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Abstract: Transportation planning plays an essential role in improving the transportation system.
Therefore, planners should have the ability to forecast the response of transportation demand to
changes in the characteristics of the travellers. This has led researchers to work on more effective
behavioural models by updating conventional models and replacing them with activity-based mod-
elling to describe the daily activity chains performed by travellers. So, this study uses the activity
model to model and analyse daily activity to identify the factors affecting the activity chain. This
study aims to use logit models based on the utility function for modelling the activity chains of
travellers in Budapest city. At the same time, we identify the effects of various characteristics related
to the traveller, trip and location in the activity chains. This paper presents the relationships between
the two aspects of travel behaviour and activity chains by providing two different causal structures.
The results showed that the location attribute, activity duration and activity purpose were most
influential on the activity chains. This study provides good insights into activity chains behaviour of
travellers. It also extends the need to incorporate activity model behaviour within these complicated
processes and household and individual decision making of daily activity.

Keywords: activity chain model; logit model; utility function

1. Introduction

An efficient transportation system and infrastructure are necessary for the growth
and development of a country’s economy. Transportation planning plays an essential role
in improving the transportation system. Therefore, planners and engineers should have
the ability to forecast the response of transportation demand to changes in the properties
of the transportation system and differences in the characteristics of the people using
the transportation system. Travel behaviour models are used for this purpose; precisely,
travel behaviour models predict travel characteristics and transportation services under
alternative socio-economic situations and alternative transport service and land-use con-
figurations. Therefore, there is a need for realistic representations of travel behaviour
modelling. This has led researchers to work on more effective behavioural models by
updating conventional trip-based models and replacing them with a more behaviourally
oriented activity-based modelling approach [1,2]. Activity chain models have rapidly
gained interest in the transportation research community. These models predict behaviour
in several ways, including information activities and transport modes.

Researchers in [3–14] and others have used an activity-based approach to analyse the
impact on travel of changes, mainly focusing on the socio-economic environment. These
studies have concluded that the effect of travel behaviour processes on activity models in
time and space is very complex.

In general, activity-based models focus on activities as the unit of analysis instead of
trips in trip-based models. Besides that, focusing on activity chains permits the incorpo-
ration of constraints such as time constraints related to opening hours, work schedules,
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expected activity duration, and scheduling of activities [15,16]. Thus, activity-based models
describe detailed activity schedules considering personal, household and spatial–temporal
constraints [17,18].

Several studies assume that travellers, faced with a set of alternatives, choose maxi-
mum utility of choice. The choices are calculated as a function that maximizes the overall
utility of a daily activity pattern within derived choice sets [19,20].

The reasons behind the choices have to be explored to understand personal decisions.
Thus, choice set formation is conditional upon the context and dynamics. From this, we
conclude the significance of alternatives in determining activity–travel patterns. From
another point of view, household resources (e.g., income, living space, car, etc.) affect
decision processes and play different roles in activity schedules [21,22].

One of the essential system designs of activity-based models [23] is discrete choice
models based on random utility maximization (RUM). Activity-based travel models are
viewed as the results of users maximizing their utility. These methods have emerged more
recently because of the need to model travel as part of a more significant activity–travel
model, and they involve relatively non-traditional (in the travel analysis field) methodolo-
gies such as duration analysis and the influence of variables on the activity chains.

This study aims to use the logit models to model the activity-based model of the
travellers in the National Capital Region of Budapest. Using logit models is the most
comprehensive structure for modelling discrete choices in travel behaviour analysis with
the activity-based models. The mathematical framework of logit models is based on utility
maximization theory [24].

This study used the multinomial logit model, nested logit model, and a generalized
nested logit model based on the utility function to identify, analyse and model the activity
chains. At the same time, we analysed and identified the effects of the different charac-
teristics related to the traveller, trip and location on the activity chains. The relationships
between the two aspects of travel behaviour and activity chains are represented in this
study by providing two different causal typologies and structures and analysing the activity
chains by using the logit models.

The study is organized as follows: The next section offers a theoretical background.
The third section presents the methodology. The fourth section covers the study area,
interview technique, model specification, and descriptive analysis. Section 5 presents
model estimation results and utility function analysis, and Section 6 concludes the paper
by highlighting some of the research results.

2. Theoretical Background

Over recent years, the activity-based model has received increasing attention among
transportation researchers. Specifically, researchers have relied on activity-based models to
overcome some of the weaknesses of the travel demand models. The activity-based model
has provided a better theoretical underpinning of travel behaviour research. It addresses
the questions of why people travel and how decisions regarding trips are made [25,26]. The
activity-based models do not describe single-dimensional decisions concerning one trip
but rather address complex decisions concerning multiple dimensions of various trips and
activities. Specifically, they describe what activities are performed during a specific period,
and in what destinations, at what times and in which sequence. Such activity sequences
imply trips with a particular origin and destination made at a specific time of day and
using a specific mode. The development of activity-based models has become increasingly
significant in light of increasingly complex travel behaviour, leading to changes in activity
and travel behaviour models. Therefore, transportation researchers have extended this
model by explicitly emphasizing the relationship between activities and travel behaviour.
This has led to research of several fields in the context of trip chain and activity participation,
which can be considered the points of activity-based research in transportation [26].

The first field is that travel is a derived demand from travellers’ needs. Thus, the
characteristics of travel strongly influence individual travel behaviour and the activity
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chains. The activities performed depend on an individual’s physiological, economic and
social needs, etc. In this field, some studies capture individual activity/travel models by
focusing on the mechanism by which personal activities are generated, and the factors that
affect the activities, e.g., Dharmowijoyo et al. [27] focused on the activity–travel behaviour
of individuals from the Jakarta. Their analysis indicated that compared to workers and
students, non-workers were making fewer trips, had a lower dependency on personalised
modes, were involved in a smaller number of trip chains, and were allocating less time
for travelling. M. Manoj and Ashish Verma [28] presented exploratory and statistical
analyses of the activity–travel behaviour of non-workers in Bangalore city. This study
summarised the socio-demographic characteristics and the activity–travel behaviour of
non-workers using primary activity–travel survey data collected by the authors. Arentze
and Timmermans [22] developed a model of dynamic activity generation based on the
assumption that individuals’ activities are driven by a limited set of needs that tend to
grow over time and are influenced by activities. The utility of activity increases with the
requirements it satisfies and decreases with the needs it induces. Needs are defined on the
household and individual levels, and a single activity could have an influence on multiple
needs simultaneously.

A second important field of the activity-based approach is that activity performance
depends on the availability of specific facilities, which sets limitations to the possibilities
of performing activities. In addition to that, the duration of activities and constraints
concerning their sequence, the available facilities, the hours at which they are accessible,
and the travel times between facilities affect which activities can eventually be performed.
Many studies have dealt with the availability of specific facilities, such as limitations termed
space–time constraints, to explain how these facilities affect activity performance. For
instance, Liangpeng et al. [29] investigated both multiactivity and multiperson interactions
in urban nuclear families. They proposed the novel concepts of “activity-restriction degree”
and “activity-constraint niche” to quantify the degree of space–time constraints within time
geography. The models created in this study demonstrate which activity–travel transfer
was optimized at the space–time level, and that families engaged in behavioural-agent
transmission effectively completed the necessary tasks even under constraints. Steven
Farber et al. [30] proposed a method for measuring the social interaction potential of a
metropolitan area based on the time–geographic concept of joint accessibility. The metric is
sensitive to prevailing land-use patterns and commuter flows in the metropolitan area, time
budgets, and the spatial distribution of common activity locations. It is calculated via a
geocomputation routine in which a representative subset of after-work, space–time prisms
are intersected with each other. Kang and Chen [31] developed a method of constructing a
feasible region in the space–time dimension of the Household Activity Pattern Problem
(HAPP). Based on the definition of an activity and its spatial and temporal constraints, a
feasible space–time region for completing one activity is derived. Then, a full-day, feasible,
space–time region is determined as an intersection of a set of feasible areas for activities to
be performed.

A third field of the activity-based model emphasizes the household as the decision-
making unit. As most households consist of multiple persons, interpersonal linkages
influence activity patterns. In this context, there have been theoretical and empirical works
which explain the interaction of relationships between household members. Srinivasan
and Bhat [32] also considered joint participation accommodating intra-household and
inter-household interactions in activity–travel behaviour analysis and examined the gen-
eration, location, and scheduling of joint activity episodes. This analysis highlights the
high levels of joint activity–travel participation by individuals. Chinh Ho and Corinne Mul-
ley [33] examined individuals’ trip chaining, with joint household travel being explicitly
incorporated within a nested logit model and a typology of tours that captures various
patterns of household interactions. Situational factors, represented by travel purpose, travel
party composition, type of working hours, and schedule synchronisation, are critical to
understanding intra-household interactions in travel trip chaining.
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A fourth field of the activity-based model is that travel should be regarded in the
context of activity chains, consisting of multiple activities and trips. Some studies con-
sidering the activity chains, which consist of multiple activities and trips of individual
and household travel behaviour, have been conducted. For example, François and Cather-
ine [15] proposed a typology of trip chains based on the spatial–temporal structure of
trips and activity type at the destination. Anchor points, loops and dominant activities are
defined and used for classification purposes. A hierarchical classification of simple and
complex trip chains is derived and used to measure the occurrence of typical trip chaining
behaviours among an active population segment, people aged 25–44 years old. Jianchuan
Xianyua [14] presented a mathematical model to investigate the decision order of travel
mode choice and trip chaining in work tours. Then, they examined how much variation in
this interrelationship can be captured by explanatory variables at the individual and house-
hold levels by applying the co-evolutionary approach. Results from this study provided
methodological and empirical evidence that could lead to approaches for simultaneously
predicting commute mode and trip chaining behaviour. João de Abreu [16] studied the
relationships between the number of complex chains (with one or more intermediate stops)
and simple chains, and total distances travelled by mode and land-use approach both at
the residence and the workplace using path analysis. The results confirmed the association
between complex chains and higher levels of car use. Land-use patterns significantly affect
travelled distances by mode directly via the influence of longer-term decisions such as
vehicle ownership.

As for the last field, it is mentioned that travel and activities can be considered
the outcome of a scheduling process. Activity demands are matched against a supply
side, defined by the available facilities, time windows and transportation options. Be-
sides activity-based modelling, various researchers have investigated specific temporal
aspects of activity scheduling processes. Some recent studies in this field include Khandker
Habib [19], who presented a comprehensive utility-based system of activity–travel schedul-
ing options modelling (CUSTOM) and applied it to simulate workers’ daily activity–travel
demand. CUSTOM used a random utility-maximising econometric approach for jointly
modelling activity type choices, time expenditure choices and location choices. Ben-Akiva
and Abou-Zeid [17] highlight the necessity of considering the 24-h cycle in modelling
workers’ skeleton activity–travel schedule formation but applying only a discrete choice
model to model departure time choices for activities. Cirillo and Axhausen [18] proposed
a dynamic activity choice and scheduling model that incorporated state-dependency of
choice in a framework that has similarities with extended tour-based models in the Bowman
and Ben-Akiva [34] tradition. They described an estimation of the model on the Mobidrive
multi-week dataset.

Most of the above studies on the activity model lack the connection among essential
areas of the activity-based model that affect trip chains, activity behaviour and travel
decisions. Simultaneously, trip chain and activity behaviour are estimated and analysed
based on one or some factors, which do not match the actual travel choice behaviour.

Based on the previous studies, we introduce in this paper a comprehensive study to
estimate, analyse and model the activity chains of travellers in Budapest.

In this study, we have used a wide range of variables to analyse and model activity
chains within daily activity by using three models, a multinomial logit model, nested
logit model and generalized nested logit model. Simultaneously, we calculate the utility
maximum of the choice of the activity chain of travellers based on the utility function. The
utility function provides an indication based on the trip, location, and factors related to
travellers, and which activity chain has a high utility to the travellers. Besides that, this
method helps to develop transportation planning in Budapest city, which is the best way to
move towards sustainable transportation.
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3. Methodology

We aim to support travel behaviour and daily activity chain choice of travellers and to
understand the interaction between individuals and interaction within the household and
interrelationships between the travellers and various parameters. Therefore, the activity
chain model has become essential for modelling and analysing travel behaviour within the
activity chains during daily activity.

Therefore, this research aims to explore activity chain behaviour and travel behaviour
in Budapest Metropolitan Region, Hungary. The methodology proposed in this study can
be divided into four steps. They are preparation of the database, analysis of activity chains
and modelling of activity chain choice. The first step involves identifying activity chains
based on the purpose, determining the number of activities per activity chain based on the
type, identification of the primary activity, and typology of activity chains and structure.
The second step is to create the utility function based on the different variables. The third
step is to analyse the activity chains based on a wide range of variables (24 variables),
identify which variables have a great influence on the activity chains, and identify the
interactions between activity chains and the variables using the logit models based on the
utility function. The fourth step is modelling the activity chain choice.

The discrete choice process can be easily explained by a random utility model. For this
study, we used the multinomial logit, the nested logit, and a generalized nested logit model
based on the utility function to reach the maximum utility of the activity chain choice.
These logit models are used to model the activity chain choice model by using identified
trip chain choices as alternatives. The methodology adopted for the activity chain model is
presented below.

3.1. Activity Chain Theory and Classification

Activity chain is defined as every activity chain that starts at the home location
and ends at the same point with one or more intermediate activities. If these activities
include mandatory activities such as work/study, they are considered the primary activity;
otherwise, the activity which takes the longest duration is called the primary activity. All
other activities conducted in between the home and the primary activity are considered
secondary activities. Thus, the activity chain can have a home, primary activity and one or
more secondary activities. In this study, activity chains are classified as simple, complex
and open chains. Simple chains are the simplest form of activity chains that contains two
trips and one activity in-between. Complex chains include all trip chains with at least two
activities. Open chains are those in which information on starting or closing trips is missing.
The condition used to determine and construct the activity chains is that every activity
chain will start and end on the same day.

We redefined the original dataset’s activity purpose variable into four broad activity
groupings [35]:

• Subsistence—out-of-home work, school and college;
• Maintenance—out-of-home shopping, personal and appointments;
• Discretionary—out-of-home free-time, visiting;
• Home—unspecified activities in the home.

3.2. Activity Chain Typology

For our analysis, a refinement in the previous typology has been performed based on
the activity purpose. An activity chain typology is proposed in this study based on earlier
research [36–39] and the data obtained from the activity–travel survey. This typology is
as follows;

1. Simple subsistence chains (one subsistence activity in between home ends);
2. Simple maintenance chains (one maintenance activity in between home ends);
3. Simple discretionary chains (one discretionary activity in between home ends);
4. Open subsistence chains (one subsistence activity from home);
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5. Open maintenance chains (one maintenance activity from home);
6. Open discretionary chains (one discretionary activity from home);
7. Complex chains are classified as complex subsistence chains (more than one subsis-

tence activities in between home ends);
8. Complex maintenance chain (more than one maintenance activity other than subsis-

tence in between home ends);
9. Complex discretionary chain (more than one discretionary activity other than subsis-

tence in between home ends);
10. Complex to subsistence (complex subsistence chain with one or more maintenance or

discretionary activities before the subsistence);
11. Complex from subsistence (complex subsistence chain with one or more maintenance

or discretionary activities after subsistence activities);
12. Complex to and from subsistence (complex subsistence chain with one or more

maintenance or discretionary activities before and after the subsistence activities);
13. Complex at subsistence (complex subsistence chain with one or more maintenance or

discretionary activities in between subsistence activities);
14. Complex at and from subsistence (complex subsistence chain with one or more

maintenance or discretionary activities between and after the subsistence activities);
15. Complex to, from and at subsistence (complex subsistence chain with one or more main-

tenance or discretionary activities before, after and in between the subsistence activities).

3.3. The Hypothesizes of Study

The literature review identifies the essential elements that influence the activity chain,
which involves individual and household variables, trip variables, activity variables, and
location variables [38]. In addition to that, the activity model predicts the choice of the
activity chain, which has a high utility by travellers based on the utility function [24].
Therefore, the alternatives considered for the model as dependent variables were open
chains, simple chains and complex chains. Additionally, in this study, the independent
variables considered were the individual and household variables, trip variables, activity
variables and the location variables [21]. The variables in the model with the highest
accuracy were selected as the final data of Budapest city’s daily activity.

According to that, in this study, five formal hypotheses are investigated as the basis of
establishing the role of the various variables of travellers as an impact on the decision of
travellers regarding the activity chain when performing daily activity:

• The first hypothesis: the potential influences on the activity chain are investigated
through the individual variables;

• The second hypothesis: the potential influences on the activity chain are investigated
through the household variables,

• The third hypothesis: the potential influences on the activity chain are investigated
through the trip variables;

• The fourth hypothesis: the potential influences on the activity chain are investigated
through activity variables;

• The fifth hypothesis: the potential influences on the activity chain are investigated
through the location variables.

By investigating the hypotheses, we can gain insight into how individuals choose the
activity chain and the activity duration. We also create the utility function for the activity
chain from the characteristics that affect the activity chain. Consequently, we perform
analysis of this impact on the activity chain.

3.4. The Activity Chain Structure Description for Model Analysis

The multinomial, nested, and generalized nested logit models can be depicted by
a tree structure representing all the alternatives. The multinomial logit model treats all
alternatives equally, whereas the nested logit model and generalized nested logit include
intermediate branches that group alternatives, as shown in Figure 1.
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Figure 1. The structure of proposed activity chain patterns.

An activity chain’s structure is proposed in this study based on earlier studies [36–39]
and the data obtained from the activity–travel survey. Therefore, the refinement in the
structure is performed based on the activity purpose. Figures 1 and 2 shows the structure
of proposed activity chain patterns.

Figure 2. Structure of the nested logit and generalized nested logit models.

The differences in structure can result in dramatically different activity chain pro-
jections and diversions to those obtained by the multinomial logit model in cases. The
nested and generalized nested logit is significantly different from the multinomial logit
models because the nested and generalized nested logit models allow for the correlation
among alternatives a nest. In contrast, alternatives in different nests remain independent.
In other words, a greater degree of choice substitution is allowed within nests than between
nests [38].

Figure 2 presents a nested structure involving three activity chains: the simple, com-
plex, and public open, according to the nested structure groups, the subsistence, main-
tenance and discretionary as subchoices of the composite simple (or complex or open)
activity chain. This structure permits a change in the utility of one of the simple activity
chains (say, the subsistence) to affect the share of the other activity chain (i.e., maintenance)
to a greater degree than a chain (in this case, the discretionary) that does not belong to the
complex nest. In other words, a greater degree of choice substitution is allowed within
nests than between nests [39,40].

Further, the analysis provides insights into the relationship between the individual
and household variables, trip variables, activity variables, location variables, and activity
chain model. This analysis aims to capture the effect of those variables on travellers into the
activity chain behaviour and generate a basis for model development of activity chains [41].

3.5. The Utility Function Formulation

The utility maximization model provides a link by which choice probabilities can be
estimated given variables of the activity chains, the travellers and the location. This model
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assumes that an individual acts to maximize their utility by choosing among the available
alternatives. The utility can be formulated as a function of the traveller and the activity
chain variables. Conventionally, the utility of an alternative, Uij, is assumed to be the sum
of a deterministic component, Vij, which describes the variables of individual i and the
attributes of alternative j, and a random term, εij, which represents elements not measured,
the utility function included in the model, as Equation (1):

Uij = Vij + εij (1)

The measured and included component of the model is represented by a linear additive
Equation (2) that includes parameters, β, and variables, Xij, which are predetermined
functions of the characteristics of individual i and the attributes of alternative j:

Uij = β′Xij + εij (2)

The utility function of the activity chain Uactivity chain is computed as the sum of all
travel utilities Utrav,mode(i), plus the sum of activity factors utility UActivity,Fac(i), plus the sum
of individual characteristics utility UIC(i), plus the sum of household characteristics utility
UHC(i) and plus the sum of location utility VL(i), which is described by Equation (3):

Uactivity chain = ∑ N−1
i=0 Utrav, mode(i) + ∑ N−1

i=0 UActivity,Fac(i) + ∑ N−1
i=0 VIC(i) + ∑ N−1

i=0 VHC (i) + ∑ N−1
i=0 VL (i) (3)

â The utility function of the travel variables is calculated as Equation (4):

∑ Utrav, mode(i) = βC + βtrav, time,m∗ Ttrav,m + βC,m∗ Cm + βd,m∗ TDtrav,m (4)

where:

βC = is the coefficient parameter to be estimated from data for a model-specific constant,
βtrav,time,m = is the coefficient parameter of time spent traveling by mode (m),
ttrav,m = is the travel time between activity locations by mode (m),
βc,m = is the coefficient parameter of travel cost of mode (m),
Cm = is a parameter related to of the actual travel cost for mode (m),
βd,m = is the coefficient parameter of the of trip distance,
TDtrav,m = is the trip distance traveled between activity locations.

â The utility function of the activity variables is calculated as Equation (5):

∑ UActivity F = βactivity pur ∗ APpur + βactivity dur ADdur (5)

where:

βactivity purpose = is the coefficient parameter of the activity purpose,
APpur = is a parameter related to the activity purpose for traveller (i),
βActivity dur = is a coefficient estimated related to the activity duration,
ADdur = is a parameter related to the activity purpose for traveller (i).

â The utility function of the individual characteristics is calculated as Equation (6):

∑ UIC (i) = γGender ∗ XGender + γAge ∗ XAge + γMar. sta. ∗ XMar. sta. + γOcc. ∗ ZOcc. + γEdu. level ∗ ZEdu. level (6)

where:

γGender = is the coefficient parameter of gender,
XGender = is the parameter related to the gender (male and female) for traveller (i),
γAge = is the coefficient parameter of age,
XAge = is a parameter related to the age for traveller (i),
γMaritual status = is the coefficient parameter of marital status,
XMaritual status = is a parameter related to marital status of traveller (i),
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γOcupation = is the coefficient parameter of the occupation,
ZOcupation = is a parameter related to the occupation of traveller (i),
γEducation level = is the coefficient parameter of the education level,
ZEducation level = is a parameter related to the education level of traveller (i).

â The utility function of the household characteristics is calculated as Equation (7):

∑UHC (i) = γSta.liv. ∗ ZSta.liv. + γHou.size ∗ ZHou.size + γHou.inc. ∗ ZHou.inc. + γCar own. ∗ ZCar own. + γBic. own. ∗
ZBic. own. + γMop. bike own. ∗ ZMop. bike own. + γDri. lic. ∗ ZDri. lic. + γmon. tic. ∗ Zmon. tic. + γno.child. ∗ Zno.children (7)

where:

γStandard living = is the coefficient parameter of the standard of living of the family,
ZStandard living = is a parameter related to the standard of living of traveller (i),
γHouse size = is the coefficient parameter of the household size (family size),
ZHouse size = is a parameter related to the household size (family size) of traveller (i),
γHouse income = is the coefficient parameter of the household income,
ZHouse income = is a parameter related to the household income of traveller (i),
γCar ownership = is the coefficient parameter of the number of car ownerships,
ZCar ownership = is a parameter related to the number of car ownerships of traveller (i),
γBicycle ownership = is the coefficient parameter of bicycle ownership,
ZBicycle ownership = is a parameter related to the bicycle ownership of traveller (i),
γMoped bike ownership = is the coefficient parameter of moped bike ownership,
ZMoped bike ownership = is a parameter related to the moped ownership of traveller (i),
γDriving license = is the coefficient parameter of driving license,
ZDriving license = is a parameter related to the driving license of traveller (i),
γmonthly ticket = is the coefficient parameter of ticket availability,
Zmon. ticket= is a parameter related to the ticket availability of public transit for traveller (i),
γno. children = is the coefficient parameter of the number of the children in the household
(under 12 years),
Zno.children = is a parameter related to the number of children in the household of
traveller (i).

â The utility function of the location choice is calculated as Equation (8):

∑ UL (i) = γHouse, Location ∗YOrigin, Loca. + γDestination, Loca. ∗YDestination, Loca. + γDest., Attribute ∗YDest., Attr. (8)

where:

γOrigin, Location = is the coefficient parameter of the household location,
YOrigin, Location = is a parameter related to the household location of traveller (i),
γDestination, Location = is the coefficient parameter of the destination location,
YDestination, Location = is a parameter related to the destination location of traveller (i),
γDestination, Attribute = is the coefficient parameter of the destination attribute,
YDestination, Attribute = is a parameter related to destination attribute of traveller (i).

From the equations above, one can see the linear utility function of the activity chain.
It is used to estimate the utility values of each choice alternative which depend on the
values of the variables associated with the alternatives [42].

Travellers’ choice means assigning the chosen value of the alternative with high utility
and not the choice of another alternative with less value.

3.6. Logit Models

The logit model has the ability to model complex travel behaviours of any population
with simple mathematical techniques and thus prove to be the most widely used tool for
activity chain modelling. The mathematical framework of logit models is based on utility
maximization theory [24,43].
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3.6.1. The Multinomial Logit Model Formulation

For this study, the multinomial logit model (MNL) is used to investigate and identify
the effect of the variables related to travellers on the activity chain and estimate the coeffi-
cients of the underlying model. The MNL model has the ability to model travel behaviours
by using simple mathematical techniques, thus proving to be the most widely used tool for
the activity chain modelling [44]. The mathematical framework of MNL model is based on
utility function theory [24]. The activity chain models statistically relate the choice made
by each traveller to the attributes of the alternatives available. The components of the
utilities of the different set of alternatives in the MNL model are assumed to be independent.
The general Equation (9) of the MNL model for the probability of choosing an alternative
‘i’ (i = 1, 2, . . . , J) from a set of J alternatives is:

Pr(i) =
exp(Uin)

∑J
i=1 exp(Uin)

, (9)

where:

Pr (i) = is probability of the activity chain (n) by traveller choosing alternative (i),
Uin = is utility component of activity chain (n) by traveller choosing alternative (i),
UJ = is the systematic component of the utility of the set alternative (j).

The MNL identifies how the independent variables are related to the dependent
variable and is expressed in terms of utility. For each case, the traveller has the available
alternatives: open activity chain, simple activity chain and complex activity chain.

3.6.2. The Nested Logit (NL) Model Formulation

The Nested logit (NL) model is a generalization of the multinomial logit model (MNL),
and it characterizes a partial relaxation of the independence of the irrelevant alternatives
(IIA) property of the MNL model. A nested logit model is appropriate when the subsets
of similar alternatives are grouped in hierarchies or nests [45–47]. The NL model consists
of three trunks of the activity chain, which include open activity chain, a simple activity
chain and a complex activity chain. The NL model can be calibrated to find coefficients by
using standard logit estimation. The hierarchical structure of the NL model such as the one
represented by Equation (10) is estimated for each hierarchy [48–50];

Pij =
eUij

∑
j
i=1 eUj

(10)

where:

Pji = is the probability that traveller i chooses alternative j,
Uij = is utility component of activity chain (n) by traveller choosing alternative (i),
UJ = is the systematic component of the utility of the set alternative (j).

The nested logit model can be illustrated by a tree structure representing all the alter-
natives. Nested Logit (NL) structure allows for estimation of proportions among a selected
subactivity chain, prior to the estimation of proportions between activity chains [24].

3.6.3. The Generalized Nested Logit Model Formulation

Generalized Nested Logit (GNL) is one such member of the generalized extreme
value (GEV) family of models, which provides a high degree of flexibility in substituting
choices [50]. Each of the nested logit models’ alternatives appears only in one nest. In real
case scenarios, alternatives may appear in more than one nest [4,51]. Wen and Koppel-
man [47,48] have shown that a GNL model can solve such problems where the activity
chain appears in more than one nest.

Let the nests of alternatives be labelled B1, B2, . . . , BK. Each alternative can be a
member of more than one nest. In fact, an alternative can be in a nest to varying degrees.
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Stated differently, an alternative is allocated among the nests, with the alternative being in
some nests more than other nests. An “allocation” parameter αjk reflects the extent to which
alternative j is a member of nest k. This parameter must be non-negative: αjk ≥ 0 ∀j, k. A
value of zero means that the alternative is not in the nest at all. Interpretation is facilitated
by having the allocation parameters sum to one over nests for any alternative: ∑ kαjk = 1 ∀ j.
Under this condition, αjk reflects the portion of the alternative that is allocated to each nest.

The parameter λk is a measure of the degree of independence in unobserved utility
among the alternatives in nest k. A higher value of λk means greater independence and
less correlation. The statistic (1− λk) is a measure of correlation, in the sense that as
λk rises, indicating less correlation, this statistic drops. As McFadden [51] points out,
the correlation is actually more complex than (1− λk), but (1− λk) can be used as an
indication of correlation.

When λk = 1 for all k (and hence 1− λk = 0), indicating no correlation among the
unobserved components of utility for alternatives within a nest, the choice probabilities
become simply logit. The probability that individual n chooses alternative i from the choice
set is as Equation (11):

Pni =
∑k (αik eVni )

1
λk (∑j∈Bk

(αjkeVnj)
1/λk )

λk−1

∑K
l=1 (∑j∈Bl

(αjle
Vnj)

1/λl )
λl

(11)

This formula is similar to the nested logit probability, except that the numerator is
a sum over all the nests that contains alternative i, with weights applied to these nests.
If each alternative enters only one nest, with αjk = 1 for j ∈ Bk and zero otherwise, the
model becomes a nested logit model. Additionally, if in addition λk = 1 for all nests, then
the model becomes standard logit. Wen and Koppelman [49] derive various cross-nested
models as special cases of the GNL. The probability formula is a generalization with extra
sums for the sub-nests within the sums for nests. See McFadden [51] or Ben-Akiva and
Lerman [24] for the formula. This term represents the expected utility that the traveller can
obtain from the subnests within the nest [52–56].

4. Data Study
4.1. Study Area, Survey Techniques and Data Collection

One of the essential steps in the household survey process is selecting the study
area. Budapest is the capital of Hungary and the most populous city of Hungary, and the
10th largest city in the European Union by population [57]. Budapest is both a city and
county and forms the centre of the Budapest City metropolitan area, which has 7626 square
kilometres and a population of 3,303,786, comprising 33% of the population of Hungary [58].
In 2014, Budapest had a population density of 3314 people per square kilometre, rendering
it the most densely populated of all municipalities in Hungary [59].

The data used in this paper are drawn from Budapest city, a regional household travel
survey which the Transportation Planning Board conducted in Metropolitan Budapest
during 2014. In the survey, the data were collected from randomly selected households, and
each family completed a travel diary that documented the activities of all family members
on an assigned day. The survey was designed as part of the process of developing travel
behaviour programs for people in the City of Budapest.

This interview method is structured with questions regarding what aspects appear in
the respondents’ daily activity process, why these elements are essential, and how each
element affects the activity chains.

The data collected from respondents include information on individuals and their
household characteristics, including age, income, vehicle available for use, ticket availability,
and the number members per household. Furthermore, information concerning the number
of vehicles per household was considered. These data have formed a source of day-to-day
travel patterns of residents. In this context, respondents are asked to reflect on five essential
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elements: the purpose of the activity, the starting and ending points of time for every
out-of-home trip, the timing of the activity, the activity’s location, and the transport mode
choice. From these records, the activity time and activity chain can be reconstructed.

4.2. Model Specification of Data and Determination of Parameters

The variables included in the models to analyse the activity chains were selected
based on the availability of data from the survey and based on previous theoretical and
empirical work on the activity chains model and daily activity analysis conducted by other
researchers. After that, the primary data collected from the personal information and
the household questionnaire survey are sorted and coded as different groups of similar
variables. The coded data are used as variables for model generation related to the activity
chains. Then, the final specification of the variables identified based on statistical testing is
achieved on the dataset.

Five categories of variables that influence the activity chains are considered: individual
variables, household variables, activity variables, and travel variables. The individual
variables include age, gender, occupation, and education level. The household variables
include household size, average monthly income, the standard of living of the family,
vehicle ownership, bike ownership, moped ownership, number of children in household
and ticket availability. Location variables involved are location attributes for origin and
destination. Travel variables included in this study are travel time, trip distance, travel
cost and the number of trip interchanges. The activity variables considered are the activity
purpose and the activity duration. Table 1 presents the variables in the model and the
frequency percentages of the variables in this study.

Table 1. Frequency percentages of the variables.

Variables Range Variable Description % Variables Scaling

Activity chains
Activity chain 1 if Simple Activity Chain 54.7

NominalActivity chain 2 if Complex Activity Chain 39.2
Activity chain 3 if Open Activity Chain 6.1

Individual characteristics

Age - Continuous variable - Ordinal

Gender [1, 2] Gender 1 if person is male 71.3
NominalGender 2 if person is female 28.7

Marital status [1, 2]
Marital status 1 if person is single 29.6

NominalMarital status 2 if person is married 70.4

Education level [1, 5]

Education level 1 if elementary school 4.5

Nominal
Education level 2 if high school 47.8

Education level 3 if vocational training 12.1
Education level 4 if university or college or higher 28.9

Education level 5 if other 6.7

Occupation [1, 6]

Occupation 1 if active search, full time 53.1

Nominal

Occupation 2 if active search, part time 3.7
Occupation 3 if Retired 14.5
Occupation 4 if Student 16.1

Occupation 5 if Unemployed 4.1
Occupation 6 if Entrepreneur 8.5
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Table 1. Cont.

Variables Range Variable Description % Variables Scaling

Household Characteristics

The standard of living
of the family [1, 6]

Type 1 if much lower than average 3.1

Ordinal

Type 2 if slightly lower than average 5.5
Type 3 if average 75.9

Type 4 if slightly higher than average 7.8
Type 5 if much higher than average 0.5

Type 6 if do not answer 7.3

Household size [1, 5]

Size 1 if single person 16.6

Ordinal
Size 2 if two persons 30.6

Size 3 if three persons 20.6
Size 4 if four persons 23.3

Size 5 if more than five persons 8.9

Household income [1, 5]

Income 1 if under HUF 50 thousand 1.8

Ordinal
Income 2 if between HUF 50 and 100 thousand 18.2

Income 3 if between HUF 100 and 150 thousand 24.3
Income 4 if over HUF 150 thousand 28.2

Income 5 if do not know\do not answer 27.4

Number of Cars
ownership [1, 3]

Car 1 if household owns no car 35.3
OrdinalCar 2 if household owns one car 43.7

Car 3 if household owns two or more cars 21.0

Bicycles [1, 2] Bicycle 1 if household owns no bicycle 65.6
OrdinalBicycle 2 if household owns one or more bicycles 34.4

Moped bikes [1, 2]
Moped bike 1 if household owns no moped bike 99.1

OrdinalMoped bike 2 if household owns one or more moped bikes 0.9

Number of children in
household (under
12 years)

[1, 3]
Number of children 1 if one child 79.4

OrdinalNumber of children 2, two children 11.4
Number of children 3, three children or more 9.1

Ticket availability of
public transit [1, 3]

Ticket availability 1 if there is ticket availability 48.5
OrdinalTicket availability 2 if there is travel for free 15.3

Ticket availability 3 if no ticket availability 36.2

Driving license [1, 2]
Driving license 1 if no driving license 54.1

NominalDriving license 2 if there is driving license 45.9

Location-related characteristics

Origin location
1 if is Urban 99.4

Nominal2 if is Suburban 0.6
3 if are Other 99.4

Destination location [1, 3]
1 if is CBD 29.7

Nominal2 if is not CBD 69.1
3 if is Suburban 1.1

Location attribute [1, 10]

Location attribute 1 if workplace 42.5

Nominal

Location attribute 2 if educational institution place 12.3
Location attribute 3 if commercial place (Shopping place) 13.0

Location attribute 4 if school place 2.3
Location attribute 5 if medical place 7.8
Location attribute 6 if public service 3.8

Location attribute 7 if public recreation 4.7
Location attribute 8 if leisure place 6.7

Location attribute 9 if restaurant place 1.5
Location attribute 10 if other 5.4

Travel-related characteristics

Travel time - Continuous variable - Scale

Travel cost - Continuous variable - Scale

Trip distance - Continuous variable - Scale

Number of
interchanges of a trip
for different travel
mode

[1, 3]

Number of interchanges 1 if 0 times 20.3

Ordinal
Number of interchanges 2 if 1 times 44.2
Number of interchanges 3 if 2 times 27.9

Number of interchanges 4 if 3 times or more times 7.5
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Table 1. Cont.

Variables Range Variable Description % Variables Scaling

Activity characteristics

Activity Duration [1, 8]

Activity Duration 1 if the time less than 1 h 0.9

Ordinal

Activity Duration 2 if the time is (1 to 2) h 7.7
Activity Duration 3 if the time is (2 to 4) h 20.1
Activity Duration 4 if the time is (4 to 6) h 9.5
Activity Duration 5 if the time is (6 to 8) h 10.1

Activity Duration 6 if the time is (8 to 10) h 21.0
Activity Duration 7 if the time is (10 to 12) h 22.7

Activity Duration 8 if the time is greater than 12 h 7.9

Purpose of activity
chain

[1, 5]

Purpose of activity 1 if work activity 43.7

Ordinal
Purpose of activity 2 if education activity 13.3

Purpose of activity 3 if leisure activity 9.9
Purpose of activity 4 if shopping activity 17.5

Purpose of activity 5 if other activity 15.7

4.3. Descriptive Analysis of Data

In this study, to build models based on the activity chain, a significant effort was made
to clean the data, identify the activity chains and classify chains [60]. A descriptive analysis
was conducted in this section to obtain findings regarding the association between indi-
vidual, household, and travel-related variables, and location attribute variables obtained
from the sample and the activity chains model. This analysis clearly explains significant
variations between variables in the study area. Table 2 shows the study area’s descriptive
statistics, representing the household and individuals’ and other variables.

Table 2. Descriptive statistics of sample data.

Variables
Mean Std. Deviation Variance

Statistic Std. Error Statistic Statistic

Activity Chain 1.51 0.021 0.609 0.371

Age of traveller 44.14 0.543 16.073 258.349

Gender of traveller 1.29 0.015 0.453 0.205

Marital status of traveller 1.70 0.015 0.457 0.209

Education of traveller 2.86 0.037 1.094 1.196

Occupation of traveller 2.40 0.057 1.700 2.890

The standard of living of the family 3.19 0.032 0.947 0.898

Household size 2.77 0.042 1.229 1.509

Household income 3.61 0.038 1.123 1.260

Car ownership of household 1.86 0.025 0.737 0.544

Bike ownership of household 1.34 0.016 0.475 0.226

Moped ownership of household 1.01 0.003 0.095 0.009

Number of children in the household 1.30 0.021 0.626 0.392

Ticket of public transit 1.88 0.031 0.913 0.833

Driving license 1.46 0.017 0.499 0.249

Origin location 1.01 0.003 0.075 0.006

Destination location 1.71 0.016 0.477 0.227

Location attribute 3.31 0.096 2.831 8.014

Travel time 20.543 0.414 12.256 150.198
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Table 2. Cont.

Variables
Mean Std. Deviation Variance

Statistic Std. Error Statistic Statistic

Travel cost 517.807 20.659 611.120 373,466.705

Trip distance 4.484 0.119 3.544 12.559

Activity duration 5.14 0.064 1.885 3.554

Activity purpose 2.48 0.053 1.554 2.415

Number of interchanges 2.23 0.029 0.857 0.734

5. Model Estimation Results

The activity chain model was developed as a discrete choice model by assuming a
hierarchy of the model components. The multinomial logit, nested logit, and general-
ized nested logit models are used to estimate, analyse, and model the activity chain and
determine the coefficients of the model’s parameters.

In this study, we built the activity chains’ typology and tree structure to identify the
chain choice among simple activity chains, complex activity chains and open activity chains
as a higher level in the tree. This level is analysed using the MNL model, as shown in
Figure 1. The second level is divided into open subsistence activity chain, open maintenance
activity chain, open discretionary activity chain, simple subsistence activity chain, simple
maintenance activity chain, simple discretionary activity chain, complex subsistence activity
chain, complex maintenance activity chain, and complex discretionary activity chain as the
median level. This level is analysed using the NL model, as shown in Figures 1 and 2. After
that, for the lower level, most complex activity chains such as HSMH, HSDH, HSMSH,
HMSH, HMDH, HMSMH, HDSH, HDMH and HDSDH are aggregated and named as
multiple complex activity chains for modelling purposes. This level is analysed using
the GNL model, as shown in Figure 2. On the other hand, open chains are very few, and
missing data about them lead to the reference category in the first stage of the analysis.

The multinomial logit, nested logit and generalized nested logit models are formulated
with all identified characteristics along with the alternative specific constants in defining
the utility of different alternatives. The software NLOGIT and SPSS are used to estimate the
estimated coefficients of the model’s parameters through the maximum likelihood method.
Finally, the significance of the variables was checked in the model, and the non-significant
variables were eliminated.

5.1. Checking of the Selected Model

The goodness of fit of a statistical analysis describes how well it fits into a set of
observations [61]. The advantage of the goodness of fit measures is to summarize the
discrepancy between observed and expected variables. According to the results, the model
has shown goodness fit to the data. Table 3 explains goodness of fit to the model.

Table 3. Goodness of fit.

Goodness of Fit

Chi-Squared df Sig.

Pearson 79,879.436 6800 0.000

Deviance 2352.643 6800 0.000

5.2. Pseudo R-Square

The pseudo R2 is a statistical test used in the context of statistical models whose
primary purpose is either to predict future outcomes or to test hypotheses based on other
related information [62–64]. The pseudo R2 values can be calculated by the model, as
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shown in Table 4. According to the measures, the model with the largest pseudo R2 statistic
is the best [65].

Table 4. Pseudo R-Square.

Pseudo R-Square

Cox and Snell 0.704

Nagelkerke 0.719

McFadden 0.312

5.3. Goodness-of-Fit Measures

The likelihood-ratio test evaluates the goodness of fit of two competing statistical
models based on the ratio of their likelihoods [66]. The significance of the difference
between Likelihood Ratio Tests and −2 Log-Likelihood of Reduced Model for our selected
model is given in Table 5. A common use of the likelihood ratio test (chi-squared) is to test
this difference dropping an interaction effect. If the chi-squared is significant, the interaction
effect contributes significantly to the whole model and should be retained. In our model,
the values of the location attribute were p-value (8), −2 Log-Likelihood (LL) was (2723.038),
chi-squared (370.395), Sig. was (0.000), which is less than the level of significance 0.05. The
results show that the location attribute variable has more effect on activity chain choice
than other variables. Furthermore, these results show a statistically significant relationship
between the independent variables and the dependent variable.

Table 5. Likelihood ratio tests of the selected model.

Likelihood Ratio Tests

Effect
Model Fitting Criteria Likelihood Ratio Tests

−2 Log Likelihood of Reduced Model Chi-Square df Sig.

Intercept 2357.722 5.078 8 0.049

Education 2362.868 10.225 8 0.050

Occupation 2358.310 5.667 8 0.005

Standard of living 2365.413 12.769 8 0.020

Household size 2365.713 13.069 8 0.009

Household income 2361.479 8.835 8 0.056

Car ownership 2367.435 14.792 8 0.063

Bike ownership 2367.802 15.158 8 0.056

Moped ownership 2355.821 3.177 8 0.023

Number of children 2359.256 6.613 8 0.009

Ticket availability 2364.944 12.301 8 0.038

Driving license 2362.650 10.007 8 0.005

Origin location 2358.533 5.889 8 0.060

Destination location 2356.655 4.012 8 0.056

Location attribute 2723.038 370.395 8 0.000

Activity duration 2657.151 304.507 8 0.000

Activity purpose 2357.181 4.538 8 0.006

Number of
interchanges 2366.479 13.835 8 0.086
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Table 5. Cont.

Likelihood Ratio Tests

Effect
Model Fitting Criteria Likelihood Ratio Tests

−2 Log Likelihood of Reduced Model Chi-Square df Sig.

Marital status 2361.789 9.146 8 0.030

Gender 2363.525 10.881 8 0.209

Age 2361.246 8.603 8 0.077

Travel time 2359.969 7.326 8 0.002

Travel cost 2362.433 9.790 8 0.000

Trip distance 2366.365 13.722 8 0.009

5.4. The Multinomial Logit Model Results and Discussion of Findings

In the first analysis, the multinomial logit (MNL) model was used to identify the
influence of the different variables on the activity chain choice in Budapest and estimate
the coefficients of the model parameters. The estimation coefficients’ MNL model and t-test
of the variables obtained from the analysis are shown in Table 6. To analyse the model,
we have discussed and focused on independent variables related to dependent variables
that have statistical significance less than (0.05) based on the model results. Consequently,
model interpretation will only focus on the variables as follows:

• Travel time: It is observed that travel time positively affects both simple and complex
activity chains, but the travel time has more effect on the complex activity chains than
the simple activity chains. This is consistent with the findings of Liangpeng et al. [29].

• Travel cost: It is observed that travel time negatively affects both simple and complex
activity chains.

• Trip distance: It is observed that trip distance positively affects both simple and
complex activity chains, but the trip distance has more effect on the simple chains than
the complex chains. This result confirms that when the trip distance is increased, the
travellers tend to perform more simple chains than complex chains. This is consistent
with the results of João [16].

• Gender: The results indicate that men tend to make a higher percentage of work-
related simple activity chains whereas women undertake more complex activity chains
containing maintenance or discretionary activities. The results match that of Arentze
and Timmermans [21].

• Marital status: The results indicated that the influence of social status is negative on
activity chains. Social status negatively influences the utility of the male household
member’s simple activity, but it positively impacts the utility of the female house-
hold member’s complex chains. This is consistent with the findings of Chinh and
Corinne [33].

• Education level: The results have shown that the travellers with education levels 1,
2, 3 and 5 have a tendency to perform complex chains more than simple chains. In
contrast, the travellers who had the education level of university or college or higher
prefer to undertake simple chains more than other chains.

• Occupation: The results indicate that the variable coefficient of the employment of
full time is (0.058) of simple chains and (−0.182) of complex chains, and that the
variable coefficient of the occupation part-time is (1.058) of simple chains and (1.297)
of complex chains. This result confirms that household members that are part-time
prefer to achieve complex chains more than simple chains because they have more
free time. This is consistent with the findings of Dharmowijoyo et al. [27].

• Standard of living: According to the results in Table 6, an increase in standard of living
led to a rise in family demands and thus an increase in daily activities. Therefore,
complex chains are more beneficial to family members than simple chains.
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• Household size: Table 6 shows the estimation of household size parameters and inter-
actions terms between the household members for both simple and complex chains.
All of the estimated interactions are negative, except for positive results for individuals
(single person). However, the majority of the interactions are significant, which tend
to be complex chains. For complex chains, the largest exchange is between household
members, and if one goes to work, the other is likely to go shopping. There is also
considerable interaction between two household members, indicating that part-timers
(such as wives) in the same household tend to coordinate their schedules to work on
the same days with others (unless one needs to stay home to take care of children).
This finding matches that of Sivaramakrishnan and Bhat [32] or Anggraini [67].

• Car ownership: The results confirm that vehicles in a household have a strong statisti-
cal influence on the activity chains. The increasing number of cars per household has
increased the probability of the travellers performing the complex chains more than
the simple chains This is consistent with the results of João [16] but the results do not
match that of Golob et al. [68].

• Household income: The model results have shown that the monthly income has
a positive effect on the activity chains, and this result indicates that an increase in
the total household income affects the increase in the number of the complex chains
undertaken by the household members.

• Bike ownership: The number of bikes owned positively contributes to the utility of
simple activities and negatively influences the utility of complex activities.

• Moped ownership: It is observed that the effect of moped ownership is negative on
simple chains and positive on complex activity chains.

• Number of children: The greater the number of children in a household, the higher
is the significance of husbands and wives’ complex chains during a weekday for
household welfare in Budapest, while the importance of simple chains is lower. This
result may reflect the couple’s attitudes on the interrelationship between childcare and
couple activities. For example, some couples may perform more complex chains due
to the excessive burden from childcare, whereas others may find less time to do simple
chains because of long working hours. In addition, some husbands assign more time
to work activities, while wives assign more time to household activities. So, having
more children leads to more complex activities. These results match that of John and
Koppelman [35].

• Driving license: It is observed that a driving license negatively affects both simple and
complex chains. The presence of a driving license affects the utility of the travellers
and increases the probability of moving from simple to complex chains.

• Origin location: From the results, the origin location has a negative impact on both
simple and complex activity chains. The presence of the home located in urban areas
leads to an increase in the complex chains.

• Ticket availability: The results show that ticket availability has a positive effect on
both simple and complex activity chains. Ticket availability of travellers has been led
to an increase in the complex chains. This is not consistent with the findings of Chinh
and Corinne [33].

• Destination location: From the findings, the destination location has a negative impact
on both simple and complex activity chains. The destination’s position within CBD or
near to CBD leads to an increase in the complex chains. For example, the travellers
prefer to perform maintenance activities sicj as shopping or having food besides the
main activity (as work activity) to increase the benefits of the activity chains. In
contrast, the probability reduces when the destination location is suburban. This
finding matches that of Farber et al. [30].

• Activity duration: The findings on the variable of activity duration (1, 2, 3, 4 and 5)
show it has a positive effect on the activity chains, while it has a negative influence on
the variables 6, 7 and 8. This finding confirms that when the activity duration is less
than 8 h, the travellers tend to select complex chains because they have more time to
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perform more activities within the chain. On the other hand, travellers are inclined
to choose simple chains over complex chains when the duration exceeds 8 h. This is
consistent with the results of Brunow and Gründer [11].

• Activity purpose: In Table 6, it has been found that the variable of work activity (1) has
a positive effect on the simple and complex chains, but it affects the simple chain more
than complex chains. However, this is true when the work activity duration is 8 h
with travel time more than half an hour. So, travellers may not prefer to perform more
than one activity through the chains. Additionally, it has been seen that the coefficient
of the variable of shopping activity (4) has a positive effect on all chains. This result
confirms that travellers are inclined to achieve more than one activity during the
daily chain when performing their shopping activity. This is not consistent with the
findings of Kusumastuti et al. [10], but the results match that of Diana et al. [9] and
Kusumastuti et al. [10].

• Number of interchanges: Table 6 also shows that the increase in the number of transfers
within a trip to an activity destination decreases the probability of performing the
activities through complex chains.

Table 6. Estimation coefficients and t-test of the variables of each category of the variables by using
the MNL.

Parameters Estimation

Variables
Simple Activity Chain Complex Activity Chain

Coeff. t-Test Coeff. t-Test

Intercept 4.610 10.674 3.578 8.672

Travel time 0.031 0.043 0.040 0.421

Travel cost −0.001 −0.410 −0.001 −0.527

Trip distance 0.067 0.162 0.032 0.158

Age −0.023 −0.020 −0.017 −0.019

[Gender = 1] −0.432 −0.527 −0.475 −0.508

[Gender = 2] −0.521 −0.652 −0.452 −0.677

[Marital status = 1] −0.402 −0.879 −0.417 −0.851

[Marital status = 2] −0.632 −0.632 −0.554 −0.741

[Education = 1] −1.470 −1.178 −0.385 −1.115

[Education = 2] 0.059 1.182 0.186 1.150

[Education = 3] −0.257 −1.230 0.404 1.184

[Education = 4] 0.975 1.265 0.853 1.229

[Education = 5] 1.002 1.623 1.350 1.112

[Occupation = 1] 0.458 0.826 −0.182 −0.805

[Occupation = 2] 1.058 1.454 1.297 1.403

[Occupation = 3] 0.642 1.024 −0.355 −0.994

[Occupation = 4] 1.769 1.218 1.350 1.179

[Occupation = 5] 0.824 1.410 0.982 1.354

[Occupation = 6] 1.204 1.200 1.331 1.304

[Standard of living = 1] −1.957 −1.536 −2.214 −1.444

[Standard of living = 2] 0.133 1.247 −0.473 −1.190

[Standard of living = 3] −0.161 −0.888 0.756 0.842

[Standard of living = 4] −1.135 −1.099 −1.054 −1.054
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Table 6. Cont.

Parameters Estimation

Variables
Simple Activity Chain Complex Activity Chain

Coeff. t-Test Coeff. t-Test

[Standard of living = 5] 2.485 3.614 2.502 7.614

[Standard of living = 6] 1.304 2.620 1.124 3.662

[Household size = 1] 1.152 1.443 0.875 1.403

[Household size = 2] −0.678 −0.972 −0.764 −0.939

[Household size = 3] −0.362 −1.040 −0.259 −1.013

[Household size = 4] −1.722 −0.944 −1.692 −0.915

[Household size = 5] −1.357 −1.524 −1.021 −1.003

[Household income = 1] −1.212 −1.706 −2.814 −1.914

[Household income = 2] 0.373 0.687 0.042 0.663

[Household income = 3] 0.497 0.549 0.035 0.526

[Household income = 4] 0.206 0.524 0.503 0.501

[Household income = 5] 0.621 0.718 0.843 0.624

[Car ownership = 1] −0.508 −0.705 −0.751 −0.672

[Car ownership = 2] −0.281 −0.594 −0.164 −0.573

[Car ownership = 3] 0.328 0.950 0.551 0.701

[Bike ownership = 1] −0.415 −0.442 −0.313 −0.427

[Bike ownership = 2] −0.362 −0.501 0.524 0.660

[Moped ownership = 1] −0.609 −1.435 −0.836 −1.434

[Moped ownership = 2] −0.987 −1.302 −0.784 −1.008

[Number of children = 1] −1.565 −1.361 −1.681 −1.353

[Number of children = 2] −2.027 −1.413 −1.965 −1.403

[Number of children = 3] −1.711 −2.551 −1.509 −1.552

[Ticket availability = 1] 0.476 0.383 0.603 0.366

[Ticket availability = 2] 0.440 1.363 0.617 1.397

[Ticket availability = 3] 0.305 2.002 0.121 1.414

[Driving license = 1] −0.282 −0.515 −0.561 −0.496

[Driving license = 2] −0.626 −0.632 −0.418 −0.624

[Origin location = 1] −1.828 −1.422 −1.246 −3.520

[Origin location = 2] −1.164 −1.552 −1.412 −1.023

[Destination location = 1] −2.763 −6.873 −2.416 −5.621

[Destination location = 2] −2.661 −5.011 −2.295 −7.315

[Destination location = 3] −2.310 −4.201 −2.608 −3.671

[Location attribute = 1] −2.409 −1.138 −2.685 −1.148

[Location attribute = 2] 2.071 2.975 1.837 2.307

[Location attribute = 3] 1.408 5.650 1.276 6.451

[Location attribute = 4] 1.111 4.812 1.620 4.313

[Location attribute = 5] 2.417 1.511 0.063 1.608
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Table 6. Cont.

Parameters Estimation

Variables
Simple Activity Chain Complex Activity Chain

Coeff. t-Test Coeff. t-Test

[Location attribute = 6] 2.991 7.762 3.673 6.324

[Location attribute = 7] 1.617 8.357 1.116 7.311

[Location attribute = 8] 0.816 1.176 −2.718 −1.337

[Location attribute = 9] 1.348 6.664 1.099 7.215

[Location attribute = 10] 0.947 3.220 0.718 5.340

[Activity duration = 1] 1.751 2.240 2.015 3.227

[Activity duration = 2] 2.203 4.396 2.742 6.430

[Activity duration = 3] 1.374 3.253 1.756 4.248

[Activity duration = 4] 1.473 2.475 1.652 3.474

[Activity duration = 5] 1.068 2.951 1.241 3.915

[Activity duration = 6] −0.372 −0.726 −0.750 −0.679

[Activity duration = 7] −0.381 −0.701 −0.805 −0.654

[Activity duration = 8] −0.257 −1.331 −0.570 −1.558

[Activity purpose = 1] 1.432 2.609 1.202 2.585

[Activity purpose = 2] −0.158 −0.780 −0.371 −0.748

[Activity purpose = 3] 1.709 2.808 1.476 2.787

[Activity purpose = 4] 1.030 3.683 1.660 1.656

[Activity purpose = 5] 1.664 2.998 1.879 3.894

[Number of interchange = 1] 0.096 1.310 0.685 1.250

[Number of interchange = 2] 0.424 1.126 −0.436 −1.075

[Number of interchange = 3] 0.122 1.004 −0.707 −0.963

[Number of interchange = 4] 0.351 1.333 −0.207 −1.340

Considering these study findings, in terms of the individuals and the household
characteristics, occupation has a strong effect on the activity chains. Considering the
activity characteristics, the activity duration and activity purpose have most influence on
the activity chains. On the other hand, in terms of the location characteristics, the destination
location and location attribute have great impact on the daily activity chain selection, with
a statistically significant difference or variation for each independent variable.

5.5. The Nested Logit Model Results and Discussion of Findings

In the second analysis, the NL model was used to identify the influence of the different
variables on the activity chain choice and estimate the coefficients of the parameters. The
chains are divided into open subsistence activity chain (OSAC), open maintenance activity
chain (OMAC), open discretionary activity chain (ODAC), simple subsistence activity chain
(SSAC), simple maintenance activity chain (SMAC), simple discretionary activity chain
(SDAC), complex subsistence activity chain (CSAC) and complex maintenance activity
chain (CMAC) [37,39]. The estimation coefficients’ NL model and t-test of the variables
obtained from the analysis are shown in Table 7. To analyse the model, we have discussed
and focused on independent variables related to dependent variables that have statistical
significance less than (0.05) based on the model results. Consequently, model interpretation
will only focus on the variables as follows:
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• For the open subsistence chain, we observed that the activity purpose, activity duration,
household income, and origin location have a positive effect on the (OSAC). In contrast,
gender has a negative impact on the (OSAC).

• For the open maintenance activity chain, the results show that marital status, the
standard of living, origin location, and occupation positively affect the (OMAC).

• According to the results for the open discretionary chain, the activity purpose has a
more considerable influence on the (ODAC) than other variables. At the same time,
car ownership and location attributes positively affect the (ODAC).

• For the simple subsistence chain, the result has been found that the household size,
destination location, marital status, and occupation positively affect the (SSAC). In
contrast, the number of children has a negative effect on the (SSAC). However, the
household size has a higher impact on the (SSAC) compared to other variables. The
results match that of Xianyu [14]

• For the simple maintenance activity chain, the results indicated that origin location,
activity duration, occupation, and ticket availability positively impact the (SMAC). In
contrast, household income has a negative effect on the (SMAC). So, origin location
has a more considerable influence on the (SMAC) compared to other variables. This is
consistent with the results of François et al. [15].

• According to the results for the simple discretionary activity chain (SDAC), the activ-
ity purpose has a greater effect on the (SDAC) than other variables, while location
attributes, household size and ticket availability positively affect the (SDAC). This is
consistent with the results of João [16].

• For the complex subsistence activity chain (CSAC), the results found that destination
location, occupation, origin location and car ownership have a positive effect on the
(CSAC). In contrast, gender has a negative impact on (CSAC). However, destination
location has a greater effect on the (CSAC) compared to other variables. This is not
consistent with the findings of Xianyu [14].

• For the complex maintenance activity chain (CMAC), the results show that the location
attribute, number of children, and gender positively affect the (CMAC). In contrast, a
driving license has a negative impact on the (CMAC). However, the location attribute
has a greater influence on the (CMAC) compared to other variables. This finding
matches that of John and Koppelman [35].

Table 7. Estimation coefficients and t-test of the variables of NL.

Parameters Estimation

Variables
OSAC OMAC ODAC SSAC

Coeff. t-test Coeff. t-test Coeff. t-test Coeff. t-test

Travel time −0.408 (−5.16)

Trip distance −1.001 (−3.86)

Travel cost −0.0012 (−1.97)

Activity duration 0.940 (2.52)

Number of interchanges −0.484 −4.79 −0.357 −4.58 0.048 1.07 −0.439 −1.11

Age 0.089 2.24 0.038 1.02 −0.013 −5.29 0.001 6.06

Gender −1.540 −1.64 −3.309 −6.17 −3.372 −2.67 −0.937 −2.55

Marital status −0.311 −5.31 3.125 4.56 −0.279 −7.21 0.206 8.27

Education 0.699 1.66 −0.932 −2.09 0.195 1.87 −0.459 −1.52

Occupation 0.010 4.03 0.049 7.81 0.278 4.72 0.163 4.84

Standard of living −0.521 −1.54 0.308 3.01 0.577 3.71 −0.076 −3.39

Household size 0.454 1.02 −0.292 −5.57 −0.188 −2.34 0.858 6.21

Household income 0.847 3.77 −0.430 −2.55 −0.468 −3.53 −0.679 −1.25
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Table 7. Cont.

Parameters Estimation

Variables
OSAC OMAC ODAC SSAC

Coeff. t-test Coeff. t-test Coeff. t-test Coeff. t-test

Car ownership −0.349 −4.45 −2.218 −1.9 0.698 5.39 −0.272 −3.52

Bike ownership 1.096 3.59 −1.015 −3.64 0.603 1.01 0.126 3.27

Moped ownership −1.450 −2.28 0.004 2.29 −1.064 −2.36 −1.37 −1.99

Number of children −0.773 −2.58 −0.665 −2.34 −1.176 −4.58 −1.530 −7.68

Ticket availability 0.180 5.60 −0.050 4.10 0.518 1.36 −0.200 −3.64

Driving license 0.0967 3.68 −0.373 −2.18 −2.118 −6.84 −0.540 −4.51

Origin location 0.751 4.55 0.084 6.74 −0.305 −2.77 −0.838 −1.87

Destination location −0.295 −7.21 −0.577 −2.41 0.064 3.77 0.444 7.84

Location attribute −2.773 −3.10 −0.423 −1.12 0.352 1.76 −0.370 −1.89

Activity purpose 1.090 3.32 −0.457 −3.19 1.120 2.34 −0.097 −3.51

Variables
SMAC SDAC CSAC CMAC

Coeff. t-test Coeff. t-test Coeff. t-test Coeff. t-test

Travel time −0.408 (−5.16)

Trip distance −1.001 (−3.86)

Travel cost −0.012 (−1.97)

Activity duration 0.940 (2.52)

Number of interchange −0.260 −4.65 −0.209 −5.45 −0.059 −4.15 0.333 3.84

Age 0.027 1.18 0.045 1.6 0.028 1.2 0.042 1.7

Gender −0.752 −2.27 −0.821 −1.17 −1.359 −2.09 0.257 1.44

Marital status 0.043 5.06 0.012 3.01 −0.219 −3.29 0.072 4.09

Education −0.369 −1.22 −0.486 −1.41 0.052 1.84 0.158 1.51

Occupation 0.425 3.12 0.274 2.27 0.601 2.51 0.230 2.19

Standard of living 0.117 2.62 −0.068 −7.30 −0.002 −2.01 −0.010 −4.05

Household size −0.248 −1.84 0.547 6.14 −0.010 −4.03 0.061 5.02

Household income −1.392 −2.67 −0.873 −1.49 −0.455 −2.84 −0.160 −2.28

Car ownership −0.544 −6.96 −1.692 −2.35 0.169 5.34 0.174 4.35

Bike ownership 0.264 3.44 0.365 2.15 0.273 2.85 −0.248 −3.01

Moped ownership −0.988 −2.47 −1.424 −1.87 −0.431 −1.99 0.175 2.07

Number of children −1.075 −6.11 −1.201 −5.41 0.132 5.33 0.400 4.31

Ticket availability 0.314 2.74 0.422 1.89 −0.133 −2.05 −0.432 −1.91

Driving license −0.473 −1.88 −0.767 −2.01 −0.108 −1.79 −0.601 −2.03

Origin location 1.430 2.84 −0.177 −2.03 0.545 3.24 −0.496 −2.66

Destination location −0.969 −4.18 0.318 3.44 0.836 3.76 −0.480 −3.04

Location attribute 0.185 1.45 0.708 1.23 −0.004 −1.03 0.440 1.85

Activity purpose −0.008 −3.04 0.916 3.45 −0.105 −2.56 0.032 2.17

In summary, according to the results from the NL model, the origin location, activity
duration, occupation, activity purpose, location attribute and destination location have
more effect on the activity chains compared to other variables.

5.5.1. Estimation of Probability of Activity Chain by Using NL Model

As can be seen from Figure 3, using the NL model to estimate the probability value of
the open chains, simple chains and complex chains, the results show that the probability
value of simple chains is greater than open chains, but it is approximately equal to the
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probability value of complex chains. This result reflects the travellers’ tendency to perform
daily activity with simple activity more than other chains.

Figure 3. Estimation Probability of (Open, Simple and Complex) Activity Chains based on the Utility
Function by NL.

In Figure 4, by using the NL model to estimate the probability value of the activity
chains, the results show that the probability value of simple subsistence chains and simple
maintenance chains is greater than other chains.

Figure 4. Estimation Probability of Activity Chains based on the Utility Function by NL.

The probability results are shown in Figure 5; the nested logit model based on the
utility function has used to estimate the probability value of the open activity chains, simple
activity chains and complex activity chains; the results show that the probability value of
simple subsistence activity chain (SSAC), simple maintenance activity chain (SMAC) and
complex discretionary activity chain (CSAC) is greater than other chains.

Figure 5. Probability Value of Activity Chains Depending on the Variables by NL.
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5.5.2. Estimation of Utility Value by the NL Model

The NL model uses a utility function as the objective function to choose an activity
chain that has a high utility, then estimates the impact of the model variables on the activity
chains. The model is calculated based on the observed one-day daily activity travelling
in conventional travel datasets. In this study, the chosen set of alternatives has been
determined regarding observed travel parameters and travellers’ characteristics included
in the dataset. The chosen set comprises nine representative activity chains: OSAC, OMAC,
ODAC, SSAC, SMAC, SDAC, CSAC, CMAC and CDAC. The following variables are used
for utility function: travel time, travel cost, trip distance, activity purpose, household
income and household size, etc. So, we can derive utility as a function between these
variables and the activity chain choice alternatives. Additionally, we used this model to
identify the relationships among these sets of variables to use the model to investigate
interrelationships among activity chain choice and these characteristics.

The proposed model is summarized as follows: firstly, the model has the behaviour
implication as travellers make activity chain choices based on a utility model and an
NL model. Secondly, it identifies the variables which have a strong effect and have high
correlations with the activity chain choice by using the NL model within the utility function.

• Figure 6 presents the utility values of activity chain choice concerning the OSAC,
OMAC and ODAC. According to the results, the utility values of origin location and
activity purpose are greater than other parameters.

• Figure 7 describes the utility values of activity chain choice concerning the SSAC,
SMAC and SDAC. According to the results, the utility values of occupation, origin
location and location attribute are more significant than other parameters; therefore,
these variables had a high impact on the activity chain chosen. This is consistent with
the results of Arentze and Timmermans [22].

• The individual characteristics, household characteristics, travel characteristics, and
location characteristics influenced the utility values concerning the travel activity
chain choice. Figure 8 presents the utility values of the activity chain choice of the
CSAC and CMAC. As shown, the utility values by household income, origin location,
and car ownership were more affected than other parameters. This is not consistent
with the results of Arentze and Timmermans [22].

5.6. The Generalized Nested Logit Model Results and Discussion of Findings

In the third analysis, the generalized nested logit (GNL) model was used to identify the
influence of the different variables on the activity chain choice and estimate the coefficients
of the parameters related to the complex activity chain choice. The CSAC involved the
complex to discretionary activity chain (H-S/M-D-H), complex from discretionary activity
chain (H-D-S/M-H), complex at discretionary activity chain (H-D-S/M-D-H), complex to
subsistence activity chain (H-M/D-S-H), complex from subsistence activity chain (H-S-
M/D-H), complex at subsistence activity chain (H-S-M/D-S-H), complex to maintenance
activity chain (H-S/D-M-H), complex from maintenance activity chain (H-M-S/D-H) and
complex at maintenance activity chain (H-M-S/D-M-H). However, some complex chains
are very few in number, and missing data about these chains lead to exclusion from the
analysis [69,70].

This paper applies the GNL model to estimate the interrelationships between the
different characteristics (variables) and complex activity chain choice to analyse Budapest’s
daily activity. The generalized nested logit model (GNL) model is calibrated by using the
dataset. The result obtained by the GNL model is presented in Table 8. Different nesting
structures have been implemented to carry out the activity choice analysis. Estimating the
generalized nested logit model has been most generally undertaken by limited informa-
tion and maximum likelihood techniques. This method first estimates the correlation of
parameters for the generalized nested and then calculates the parameters’ coefficient for
each activity chain based on the log sum values’ computation.
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Figure 6. Estimation Utility Value of Open Activity Chains by NL.

Figure 7. Estimation Utility Value of Simple Activity Chains by NL.

Figure 8. Estimation Utility Value of Complex Activity Chains by NL.

Table 8. Estimation coefficients and t-test of the variables of GNL.

Parameters Estimation

Variables
HSMH HSDH HSMSH HMSH

Coeff. t-test Coeff. t-test Coeff. t-test Coeff. t-test

Travel time −0.041 (−2.75)

Trip distance 3.565 (4.21)

Travel cost −0.001 (−3.19)

Activity duration 2.419 (1.88)

Number of interchanges 0.559 1.11 −0.248 −7.45 0.195 2.37 −0.328 −4.60
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Table 8. Cont.

Parameters Estimation

Variables
HSMH HSDH HSMSH HMSH

Coeff. t-test Coeff. t-test Coeff. t-test Coeff. t-test

Age −0.022 −5.85 −0.019 −2.72 −0.024 −0.92 −0.017 −1.65

Gender −0.269 −3.39 −1.238 −1.62 −1.232 −1.63 −0.751 −1.04

Marital status 0.348 8.49 0.729 3.87 0.751 1.01 2.136 8.29

Education 0.130 3.40 −0.225 −4.66 0.192 8.58 0.046 3.14

Occupation 0.609 1.13 0.111 2.57 0.099 3.52 0.249 1.35

Standard of living −0.202 −4.72 −0.163 −0.55 −0.054 −4.20 −0.124 −0.43

Household size 0.421 1.12 0.731 1.90 0.072 2.18 0.757 4.48

Household income 0.923 3.65 1.748 3.13 −0.640 −1.87 −0.481 −1.41

Car ownership 0.774 1.24 0.423 5.75 0.420 0.77 0.696 5.28

Bike ownership −1.733 −1.04 0.253 2.35 −0.589 −0.83 −1.038 −1.38

Moped ownership 0.705 3.67 −1.483 −3.25 −0.629 6.21 1.138 5.37

Number of children −1.008 −1.85 −0.749 −1.46 −0.510 −1.09 −0.668 −1.39

Ticket availability −0.020 −7.05 0.261 0.70 0.066 5.18 0.100 6.28

Driving license 0.409 5.55 −0.338 −5.46 0.322 3.43 0.210 2.29

Origin location 0.341 3.51 0.781 3.26 0.483 4.71 0.115 7.18

Destination location 0.672 1.53 1.407 8.61 −0.904 −2.67 −0.858 −4.08

Location attribute 0.850 5.72 0.728 6.07 0.675 1.16 1.237 6.85

Activity purpose 1.150 4.01 0.856 4.81 0.044 7.04 0.824 5.11

Variables
HMDH HMSMH HDSH HDMH

Coeff. t-test Coeff. t-test Coeff. t-test Coeff. t-test

Travel time −0.041 (−2.75)

Trip distance 3.565 (4.21)

Travel cost −0.001 (−3.19)

Activity duration 2.419 (1.88)

Number of interchanges −0.623 −1.01 −0.086 −5.16 −0.209 −2.209 −1.084 −1.57

Age 0.001 7.04 −0.005 −1.20 −0.021 −7.021 −0.026 −2.88

Gender −0.817 −1.05 −1.451 −1.82 −0.745 −3.300 −0.589 −5.74

Marital status 0.787 4.75 0.221 6.52 0.978 4.978 0.997 1.16

Education −0.905 1.58 0.015 4.04 0.300 1.022 −0.013 −7.04

Occupation 0.505 5.02 0.269 1.42 0.783 1.139 −0.107 −3.46

Standard of living −0.219 −2.69 −0.046 −7.16 −0.022 −6.574 −0.059 −1.19

Household size 0.338 4.84 0.426 1.09 −0.139 −2.388 −0.176 −3.39

Household income −0.646 −1.80 −0.191 −3.54 1.396 −1.285 0.115 4.28

Car ownership −0.092 −6.16 −0.096 −8.17 −0.574 −6.252 −0.067 −1.11

Bike ownership −0.951 −1.19 −0.895 −1.18 0.388 0.981 −1.204 −1.42

Moped ownership 0.443 3.46 0.828 3.51 −1.175 −2.881 0.356 3.71

Number of children −0.556 −1.59 −0.877 −1.61 −0.285 −1.558 −0.224 −2.11

Ticket availability −0.150 −2.38 −0.180 −3.47 0.252 6.157 0.008 1.02

Driving license 0.024 4.03 −0.167 −4.22 0.926 8.585 −0.525 −5.64

Origin location 0.914 9.55 0.585 3.21 −0.981 −1.160 −0.233 −6.44

Destination location −0.198 −1.88 0.897 6.08 0.881 1.571 1.161 3.21

Location attribute 0.601 4.49 0.152 1.68 3.630 2.331 0.707 5.08

Activity urpose 0.502 3.10 1.419 8.74 1.558 4.059 0.505 3.88
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The significance of variables is checked, and the non-significant variables are elimi-
nated based on logical signs and t-statistic. As a result, the overall model fit is adequate. It
is also observed that most of the variables have a good coefficient value, which indicates the
importance of these variables in the model. The parameter coefficients for the generalized
nested logit model are presented in Table 8.

• For the complex from subsistence activity chain (H-S-M-H), the activity purpose,
household income, location attribute, and car ownership have a positive effect on
the (H-S-M-H). In contrast, bike ownership has a negative and slight impact on the
(H-S-M-H). However, the activity purpose has a more significant influence on the
(H-S-M-H). This is consistent with the results of Primerano et al. [37].

• For the complex from subsistence chain (H-S-D-H), the results show that household
income, destination location, activity purpose and origin location positively affect
the (H-S-D-H). In contrast, moped ownership has a negative and slight impact on
the (H-S-D-H). However, household income has a more considerable influence on the
(H-S-D-H) compared to other variables. According to the result, the household income
has a significant impact on the complex activity chains. This finding matches that of
Valiquette and Morency [15].

• According to the results for the complex at subsistence activity chain (H-S-M-S-H),
the marital status has a more considerable influence on the (H-S-M-S-H) than other
variables. At the same time, location attributes, origin location and car ownership
positively affect the (H-S-M-S-H). In contrast, gender has a negative and slight impact
on (H-S-M-S-H). This is consistent with the findings of Ahmed and Hani [1].

• For the complex from maintenance activity chain (H-M-S-H), the result has been
found that the marital status, location attribute, activity purpose and household size
positively affect the (H-M-S-H). However, the marital status has a higher impact on
the (H-M-S-H) compared to other variables. So, this result proves the marital status is
a necessary variable to designate complex activity chains [11].

• For the complex from maintenance chain (H-M-D-H), the results indicated that origin
location, marital status and location attribute positively impact the (H-M-D-H). In
contrast, education has a negative and slight effect on the (H-M-D-H). So, origin
location has a more considerable influence on the (H-M-D-H). This result reinforces
that the origin location is vital to specify the complex chains.

• According to the results for the complex at maintenance chain (H-M-S-M-H), the
activity purpose has a greater effect on the (H-M-S-M-H) than other variables, while
destination location and household size positively affect the (H-M-S-M-H). In contrast,
gender has a negative and slight impact on (H-M-S-M-H). This result confirms that
the activity purpose is essential to assign the complex activity chains.

• For the complex from discretionary chain (H-D-S-H), the results found that location
attribute, activity purpose, and marital status have a positive effect on the (H-D-S-H).
In contrast, moped ownership has a lower impact on (H-D-S-H). However, location
attribute has a greater effect on the (H-D-S-H) compared to other variables.

• For the complex from discretionary activity chain (H-D-M-H), the results show that
the destination location, marital status, location attribute, and activity purpose posi-
tively affect the (H-D-M-H). However, the destination location has a more significant
influence on the (H-D-M-H) than other variables.

In summary, according to the results from the GNL model, when travellers or house-
hold members planned to perform complex activity chains, they take into account the
following variables: the activity purpose, location attribute of destination, origin loca-
tion, and marital status in order to obtain a high utility from the chain and because these
variables have an increased effect on the complex chains.

5.6.1. Estimation of Probability of Complex Activity Chain by Using GNL Model

Figure 9 shows the results of using the GNL model to estimate the probability value
of the complex maintenance chain, complex subsistence chain, and complex discretionary
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chain. The results show that the probability value of complex subsistence chains is greater
than other chains. This result reflects travellers’ tendency to perform one activity more
besides the subsistence activity within a chain.

Figure 9. Estimation Probability of Complex Activity Chains based on the Utility Function by GNL.

According to the results shown in Figure 10, by using the GNL model to estimate
the probability value of the complex chains, the results showed that the probability value
of complex from subsistence chains (HSMH), complex from maintenance chains (HMSH)
and complex from discretionary chains (HDSH) is greater than other chains. This result
confirms travellers’ tendency to perform one activity more (subsistence or maintenance or
discretionary) within the complex subsistence activity chains and to obtain more benefit
(utility) from the daily activity chain.

Figure 10. Estimation Probability of Complex Activity Chains to each type based on the Utility
Function by GNL.

According to the results shown in Figure 11, the GNL model based on the utility
function has been used to estimate the probability value of the complex activity chains;
the results showed that the probability value of complex from subsistence chains (HSMH),
complex from maintenance activity chains (HMSH) and complex from discretionary ac-
tivity chains (HDSH) is greater than other chains. This result reflects the household
members’ tendency to achieve more than one activity (subsistence or maintenance or dis-
cretionary) within the complex subsistence chains and to obtain more utility from the daily
activity chain.
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Figure 11. Probability Value of Complex Activity Chains Depending on the Variables by GNL.

5.6.2. Estimation of Utility Value by the GNL Model

The GNL model is with a utility function as the objective function to choose a complex
activity chain that has a high utility, then it estimates the impact of the model variables
on the activity chains. The model is calculated based on the observed daily activity
travelling. In this paper, the chosen set of alternatives has been dependent on practical
travel parameters and travellers’ characteristics included in the dataset. A choice set
comprised nine representative complex activity chains: HSMH, HSDH, HSMSH, HMSH,
HMDH, HMSMH, HDSH, HDMH and HDSDH. The following variables are used for utility
function: age, activity duration and location characteristics, etc. So, we can derive utility as
a function between these variables and the complex chain to choose alternatives.

The proposed model is as follows: Firstly, the model has a behaviour implication as
travellers make complex activity chain choices based on a utility model and a discrete
choice model. Secondly, it identifies the variables which have a high impact on the complex
chain choice by using (GNL) model within the utility function. Thirdly, it investigates
interrelationships among complex chain choice and these sets of variables.

• Individual, household, travel, and location factors influenced the utility values con-
cerning the complex activity chain choice. Figure 12 presents the utility values of
the complex activity chain choice of the HSMH, HSDH and HSMSH. As shown, the
utility values by household income, origin location (home location), location attribute,
activity purpose and car ownership have more impact than other parameters. The
results match that of Zohreh et al. [19].

• Figure 13 presents the utility values of complex activity chain choice concerning the
HMSH, HMDH and HMSMH. According to the results, the utility values of marital
status, origin location (home location), location attribute and activity purpose are
greater than other parameters, so that the home location and activity purpose have a
stronger effect on the complex activity chain choice.

• The results of the GNL model are shown in Figure 14, which describes the utility
values of activity chain choice concerning the HDSH and HDMH. According to the
results, the utility values of marital status, location attribute of the destination and
activity purpose are more significant than other parameters; therefore, these variables
had a strong effect on the activity chain chosen.
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Figure 12. Estimation Utility Value of Maintenance Activity of Complex Chains by GNL.

Figure 13. Estimation Utility Value of Subsistence Activity of Complex Chains by GNL.

Figure 14. Estimation Utility Value of Discretionary Activity of Complex Chains by GNL.

6. Conclusions

The conceptual deficiencies of the conventional trip-based models that use individual
trips as the unit of analysis led to the emergence of the activity chain model. The activity-
based model has been used to provide a better theoretical underpinning of travel behaviour
research as it addresses why people travel and how decisions regarding trips are made.
According to that, analysis and modelling of travellers’ behaviour concerning the activity
chain are essential for analysing existing transportation systems and for policy testing
and effective planning of future transport networks. Therefore, this study examined
the relationships among activity chains and other variables which involved individual
characteristics, household characteristics, location-related characteristics, travel-related
characteristics and activity characteristics. To achieve this work, we used a multinomial
logit model, nested logit model, and generalized nested logit to analyse these relationships.
This paper proposed a typology of activity chains based on past research and a collected
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dataset to conduct this analysis. Further, this paper presents a rigorous analysis of the wide
range of characteristics contained within 24 variables and their influence on activity chains.

The analysis undertaken aims to identify the relationships between the activity chain
behaviour of travellers with different factors by using logit models based on the utility
function. The model contained a wide range of variables that affect activity chains in order
to obtain the maximum utility from the activity chain choice for a thorough understanding
of the activity chain behaviour of travellers in Budapest city.

Further, the activity chain choice model is formulated using various structures to
understand the activity chain behaviour.

The most explanatory variables have been directly determined from the data based on
a household survey of travellers in Budapest. However, trip data have also been defined,
such as trip distance and travel cost computed from the highway transit network and the
GIS database. Thus, a number of significant variables are included in the utility function
consisting of the activity chain.

Moreover, the utility function presented in this study highlights the concepts of utility
maximization through performing the daily activity of travellers. This function includes
the utility of performing daily activities so that it introduces a trade-off between different
chains based on utility. This model allows for accommodating travel activity chain selection
depending on individual and household characteristics, travel characteristics and location
characteristics to achieve the best personal utility. New terms in the utility function are
introduced to improve model performance and simplify estimating the maximum utility of
activity chain selection.

In the model specification, all the estimated parameters have expected signs with
apparent magnitudes. They are found to be significant at the (0.05) confidence level in
explaining trip chaining behaviour in Budapest city. Additionally, we have reviewed
the estimates of the variables and interpreted these estimates focusing on the variables
that have high significance on the activity chains. The coefficients and t-tests of variables
showed that all explanatory variables were significant. Still, the effects and contributions
of each variable were not the same, so they were sorted according to their impact on the
model. According to that, the results found:

• The analysis and modelling using the MNL of the open activity chain, simple activity
chain and complex activity chain shows that the occupation, household income,
location attribute, activity duration and activity purpose have a strong effect on
the activity chains. So, these variables are considered when the travellers assign their
daily activity chains;

• The analysis and modelling using the NL model of different types of activity chains
shows that the traveller identifies their chain choice depending on the origin location,
activity duration, activity purpose, location attribute and activity duration. At the
same time, these variables have a high impact on the activity chains;

• The analysis and modelling using a generalized nested logit (GNL) of the different
types of complex chains confirm that the activity purpose, location attribute origin
location, marital status, trip distance, and activity duration significantly influence the
activity chains. So, these variables are weighed when the travellers select the complex
activity chains.

Several conclusions regarding the research in this paper on activity-based modelling
can be drawn:

• Although the activity-chain-modelling structures are evolving rapidly, it is already
possible to summarize these models’ essential new structural features. Among them is
the explicit incorporation of intra-household interactions.

• The activity chain model used in this study is based on the detailed classification
of activities and travel segmentation. In particular, activities are grouped by type
(subsistence, maintenance, discretionary) and setting (open, simple, complex), where
a special modelling technique is applied for each particular type.
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• The skeleton of the activity chain model can be outlined as a sequence of conditional
choices that include level of decision making, chain level, and trip level.

• The analytical structure of the new generation of activity-based models in the ap-
plication is fundamentally different from the conventional aggregate models, which
depended on the tour-based models. Instead of fractional–probability calculations at
the origin–destination pairs of zones, the model is applied at the level of the individ-
ual, households, and tours, with no explicit constraints on the number of variables or
population/travel segments.

• The experiences of developing and applying the activity chain models have revealed
some challenging issues that should be addressed in future research. These include
a better linkage between the activity scheduling and travel decision-making stages,
incorporation of activity-chains duration models, and many others.

Although many of the concerns and scepticism involved in moving to the activity
chain models of travel demand models can be addressed by better explanation and practical
demonstration of the advantages of the new models, the following issues, in our view, can
be classified as valid concerns that need to be addressed by future research to accelerate
the widespread application of activity-based models in practice:

• The complexity of activity-based models and the larger number of interacting model
components make it difficult to trace the model’s sensitivity to input factors in an
analytical sense. However, more work can be done to better understand and describe
the output of the activity-based model system framework from the analytical point of
view and the development of built-in software features for tracking the decisions of
sample households and persons between alternatives.

• The purpose of a realistic description of travel behaviour and the complex structure of
activity chains will lead in future to many researchers understanding the analytical
framework of the activity-based models, which should be extended to incorporate
various decision-making rules within households and mechanisms of performing trip
chaining. Furthermore, this framework will open the way to explicitly modelling in-
teractions between participating agents (persons, households, firms) on an individual
basis and aggregating behaviour patterns.

Further progress in moving from tour-based to activity-based modelling approaches
depends upon successfully addressing these issues in the future. In addition, it will require
constructive communication and cooperation among modellers, researchers, practitioners,
and ultimately, regulators.
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