∈ S be the zero. Define S′ the semigroup which can be obtained from S by adjunction
of an element z′, such that z′x := z, xz′ := z, and (z′)2 := z where x is an arbitrary element
of S. Then z − z′ ∈ J(C[S]) so C[S]/J(C[S]) ∼= C[S′]/J(C[S′]). Since S is s-indecomposable by
Theorem 3.2, we get that S′ is also s-indecomposable. �

5 On the cardinality of subsemilattices of semilattice indecom-

posable finite semigroups

In this section we answer the question: what is the cardinality of subsemilattices of s-indecomposable
finite semigroups. First we deal with the case when the considered semigroup has a zero (Propo-
sition 5.1). Then we consider the arbitrary case (Theorem 5.2).

Proposition 5.1 Let S be an s-indecomposable finite semigroup with a zero. If Y is a subsemi-

lattice of S then |Y | ≤ 2
⌊
|S|−1

4

⌋

+ 1.

Proof. By Theorem 3.2 C[S]/J(C[S]) ∼= C ⊕
⊕k

i=1Mni
(C) such that ni 6= 1 (i = 1 . . . k). By

Lemma 3.1, J(C[S]) ∩ C[Y ] = 0 and so C[S]/J(C[S]) has a subalgebra which is isomorphic to
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C[Y ]. So it contains |Y | commuting linearly independent projections, which are simultaneously
diagonalizable. Thus

|Y | ≤ 1 +

k∑

i=1

ni ≤ 1 +

⌊

|S|−1

4

⌋

∑

i=1

2 = 2

⌊
|S| − 1

4

⌋

+ 1. (1)

�

Theorem 5.2 Let S be an s-indecomposable finite semigroup.

(i) If Y is a subsemilattice of S then |Y | ≤ 2
⌊
|S|−1

4

⌋

+ 1.

(ii) For every positive integer n, there is a semigroup S such |S| = n and there is a subsemilattice

Y of S such that |Y | = 2
⌊
|S|−1

4

⌋

+ 1.

Proof.

(i) KS is a finite completely simple semigroup. So if e, f ∈ KS are commuting idempotents
then e = f . Thus

|Y ∩KS | ≤ 1,

and so Y ∼= Y/(Y ∩KS). Obviously S/KS is an s-indecomposable semigroup with a zero,
and Y/(Y ∩KS) is a subsemilattice of S/KS . By Proposition 5.1, we get:

|Y/(Y ∩KS)| ≤ 2

⌊
|S/KS | − 1

4

⌋

+ 1.

Thus

|Y | = |Y/(Y ∩KS)| ≤ 2

⌊
|S/KS | − 1

4

⌋

+ 1 ≤ 2

⌊
|S| − 1

4

⌋

+ 1. (2)

(ii) Let n be a positive integer. We can consider n in the form n = 4k+1+l where 0 ≤ l < 4. Let
Y be a semilattice such that |Y | = k+1. By Proposition 4.1, Y ×0 B2 is s-indecomposable,
because B2 is s-indecomposable (Corollary 4.3). B2 has a 3-element subsemilattice V . So
Y ×0B2 has a subsemilattice Y ×0V , it has 2k+1 elements. Applying l times the embedding
of Proposition 4.5 to Y ×0 B2, we get an n-element s-indecomposable semigroup in which

Y ×0 V is a subsemilattice containing 2k + 1 = 2
⌊
|S|−1

4

⌋

+ 1 elements.

�

In this paper we deal with only that s-indecomposable semigroups S containing a subsemi-

lattice Y with |Y | = 2
⌊
|S|−1

4

⌋

+1 which contain 4k+1 elements. In the next section we describe

the structure of these ones.

6



6 B2-combinatorial semigroups

Definition 6.1 A semigroup S is said to be B2-combinatorial if S is s-indecomposable, |S| =

4k + 1 (k is a nonnegative integer) and S has a subsemilattice Y with |Y | = 2
⌊
|S|−1

4

⌋

+ 1 =

|S|+1
2 = 2k + 1.

The name B2-combinatorial will be clear at Theorem 6.5. First of all we note that the
semigroup B2 is B2-combinatorial.

Proposition 6.2 Let S be a B2-combinatorial semigroup. Then all of the following assertions
hold.

(i) S has a zero.

(ii) The semigroup algebra C[S] is isomorphic to C⊕
⊕k

i=1M2(C).

(iii) Every ideal of S is B2-combinatorial.

(iv) Every homomorphic image of S is B2-combinatorial.

Proof. Let S be a B2-combinatorial semigroup and let Y denote a subsemilattice of S with

|Y | = 2
⌊
|S|−1

4

⌋

+ 1.

(i) By (2) in proof of Theorem 5.2 we have
⌊
|S/KS|−1

4

⌋

=
⌊
|S|−1

4

⌋

and so |S/KS | = |S| thus

|KS | = 1. Hence S has a zero.

(ii) If in the proof of Proposition 5.1 inequation (1) is an equation then

C[S]/J(C[S]) ∼= C⊕

⌊

|S|−1

4

⌋

⊕

i=1

M2(C).

Hence dim(C[S]/J(C[S])) = dim(C[S]) which means J(C[S]) = 0. For k =
⌊
|S|−1

4

⌋

we get

C[S] ∼= C⊕
k⊕

i=1

M2(C).

(iii) Let I be an ideal of S. Since every ideal of an s-indecomposable semigroup is also an s-
indecomposable ([16, Lemma 4]), then I is s-indecomposable. As Y is a possible greatest
subsemilattice of S, the zero of S is in Y . Hence Y ∩I 6= ∅. It is clear that Y ∩I and Y/(Y ∩
I) are subsemilattices of I and S/I respectively. Since I and S/I are s-indecomposable
semigroups with zeros, then we can use (i) of Theorem 5.2. Hence

|Y ∩ I| ≤ 2

⌊
|I| − 1

4

⌋

+ 1 and |Y/(Y ∩ I)| ≤ 2

⌊
|S/I| − 1

4

⌋

+ 1.

Moreover |Y | = |Y ∩ I|+ |Y/(Y ∩ I)| − 1, |Y | = |S|+1
2 and |S| = |I|+ |S/I| − 1 = 4k + 1.

From the previous equations and inequations we get

7



0 ≤

(⌊
|I| − 1

4

⌋

+

⌊
1− |I|

4

⌋)

.

From this it follows that |I| = 4l + 1. Then |Y ∩ I| = 2
⌊
|I|−1
4

⌋

+ 1. Indeed, if we suppose

indirectly |Y ∩ I| < 2
⌊
|I|−1
4

⌋

+ 1, then we can get that

0 <

(⌊
|I| − 1

4

⌋

+

⌊
1− |I|

4

⌋)

,

which is a contradiction. Hence |Y ∩ I| = 2
⌊
|I|−1
4

⌋

+ 1 = 2l + 1. I is an s-indecomposable

semigroup with |I| = 4l+1, where l is an integer with 0 ≤ l ≤ k, and Y ∩I is a subsemilattice
of I with |Y ∩ I| = 2l + 1. Thus I is a B2-combinatorial semigroup.

(iv) Let φ : S → T be a surjective homomorphism.

Since every homomorphic image of an s-indecomposable semigroup is also an s-indecomposable
semigroup ([16, Lemma 3]), then T is s-indecomposable.

Extend φ to an algebra homomorphism φ̂ : C[S] → C[T ]. By (i) S is a semigroup with a
zero z so φ(z) is a zero of T . By Corollary 9 of [13, p.38], we get

C[T ] ∼= C⊕ C0[T ].

Since C0[S] ∼=
⊕k

i=1M2(C) for k = |S|−1
4 (see (ii)) and C0[T ] is homomorphic image of

C0[S] then we get

C0[T ] ∼=

l⊕

i=1

M2(C)

for l = |T |−1
4 , and |T | = dim(C[T ]) = 4l + 1. So ker(φ̂) ∼=

⊕k−l
i=1 M2(C).

In a suitable basis of C[S] ∼= C⊕
⊕k

i=1 M2(C) the subalgebra C[Y ] consists of all the diagonal

matrices of C⊕
⊕k

i=1 M2(C). It is easy to see that

dim(C[Y ] ∩ ker(φ̂)) = 2(k − l).

Thus
|Y/ ker(φ|Y )| = dim(C[Y ]/(C[Y ] ∩ ker(φ̂))) = 2l + 1.

Hence T is an s-indecomposable semigroup with |T | = 4l+ 1 and Y/ ker(φ|Y ) is a subsemi-
lattice of T with |Y/ ker(φ|Y )| = 2l + 1. It means that T is a B2-combinatorial semigroup.

�

Lemma 6.3 Let S be a completely 0-simple semigroup and Y a subsemilattice of S. Then |Y | ≤
√

|S| − 1 + 1. If |Y | =
√

|S| − 1 + 1 then S ∼= M0(1;n, n; I), where n =
√

|S| − 1.

Proof. Let S be a completely 0-simple semigroup and Y be a subsemilattice of S. Let k := |Y |−1.
By the Rees Theorem, S is isomorphic to a Rees matrix semigroup M0(G;n,m;P ). The nonzero
idempotents of S are in the form ((Pj,i)

−1; i, j) with Pj,i 6= 0. If (g; i, j), (h; k, l) are different
commutable nonzero idempotents of S then Pj,k = 0 and Pl,i = 0. It means that there is a k × k

8



permutation matrix R and a k × k diagonal matrix D over G0 such that RD is submatrix of P .
From k ≤ min{n,m} and |S| = |G|nm+ 1 we get

k ≤
√

|S| − 1.

This inequation is an equation if and only if |G| = 1, n = m and every row and every column of P
has exactly one nonzero element. Using the Lemma 3.6. of [2, p.94], we get that the inequation
is equation if and only if S ∼= M0(1;n, n; I). �

Proposition 6.4 If S is a B2-combinatorial 0-simple semigroup then S ∼= B2.

Proof. Since S is B2-combinatorial, then it has a subsemilattice Y such |Y | = |S|+1
2 . By Lemma

6.3, we get |Y | ≤
√

|S| − 1 + 1. From

|S|+ 1

2
≤

√

|S| − 1 + 1

we get 1 ≤ |S| ≤ 5. Since S is B2-combinatorial, then |S| = 4k + 1 for a nonnegative integer k.
The one-element semigroup is not 0-simple and so |S| = 5. Since S is B2-combinatorial, then S
has a subsemilattice Y with |Y | = 3. By Lemma 6.3, we get S ∼= M0(1; 2, 2; I). �

Let S be a semigroup. If J(a) denotes the principal ideal of S generated by an element a ∈ S,
then I(a) = {b|b ∈ S;J(a) 6= J(b)} is either empty or ideal of S. The factor semigroup J(a)/I(a)
is called a principal factor of S. It is known that every principal factor of any semigroup is
0-simple, simple or null ([2, Lemma 2.39. p.73]).

Theorem 6.5 Let S be a finite semigroup. Then (i) and (ii) are equivalent:

(i) S is a B2-combinatorial semigroup,

(ii) S has a zero and, for every nonzero element a of S, the principal factor J(a)/I(a) is
isomorphic to the semigroup B2.

Proof. (i)⇒(ii) Let S be a B2-combinatorial semigroup. By (i) of Proposition 6.2, S has a
zero. Let a be a nonzero element of S. By (iii) and (iv) of Proposition 6.2, J(a)/I(a) is B2-
combinatorial. It is easy to see that a simple semigroup or a null semigroup is B2-combinatorial
if and only if it contains exactly one element. Hence J(a)/I(a) is 0-simple. By Proposition 6.4,
J(a)/I(a) ∼= B2.

(ii)⇒(i): Every principal factor of S is an inverse semigroup, hence S is also an inverse semi-

group. Its idempotents form a semilattice and the number of idempotents is |S|+1
2 . Since every

principal factor is s-indecomposable and has a divisor of zero, we get that S is s-indecomposable.
�

The previous theorem shows that why we use the expression ”B2-combinatorial” for semi-
groups defined in Definition 6.1. These semigroups are combinatorial inverse semigroups and the
principal factors defined by nonzero elements are isomorphic to the semigroup B2.

The B2-combinatorial semigroups are combinatorial (H relation is identical) inverse semi-
groups. If Y is a semilattice then Y ×0 B2 is a B2-combinatorial semigroup. The next example
shows that not all B2-combinatorial semigroups can be constructed in this way.
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Example 6.6 If E is a semilattice then TE denote the Munn semigroup of E described in [5,
p.162]. Consider the following semilattices:

C3 V U F X
We show that there are only 3 nonisomorphic B2-combinatorial semigroups containing 9

elements:
C3 ×0 B2

∼= TU , V ×0 B2 ⊂ TX and TF .

Proof. If a semigroup is a combinatorial inverse semigroup then it is a fundamental inverse semi-
group (inverse semigroup such the maximum idempotent separating congruence is identical)[5,
Prop. 5.3.7 p.161]. Let S be a B2-combinatorial semigroup containing 9 elements. Then
|E(S)| = 5, where E(S) denotes the set of all idempotents of S. So S is isomorphic to a full
inverse subsemigroup of the Munn semigroup of E(S) ([5, Thm.5.4.5 p.165]). It is a matter of
checking to see that there are only three Munn semigroup containing a full inverse subsemigroup
with 9 elements which is B2-combinatorial: TU , TF and TX . The semigroups TU and TF are B2-
combinatorial 9-element semigroups. TX has three 9-element B2-combinatorial subsemigroups,
these are isomorphic to V ×0 B2. �

Suppose that there is a semilattice Y such that TF
∼= Y ×0 B2. Since |TF | = 9, then we get

|Y | = 3. The 3-element nonisomorphic semilattices are C3 and V . It is a matter of checking to
see that

E(C3 ×0 B2) ∼= U,E(V ×0 B2) ∼= X and E(TF ) ∼= F.

Consequently there is no semilattice Y such that Y ×0 B2
∼= TF .
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