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Abstract
Loss of biodiversity comprehends not only the extinction of individual species, but also the loss of the ecological interactions 
among them. Survival of species, continuation of ecosystem functioning in nature, and ecosystem services to humans depend 
on the maintenance of well-functioning networks of species interactions (e.g. plant–pollinator networks and food webs). 
Analyses of ecological networks often rely on biased and incomplete survey data, especially in species-rich areas, such as 
the tropics. We used a network inference method to reconstruct pollination data compiled from a large tropical rainforest 
habitat extent. To gain insight into the characteristics of plant–pollinator interactions across the region, we combined the 
reconstructed pollination network with species distribution modelling to obtain local pollination networks throughout the 
area. We explored how global network properties relate to natural forest cover and land cover heterogeneity. We found that 
some network properties (the sum and evenness of link weights, connectance and nestedness) are positively correlated with 
forest cover, indicating that networks in sites with more natural habitat have greater diversity of interactions. Modularity 
was not related to forest cover, but seemed to reflect habitat heterogeneity, due to the broad spatial scale of the study. We 
believe that the methodology suggested here can facilitate the use of incomplete network data in a reliable way and allow us 
to better understand and protect networks of species interactions in high biodiversity regions of the world.
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Introduction

The fast decline in biodiversity currently underway has been 
called the sixth mass extinction. The loss encompasses not 
only individual species, but also ecological interactions, 
often at a higher rate (Valiente-Banuet et al., 2015). Since 
many key functional aspects and services important for 
the maintenance of natural biomes and human subsistence 
depend on biotic interactions, species interactions should be 
treated as a major component determining the health of eco-
systems. For example, plant–animal mutualistic networks, 

such as pollination and seed dispersal, sustain terrestrial bio-
diversity and human food security (Hougner et al., 2006; 
Burkle et al., 2017, Guimaraes Porto et al. 2021). However, 
pollinating insects are declining in many parts of the world 
because of human disturbances, especially habitat loss (Van-
bergen & the Insect Pollinators Initiative, 2013), but also 
landscape simplification, population subdivision and conse-
quent changes in behaviour and in interspecific interactions 
(Fischer & Lindenmayer, 2007). Around 70% of the 124 
main crops consumed by humans depend on animal pol-
linators (Klein et al., 2007), and so do most flowering plant 
species in the wild (NRC, 2007), especially in the tropics 
(Rech et al., 2016).

Because no species is an island, effective conservation 
action must protect not only individual species, but the func-
tioning of the whole ecological community, easily repre-
sented by the web of interspecies interactions (Tylianakis 
et al., 2010). This focus on relationships or interactions is at 
the heart of ecology as a science, and it is therefore not sur-
prising that network tools and concepts have a long tradition 
in ecological studies (e.g. Elton, 1927). Although various 

 * Ferenc Jordán 
 jordan.ferenc@gmail.com

1 Department of Network and Data Science, Central European 
University, Vienna, Austria

2 Biodiversity Department, Sao Paulo State University, 
Rio Claro, SP, Brasil

3 Department of Chemistry, Life Sciences and Environmental 
Sustainability, University of Parma, Parco Area Delle 
Scienze, 11/a, 43124 Parma, Italy

http://orcid.org/0000-0002-0224-6472
http://crossmark.crossref.org/dialog/?doi=10.1007/s42974-022-00106-6&domain=pdf


316 Community Ecology (2022) 23:315–325

1 3

interaction types act simultaneously (e.g. pollination com-
bined with competition or seed dispersal, see Fernandez and 
Fonturbel 2021; Debnam et al., 2021), an important first step 
is to study homogeneous networks with a single interaction 
type (e.g. pollination). Studies dealing with species interac-
tion networks often rely on biological survey data, some-
times originally obtained with different goals in mind. These 
data typically suffer from observation errors, incomplete and 
biased sampling, particularly when dealing with large geo-
graphic extents and species-rich systems. Network inference 
techniques can help in the reconstruction of incomplete data 
(Pichler et al., 2020; Young et al., 2019), to identify motifs 
(Simmons et al., 2019) and key components of complex 
systems (Kovács-Hostyánszki et al., 2019; Pereira, 2018; 
Pereira et al., 2017, 2022). Novel algorithms allow us to get 
data from novel resources (Thouverai et al., 2021), reveal 
hidden patterns also at large scales (Podani et al., 2014) and 
gain further insight into ecosystem functioning, and hope-
fully build better conservation strategies.

In this study, we sought to: (1) construct local plant–pol-
linator networks across a highly impacted tropical rainfor-
est habitat; (2) examine some structural network properties; 
and (3) explore how network structure relates to natural for-
est cover and land cover heterogeneity. For this, we used 
a database on plant–insect flower visitor interactions from 
the Atlantic Series data papers collection. We predict that 
the number of species, number of links, sum and evenness 
of link weights, connectance and modularity will increase 
with forest cover, while nestedness and centralization will 
decrease.

Materials and methods

Study area

The neotropical Atlantic Forest is a hotspot of biodiversity 
that originally covered more than 1.5 million  km2 along the 
Atlantic coast of South America, including a wide variety of 
environmental conditions. As a result of centuries of anthro-
pogenic pressure, it has been reduced to around 12% of its 
original extent and subsists today almost exclusively in small 
fragments (< 100 ha) (Ribeiro et al., 2009), mostly 1occu-
pied by pasture and crops (Mapbiomas 2018 data; Souza 
et al., 2020). Land cover heterogeneity is highest at areas 
of intermediate forest cover. We divided the Atlantic For-
est domain (sensu Ribeiro et al., 2009) within the national 
continental borders of Brazil in local sites, using hexagonal 
grids in three scales: 25, 50 and 100 km of site length in the 
N-S direction, using Albers projection to ensure equal area 
to all sites, with SIRGAS 2000 datum, in QGIS version 3.4 
(QGIS.org, 2020). To each local site (at each scale) corre-
sponds a local plant–pollinator interaction network.

Building plant–pollinator networks

The local interaction networks corresponding to each site 
combine information on species interactions in general 
(for methodological challenges, see King et al., 2013) and 
spatial co-occurrence locally. Following the approach by 
Marjakangas and colleagues (2020), we first need to obtain 
these two types of networks separately and then multiply 
them to obtain the local networks (Fig. 1).

Interaction network reconstruction

For the regional network of interactions, we used the 
Atlantic Plant–Insect database, a compilation of georef-
erenced interaction events observed between plants and 
insect flower visitors across the Brazilian Atlantic Forest 
(in prep.; see the complete Atlantic Data Papers series 
at https:// esajo urnals. onlin elibr ary. wiley. com/ doi/ toc/ 
10. 1002/ (ISSN) 1939- 9170. Atlan ticPa pers and at https:// 
github. com/ LEECl ab/ Atlan tic_ series). We kept only 
observations with classification at the species level, within 
the Brazilian territory and the Atlantic Forest domain. 
This comprised our initial regional pollination network, or 
metanetwork, with 1273 species (nodes) and 2895 unique 
interaction pairs (links). We emphasize that local networks 
describe the communities in the hexagons, while the meta-
network describes the unified plant–pollinator community 
of the whole region.

As is the case with most empirical networks, sampling 
of interactions in biological surveys is incomplete in our 
dataset. Studies show that sampling bias tends to strongly 
underestimate the number of interactions and overestimate 
the degree of specialization (Young et al., 2019). To obtain 
a more reliable picture of pollination interactions across 
the Atlantic Forest, we applied a method of network recon-
struction based on stochastic blockmodels to our metanet-
work. Blockmodels are generative models for networks 
(DiMaggio, 1986), where nodes are classified into blocks 
according to their profile of interactions. Probabilities are 
used to describe interactions between blocks. The model is 
visualized as a block matrix (see Supplementary material 
Fig. 1 for an illustrative example).

A block matrix can be used to draw network samples. 
Conversely, we can fit a block matrix to a known incom-
plete network and, as a second step, infer missing links and 
network structure based on the blocks and probabilities, 
in order to reconstruct the network. We did this using the 
python package graph-tool (Peixoto, 2014), which uses 
Bayesian inference to extract the underlying optimal block 
structure. First, we fitted a nested stochastic blockmodel 
to our binary metanetwork. Next, we reconstructed our 

https://esajournals.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1939-9170.AtlanticPapers
https://esajournals.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1939-9170.AtlanticPapers
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metanetwork using the fitted blockmodel as prior. We used 
the function UncertainBlockState, adequate for cases in 
which we do not have repeated measurements of each link 
but can offer extraneous error estimates as independent 
edge probabilities (Peixoto, 2014). This applies well to our 
case, because the data are a compilation from many dif-
ferent studies, with different geographical extents, meth-
ods of survey and research questions, so that the numbers 
of observations recorded for each pair are not compara-
ble. We used three error estimates: First, for all forbid-
den links (i.e. plant–plant or pollinator–pollinator links), 
we set the uncertainty value to 0, indicating our previous 
knowledge that these links do not exist. Secondly, we must 
choose an uncertainty value for the observed links. After 
testing different values ranging between 0.75 and 0.99, 
we chose the value 0.98, because it resulted in the best 
reconstructed network (no forbidden links were created, 
and the maximum number of the original links was kept). 
Thirdly, for each non-edge (non-observed plant–pollinator 
links), we picked a value chosen to preserve the expected 
connectance of the original network (see Supplementary 
Material for the code and further details). The resulting 
reconstructed local networks had 49,406 links, none of 
which were forbidden, and had lost only 2 of the original 
edges. Each resulting link has a weight corresponding to 
its posterior probability (e.g. the probability that this edge 
exists), which we interpret as the potential of interaction 
between species.

Co‑occurrences and local networks

We performed species distribution modelling with Maxent to 
predict the occurrences of species in each site, using the R 
package ENMeval (Muscarella et al., 2014). As labeled data, 
we included the georeferenced interaction points from the pol-
lination dataset, complemented by additional species occur-
rence points from the Global Biodiversity Information Facility 
(dataset available at https:// doi. org/ 10. 15468/ dl. by6nuj; GBIF.
org, 2018) filtered with the R package CoordinateCleaner 
(Zizka et al., 2019). We removed any point records of the same 
species located within the same 1 km × 1 km raster cell of 
environmental covariates used in the model to avoid causing 
bias in the distribution modelling. Only species with at least 5 
occurrences were included in the analysis. The environmen-
tal factors reported to affect plant and insect distributions the 
most are temperature, precipitation and soil type (Savopoulou-
Soultani et al., 2012). For this reason, we used as explanatory 
environmental variables topographic, soil, climatic and land 
cover covariates, with final resolution of 1 km (Supplemen-
tary Material Table 1). For background points, we used the 
weighted-target group approach (i.e. occurrence points of all 
plant or pollinator species other than the one being modeled), 
which reduces the influence of sampling bias (Muscarella 
et al., 2014). We selected models with ΔAICc = 0 and second-
arily with maximum AUC on testing data. As final output, we 
chose the cumulative output maps, which can be interpreted in 
terms of omission rate, i.e. thresholding the map at a value c 

Fig. 1  Reconstruction of local pollination networks from occurrence records of species and interactions

https://doi.org/10.15468/dl.by6nuj
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to binarize it into prediction of presence or absence of the spe-
cies would omit approximately c% of presences. We discarded 
local models that performed poorly (AUC < 0.7) and were left 
with 389 species (297 plants and 92 pollinators, Supplemen-
tary Material Table 2). Of these, 223 species’ distributions 
are positively correlated with natural forest cover (%). Since 
dominant, generalist species (Apis mellifera, Trigona spinipes, 
Bombus morio and Plebeia droryana) are richly connected, 
they are strongly represented in network analysis, “masking” 
the network positions and roles of potentially interesting, rare, 
often specialist species. For this reason, we did not consider 
them, making it possible to look at the fine structure of the rest 
of the community and have a quantitative view on the rest of 
diversity and community structure. This approach has clear 
disadvantages (i.e. the most important species are not present) 
but also opens a way to better evaluate others (neighbourhood 
similarity and redundancy in the community). The absence of 
the most important species in our networks could considerably 
alter their structure and mask some of the properties’ correla-
tions we expected to find. Therefore, we decided to proceed 
with the analysis considering, in parallel, networks with all 
389 species (all-spp networks) and networks only with the 223 
forest species (forest-spp networks) and compare these results. 
This study is focused on plants and pollinators and explicitly 
on their interactions in space. We emphasize that the conser-
vation priorities we suggest are relevant only for maintaining 
pollination as an ecosystem function, but it is also clear that 
there are many other species important for the maintenance of 
other ecological processes.

From the SDM maps of cumulative occurrence prob-
ability, we computed the average occurrence probability of 
each species in each site, at each scale. In order to interact, 
two potentially interacting species must co-occur in space 
(Tylianakis et al., 2010). Therefore, we multiplied the aver-
age occurrence probability of all plant–pollinator pairs for 
each site, to obtain the local probabilities of co-occurrence. 
Next, we multiplied the probability of co-occurrence of each 
plant–pollinator pair in each site by the probability of inter-
action of the pair according to our pollination metanetwork. 
In this way, we obtained local pollination networks for each 
site, with probabilistic link weights, at each scale. We did 
this including all the 389 species for which SDM was suc-
cessful (all-spp networks) and then repeated it including 
only the species whose spatial distribution is positively cor-
related (Spearman's ⍴ > 0 with P < 0.05) with natural forest 
cover (forest-spp networks).

Linking network properties with forest and land 
cover heterogeneity

For each scale, for all-spp and forest-spp networks, we 
computed measures that provide a quantification of net-
work properties relevant to particular ecological functions: 

(1) number of plant and pollinator nodes, or species  (Npl, 
 Npo); (2) number of links (L); (3) sum of link weights (S), 
informing about the general intensity of interactions in the 
community; (4) evenness of node strengths (HS) for plants 
 (HSpl) and pollinators  (HSpo), measured by Shannon entropy, 
where node strength is the sum of the weights of the links 
connected to it; (5) weighted connectance (density), which 
quantifies how many links are present, in comparison with 
all possible links, taking weights into account (C); (6) cen-
tralization, which shows how much the links are central-
ized on one or a few nodes, based on eigenvector central-
ity (Centr; Freeman, 1978); (7) bipartite modularity, which 
shows how much the network is compartmented into dense 
groups of nodes called modules, using the method by Beck-
ett (2016) (M); (8) number of modules  (Nbmod); (9) assorta-
tivity based on node strength, which shows how much nodes 
tend to connect with others of similar strength (A); and (10) 
nestedness, which shows how much the neighborhoods of 
specialist species are subsets of the neighborhoods of gener-
alists, using the spectral radius index and row column totals 
average null model (Nest; Beckett et al., 2014; Mariani et al., 
2019). The use of this null model for the computation of 
nestedness is important to capture only nestedness beyond 
what is explained by degree (Lewinsohn et al., 2006).

Finally, we tested the correlation of each of these network 
properties with forest cover (%) and land cover heteroge-
neity (HLC, Shannon entropy of land cover categories per 
site) using Spearman’s rank correlation. These computations 
were made using the packages igraph (Csardi & Nepusz, 
2006), bipartite (Dormann et al., 2008), vegan (Oksanen 
et al., 2019) and Falcon (Beckett et al., 2014) in R (R Core 
Team, 2020) with RStudio (RStudio Team, 2019).

Results

Investigating our local pollination networks at the most 
detailed scale (25 km), we found that degree and node 
strength were positively correlated (mean Spearman’s 
⍴ = 0.57 and 0.56 for all-spp and forest-spp networks, respec-
tively) in agreement with Bascompte et al. (2006). Most link 
weights were small (average link weight between 0.01 and 
0.22 for all-spp and between 0.02 and 0.36 for forest-spp 
networks). Connectance and assortativity were always below 
0.04 (Supplementary Material Table 3), while centraliza-
tion was between 0.75 and 0.80 for all-spp and 0.66–0.74 
for forest-spp networks. Modularity was always positive, 
and the majority of modules are nested (75.07% in all-spp 
and 75.04% in forest-spp networks, on average). Nested-
ness was not correlated correlated with the number of links 
(P = 0.18 and Spearman's ⍴ = -0.07 for all-spp and forest-
spp, respectively).
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We observed similar correlations between network 
properties and forest cover or land cover heterogeneity, 
independently of scale (Supplementary Material Table 4 
and Fig. 2). In some cases, correlations became stronger 
with increasing site area (e.g. sum of link weights, even-
ness of node strengths ~ forest cover in forest-spp net-
works), while in other cases they became weaker (e.g. 

connectance ~ forest cover in forest-spp network). In most 
instances, the tendencies were also similar between all-spp 
and forest-spp networks. We observe clearer tendencies in 
the forest-spp networks: network size (N and L) and cen-
trality appear particularly related to land cover heteroge-
neity, while the sum of link weights (S), evenness of node 
strengths (HS), connectance, nestedness and assortativity 

Fig. 2  Pollination network properties correlate to habitat variables. Some network properties are more strongly correlated with forest cover (left) 
and others with land cover heterogeneity (right), positively (▲) or negatively (▼). Networks of forest species on sites of 25 km are shown



320 Community Ecology (2022) 23:315–325

1 3

are shown to be more related to forest cover. These pat-
terns are not very clear when we look at all-spp networks. 
Modularity and the number of modules showed weak to no 
correlation in all cases, although modularity seems more 
related to land cover heterogeneity than to forest cover, 
when looking at forest-spp networks.

We concentrate now on the average correlation across 
the different scales for each situation (Table 1). All-spp net-
works are smaller (few species, N, and interactions, L) both 
with increasing forest cover and land cover heterogeneity. 
Forest-spp networks’ sizes seem more related to land cover 
heterogeneity (HLC), and the smaller size is only due to 
fewer insect species. We observed that only high forest cover 
sites are characterized by networks with higher S, while L 
is basically independent of forest cover (Supplementary 
Material Fig. 3). In fact, looking at forest-spp networks, it is 
clear that high forest cover sites have networks with stronger 
(although not necessarily more numerous) links (sum of link 
weights and weighted connectance), as well as more evenly 
distributed link strengths (HS). Nestedness increases and 

assortativity decreases with forest cover, for forest-spp net-
works. No clear trend is visible for all-spp networks. Cen-
tralization, on the other hand, seems more associated with 
land cover heterogeneity (HLC, Table 1, Fig. 2).

There are two cases in which forest-spp and all-spp net-
works show opposite results, both involving only very weak 
correlations. First, modularity seems to decrease with forest 
cover for all-spp and increase for forest-spp networks. We 
should however keep in mind that, for forest-spp, modu-
larity was more associated with land cover heterogeneity 
(HLC) than with forest cover (Supplementary Material 
Table 4). Secondly, the sum of link weights (S) in function 
of land cover heterogeneity (HLC) decreases for all-spp, 
but increases for forest-spp. That is, in homogeneous sites, 
networks of forest species have weaker links, and networks 
of all-spp have stronger links. It is interesting to note that 
most homogeneous sites in the study area are occupied by 
agriculture rather than forest.

Table 1  Network properties’ correlation with forest cover and land cover heterogeneity were independent of spatial scale.

Npl/Npo number of plant/pollinator species, L number of links, S sum of link weights, HSpl/HSpo entropy of plant/pollinator node strengths, C 
weighted connectance, Centr: centralization based on eigenvector centrality, M bipartite modularity, A assortativity, Nest spectral radius index 
of nestedness. Values are average Spearman’s rho correlation index across three scales (site N–S length of 25, 50 and 100 km) for all-spp and 
forest-spp networks. The symbols show positive i.e. ⍴ > 0.3 (  ), negative i.e. ⍴ <  − 0.3 (  ), weak positive i.e. 0.1 < ⍴ < 0.3 (    ), weak negative 
i.e. − 0.3 < ⍴ < -0.1 (    ) or no correlation i.e. − 0.1 < ⍴ < 0.1 or P > 0.05 (  ). When at least two out of the three correlations were non-significant, 
we show them as n.s. When one of the three was non-significant, we show the smallest absolute significant value. Cases of opposite correlation 
between all-spp and forest-spp are highlighted in grey
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Discussion

In general, sites with large and continuous natural forest 
host more species and interaction links than deforested or 
fragmented areas (Marjakangas et al., 2020). Yet, in order 
to better understand the functioning of both natural and 
human-impacted forest communities, we need to better 
understand the principles of their interaction networks, and 
whether they contain fewer species or interactions. Since 
our local networks are the result of multiplying two net-
works with probabilistic links (co-occurrence and poten-
tial of interaction), the weights of most links are extremely 
small, while nodes’ strengths and link weights are rarely 
equal to zero, making both the number of species, N, and 
the number of links, L, very high. Especially in sites with 
little forest cover, the distribution of interaction weight was 
quite biased, with a large number of almost zero weights. 
Therefore, although the number of nodes and links seems to 
decrease with forest cover, these values carry little meaning 
in our context. Instead, it is by looking at node strengths 
(sum of link weights, S, and evenness of node strengths, 
HS) that we can observe relevant patterns. Indeed, network 
size may be strongly affected by sampling effort (Ings et al., 
2009) and should be regarded with care. Moreover, habitat 
disturbance may affect link weights more than species rich-
ness, as observed for host–parasitoid networks (Tylianakis 
et al., 2007). Link weights play an important role in stabil-
ity, with many weak and few strong links, as we observe 
here, being commonly observed and leading to stable but 
potentially complex webs (Jordano, 1987). We have found 
the sum of link weights to be higher in more forested sites. 
The decrease in interaction richness is generally expected 
where there is loss of habitat (although rewiring may lead 
to exceptions, Valiente-Banuet et al., 2015). We have also 
found node strengths to be more evenly distributed in sites 
with high forest cover, in agreement with Tokumoto (2015). 
This may be due to the fact that networks in degraded or 
fragmented areas rely more heavily on super-generalist spe-
cies such as the honeybee Apis mellifera (Rathcke & Jules, 
1993), which have disproportionately high node degree and 
strength, through establishing a large number of weaker 
links, and thus increasing interaction asymmetry (Tyliana-
kis et al., 2010). The centralization index did not indicate 
the same tendency, being instead larger for high land cover 
heterogeneity. The exclusion of the most generalist species 
from the analysis may lead to either quantitative (see cen-
tralization and forest cover) or qualitative differences in the 
results (reversed sign for correlations, see modularity and 
forest cover). We have nevertheless observed high absolute 
values of network centralization (expected in pollination 
webs: Martín González et al., 2010), especially in the all-spp 
networks, indicating that species indifferent to or negatively 

associated with forest increase network centralization in our 
system. The difference between the two approaches (all-spp 
vs forest-spp) can be considered as providing a more general 
vs more forest-specific description for the system.

Networks in more forested areas had also higher con-
nectance, in agreement with Morales and Vázquez (2008). 
High connectance is reportedly associated with stability in 
mutualistic networks, both in the sense of robustness to the 
loss of species and fast return to equilibrium after pertur-
bations (Thebault & Fontaine, 2010). Connectance may be 
strongly influenced by sampling effort, but we could observe 
a clear correlation, possibly due to network reconstruction.

Nestedness is very common in plant–animal mutualistic 
networks (Bascompte & Jordano, 2007), especially when 
coevolutionary selection is weak (Segar et al., 2020). Some 
studies report nestedness to be robust to sampling effort 
(Bascompte & Jordano, 2007; Casas et al., 2018), although 
there are exceptions (Trøjelsgaard & Olesen, 2013). Nested-
ness has been reported to increase with the number of links 
in a study with binary networks (Bascompte et al., 2003). 
Conversely, we did not observe any correlation between 
these network properties, possibly because we used weighted 
measures. Nestedness reflects a network structure where 
many specialist species are reliant on a few persistent gener-
alist species (Segar et al., 2020) and may be generated by dif-
ferential dispersal, abundance, spatial distribution or similar 
ecological processes (Lewinsohn et al., 2006). An advantage 
of nestedness is that it facilitates successful responses to per-
turbation (Jordano, 1987): in a nested network, it is unlikely 
that a species ends up isolated, unless it is a very poorly con-
nected species, whose loss will not strongly affect the func-
tioning of the network (Tylianakis et al., 2010). Moreover, 
the pattern of generalist-with-specialist links provides ways 
for rare species to persist for a longer time (Bascompte et al., 
2003). We found a clear relationship between nestedness and 
forest cover only when considering forest-spp only. This is 
quite intuitive, suggesting that forest-living species develop 
more specialized interaction systems, cross-connected by the 
more generalist species. Some studies suggest that nested 
networks, being more resilient, are associated with areas that 
suffered high impact or very variable climate (Tylianakis 
et al., 2010), while others report the opposite. For example, 
Dupont and collaborators (2009) found pollination networks 
in lower latitudes to be more nested. We found nestedness 
to increase with forest cover, agreeing with the latter. In 
any case, the Atlantic Forest as a whole has suffered severe 
anthropogenic disturbance, and even sites that still retain a 
large proportion of natural forest today are affected by envi-
ronmental degradation and fragmentation, and host more 
resilient communities which are quite different from those 
of pristine areas (Marjakangas et al., 2020).

Plant–animal mutualistic networks have been reported 
to be disassortative, which makes the entire network more 
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resistant to secondary extinctions (Jordano, 1987). One 
study found mutualistic networks to be more disassorta-
tive where there is more connected natural habitat (Toku-
moto, 2015), and another where habitat is more fragmented 
(Morales & Vázquez, 2008). Our results are in line with the 
former. Disassortativity is also correlated with nestedness 
(Tylianakis et al., 2010), as we have observed.

For mutualistic networks, modularity is associated with 
instability, because it means reduced functional redundancy, 
increasing the chances of secondary extinctions (Dalsgaard 
et al., 2013). Nevertheless, while one-to-one specialization is 
extremely rare in mutualistic communities (Jordano, 1987), 
more specificity in large networks may lead to the forma-
tion of separate groups, leading to high modularity (Olesen 
et al., 2007). Three main explanations have been proposed 
for modular structure in mutualistic networks. First, modular 
networks may, in view of this structural fragility, be associ-
ated with areas of great environmental stability, which have 
been left undisturbed for long periods (Dalsgaard et al., 
2013). This is because, in such areas, modules correspond-
ing to coevolutionary units with convergent traits (e.g. pol-
lination syndromes; Jordano, 1987) and/or phylogenetically 
close species (Bascompte & Jordano, 2007) have had the 
opportunity to evolve unperturbed (Dalsgaard et al., 2013). 
Tropical habitats are an example of that, with their slow 
Quaternary climate change, and rich networks associated 
with high specialization (Dalsgaard et al., 2011). In accord-
ance with this, we found relatively high modularity values 
in our networks. However, we did not find a strong correla-
tion between modularity and the quality (forest cover) of 
sites, probably because of the history of high environmental 
impact in the region, affecting even the most preserved habi-
tat fragments. Secondly, modular structures may be due to 
the loss of native supergeneralists (Tylianakis et al., 2010), 
possibly caused by the presence of highly competitive alien 
species like the honeybee (Valido et al., 2019). Although 
we know the honeybee and a few native supergeneralists 
are present in our study area, we were unable to include 
these species in our analysis because of poor performance 
of SDM modelling, probably due to their ubiquity. Finally, 
modularity may also reflect habitat heterogeneity (Toku-
moto, 2015), divergent selection regimes, and phylogenetic 
splits or clustering of closely related species (Olesen et al., 
2007), giving rise to compartments that are more perceptible 
at a large scale or regional level (Lewinsohn et al., 2006). 
Due to the coarse spatial scale of our study, it is likely that 
the modules we found are best accounted for by habitat het-
erogeneity (e.g. species associated with forest and farmland 
species coexisting in the same site, but in fairly separate 
parts of the network). Indeed, the highest correlation we 
obtained for modularity was with land cover heterogeneity 
for the forest-living species. This suggests that an intuitively 
understandable relationship is masked, again, by generalist 

species that are less sensitive to the actual land cover. Con-
cerning modularity and forest cover, we have seen contrast-
ing results: they are negatively correlated for all-spp net-
works and positively for forest-spp only. This could be an 
indication that the non-forest species create bridges between 
modules of forest species in forested sites, decreasing modu-
larity, and create modules of their own in other sites.

Nestedness and modularity may show opposite geograph-
ical patterns, but they are not necessarily mutually exclusive, 
appearing together especially in large (> 150 species) net-
works (Lewinsohn et al., 2006). Often modular networks 
may be nested as a whole and have modules that are them-
selves nested (Lewinsohn et al., 2006), as we have observed. 
Such networks may be structured as a core of generalist spe-
cies that connect modules to each other (Olesen et al., 2007). 
This structure can be a result of specializations that confine 
species in modules, while within modules nestedness can 
emerge (Lewinsohn et al., 2006).

Our work sought to propose a methodological strategy to 
reconstruct interactions networks in high-diversity regions 
with incomplete sampling, and to present an example case 
study exploring the relationship between network structure, 
forest cover and land cover heterogeneity in the Atlantic 
Forest. Our results call for some considerations and sug-
gest some avenues for future investigations. First, pollination 
networks are highly dynamical in species composition and 
interactions through time. Interactions may also change with 
location (Lewinsohn et al., 2006), depending on the assem-
blage and conditions of each habitat site. Similarly, rewiring 
may occur in ecological networks, increasing resilience even 
in the face of species loss (Vizentin‐Bugoni et al., 2020). 
However, the structure of the network (e.g. connectance, 
nestedness, modularity, centralization) remains fairly con-
stant (Dupont et al., 2009). Therefore, although in this study 
we have not examined how networks change over time, the 
results concerning network structure should still be valid. 
Moreover, we used probabilistic links along with network 
reconstruction, which should signal the possibility of con-
nections that did not exist at the time or place of sampling 
but may arise via rewiring. In further investigations involv-
ing network dynamics, node and module level properties, 
time series network data would be most valuable, and we 
would encourage field surveys in this direction. Secondly, 
our networks are based on potential species distribution, i.e. 
they are built on abiotic factors, such as climate, land cover 
and topographic variables. Here we focused on interaction 
similarity and explored the advantages of blockmodelling 
but it is an important direction for future work is to include 
species interactions themselves and their phylogenetic his-
tory in the modelling of species distribution (Carnaval et al., 
2014), leading to more realistic networks. Finally, flower 
visitation webs, as the ones used here, may give an inaccu-
rate impression of pollination interactions, because flower 
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visitors can exhibit specialist behaviour when collecting pol-
len but generalist behaviour when collecting nectar (Ings 
et al., 2009). New sampling techniques and molecular meth-
ods may hopefully bring a breakthrough here with better 
data.

Conclusion

Networks of species interactions need to be targeted for 
conservation, because the long-term survival of species in 
the wild, as well as ecosystem functioning and services, 
depend on biotic interactions. In species-rich regions like 
the tropics, complete and detailed network data over large 
geographic extents is often rare. We have shown how net-
work reconstruction, combined with species distribution 
modelling, can be used to infer local interaction networks 
in a tropical rainforest habitat. We have examined how some 
global network properties correlate with forest cover and 
land cover heterogeneity, finding that nestedness and the 
sum of interaction strengths are strongly associated with 
greater forest cover. We believe that our results bring further 
insight into the structure of pollination networks across the 
Atlantic Forest, which is important for conservation plan-
ning focused on ecological interactions. We hope our work 
can be helpful for further studies aiming to understand and 
protect species interaction networks, particularly in regions 
of the world where the very wealth of biological diversity 
that motivates conservation action also makes it difficult to 
obtain complete data.
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