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We present a fully first-principles method for superconducting thin films. The

layer dependent phonon spectrum is calculated to determine the layer dependence of

the electron-phonon coupling for such systems, which is coupled to the Kohn-Sham-

Bogoliubov-de Gennes equations, and it is solved in a parameter free way. The

theory is then applied to different surface facets of niobium slabs and to niobium-

gold heterostructures. We investigate the dependence of the transition temperature

on the thickness of the slabs and the inverse proximity effect observed in thin super-

conducting heterostructures.
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Thin film superconductivity is a subject of great scientific interest since the 1950s [1–5].

The development of nanotechnology has led to the renaissance of this topic [6–13] due to

possible technological applications in superconducting nanodevices. Theoretically, it is en-

tirely possible for thin (few nanometers thick) slabs that a large electron-phonon coupling

at the surface can lead to superconductivity well above the bulk transition temperature. For

such superconducting heterostructures an inverse proximity effect was observed in Ref. [6]:

a non-superconducting metal overlayer on a superconducting thin film increases the critical

temperature Tc. This is in strong contrast to the case of the thick (compared to the coher-

ence length) superconducting films, where the metallic overlayer decreases Tc [14–16]. In

this paper, the main focus is how the material specific, intrinsic superconducting properties

(which are essential for technological applications) change as a function of the thickness. In

the case of thin superconducting layers the electron-phonon interaction may change signifi-

cantly, which can lead to new and interesting effects. To properly describe such a situation,

a fully first-principles approach is needed, which takes into account the changes in the

electronic structure and in the phonon spectrum. However, the simultaneous treatment of

vibrational and electronic degrees of freedom on the same level leads to complications which

are very difficult to overcome. Here we propose a simplified treatment, where both spectrums

are calculated on the first-principles level separately and the results are combined.

The density functional theory (DFT) for superconductors yields the Kohn-Sham-Bogoliubov-

de Gennes (KSBdG) equations [17–19] by introducing the χ(~r) = 〈Ψ↓(~r)Ψ↑(~r)〉 anomalous

density as an additional density, analogously to the magnetization in spin-polarized DFT

theory. In the case of multilayer systems, the self-consistent solution of these equations

can be obtained in terms of the Screened Korringa-Kohn-Rostoker (SKKR) method (see

Ref. [20]), where the retarded Green-function, {Gab,+
IJ,LL′(ε, ~r,~k||)} is the fundamental quantity

of interest. Here a, b refer to the electron-hole components, I, J are the layer indices and

L = (l, m) is a composite angular momentum index. Physical quantities, like the ρI(~r) charge

and χI(~r) anomalous densities can be calculated from the layer diagonal Green-function as

it was described in Ref. [20]. For self-consistent calculations we use the parametrization for

the exchange energy introduced by Suvasini et al. [21]

Exc,I [ρI , χI ] = E0
xc,I [ρI ]−

∫

χ∗
I(~r)ΛIχI(~r) d~r, (1)

where E0
xc,I [ρI ] is the usual exchange correlation energy for electrons in the normal state
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and ΛI describes the strength of the electron-phonon interaction for layer I. Each layer

is assumed to be chemically homogeneous, but any two distinct layers can, in principle,

describe different materials constituents.

The approximation (1) to the exchange-correlation potential takes into account the

electron-phonon interaction via a single layer dependent parameter. This parameter can

be estimated from the λI electron-phonon coupling constant as ΛI = λI/DI(EF ), where

DI(EF ) is the density of states (DOS) at the Fermi-energy for layer I. Furthermore, the

electron-phonon coupling constant can be calculated as [22]:

λI =
DI(EF ) 〈g

2
I 〉

MI 〈ω2
I 〉

, (2)

where MI is the atomic mass, and DI(EF ) 〈g
2
I 〉 is the McMillan-Hopfield parameter. One

can immediately recall that various theories [23–25] have been worked out in the literature

to calculate the terms in the above expression. A purely electronic calculation leads to

the McMillan-Hopfield parameter via the Gaspari-Győrffy formula [23], which is based on

the following assumptions: (i) the atomic potentials are spherically symmetric, (ii) neglects

every special influence of the shape of the Fermi surface, (iii) small displacements in the

atomic potential can be approximated by a rigid shift. The other important parameter is

the average of the square of the phonon frequency, 〈ω2
I〉, and can be calculated based on the

formula [22]:
〈

ω2
I

〉

≈

∫

dω ω FI(ω)
∫

dω 1
ω
FI(ω)

, (3)

where FI(ω) is the phonon DOS for layer I. Even at this point one can notice that a larger

McMillan-Hopfield parameter or the softening of 〈ω2
I 〉 will result in a larger electron-phonon

coupling.

Our phonon calculations are based on relaxed slab geometries, and interlayer relaxations

are assumed for all interlayer distances perpendicular to the surface facets with fixed in-plane

lattice parameter. The first principles calculation of dynamical properties of lattices requires

the knowledge of interatomic forces. We determine the force constant matrix for bulk,

slabs, and heterostructures in the framework of density functional perturbation theory [26]

as implemented in the Vienna ab-initio simulation package (VASP) [27] and employing

Phonopy [28] to compute the dynamical matrix and layer resolved phonon DOSs. Once

the layer dependent phonon spectrum has been obtained, the layer dependent electron-

phonon coupling constants can be calculated based on Eq. (2) and, consequently, the KSBdG
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equations can be solved self-consistently for finite temperatures with the SKKR method.

These self-consistent calculations are carried out within the atomic sphere approximation

with an angular momentum cutoff of lmax = 2. In order to determine the superconducting

transition temperature, one needs to find the critical temperature where the spectrum of

the KSBdG Hamiltonian does not give a gap.

In what follows, we choose niobium as the testbed and primary target of our numerical

investigations. To verify the theory, we first calculated the electron-phonon coupling and

the critical temperature for bulk Nb, and obtained λ = 0.86 and Tc = 11.3 K. Based on

the Gaspari-Győrffy theory using the augmented plane wave method for Nb λ = 0.88 was

obtained by Klein and Papaconstantopoulos [29]. In Ref. [19] a multicomponent DFT for

the combined system of electrons and nuclei with different hybrid functionals led to critical

temperatures in the range of 8.4 - 9.5 K, while the known experimental bulk values for Nb

are [29]: λ(exp) = 0.82 and T
(exp)
c = 9.2 K. It can be seen that our results are rather similar to

the results of other authors for the electron-phonon interaction, and slightly overestimated

the critical temperature compared to experiments, which, despite the simplicity of the used

exchange energy, still not far from the experimental value. Here it is worth mentioning that

in the case of niobium, phonon retardation effects play an important role, therefore it should

be treated in the strong coupling limit. In our theory the anomalous density χI(~r) influences

the effective potential Veff,I(~r) via the density ρI(~r), which is the analogy of the self-energy

correction to the Eliashberg equations [30] and may be regarded as a strong coupling effect.

Now we are ready to apply the method to niobium slabs, and niobium – gold heterostruc-

tures. It should be noted, that throughout the whole paper we neglect the effect of a sub-

strate which could, in principle, modify the results quantitatively, but should not alter the

basic physics and would just lead to numerical complications in the calculation of the phonon

spectrum. In the case of a Nb slab, the calculations were performed for 3,6,9,12 and 15 layers

of Nb. We choose two facets for our studies, the open (100) surface facet, because it is the

most stable surface facet, and a contrasting close-packed one, namely the (110) facet which

has a slightly higher surface energy.

The results obtained for the McMillan-Hopfield parameter, the average phonon frequency

and the electron-phonon interaction are presented in a graphical form with a stacked bar

chart in Fig. 2. Since the slabs are symmetric with respect to the center of the sample, we

plot the results only from the surface layer to the middle of the sample. In Fig. 1 the phonon



5

DOS is shown for both Nb(100) and Nb(110) slabs consisting of 15 atomic layers. It can be

observed that as approaching the middle of the sample the phonon DOS converges. Faster

convergence was obtained in the case of the electron DOS (not shown). It can be seen that

on the surface of the bcc(100) slab, the phonon DOS is dominated by low frequency states,

therefore, the 〈ω2
I 〉 becomes significantly smaller just on the first surface layer (see Fig. 2).

This effect can also be observed for the bcc(110) slab but it is not as pronounced, and mostly

compensated by the subsurface layer where the phonon DOS is dominated by high frequency

states. As a consequence, for the bcc(100) surface facet, the McMillan-Hopfield parameter

increases on approaching the surface, which is in sharp contrast to the bcc(110) surface facet

where the McMillan-Hopfield parameter fluctuate around its bulk value for all layers. At the

(100) surface, both the electron and the phonon parts enlarge the electron-phonon coupling

significantly beyond the bulk value. At the subsurface layer the electron-phonon coupling

becomes smaller because of the larger 〈ω2
I 〉, and as we approach the middle of the sample its

value converges to the bulk value. In the case of bcc(110) slab the electron-phonon coupling

changes similar to the bcc(100), however, an important difference is that on the surface the

electron-phonon coupling is not as large.
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FIG. 1. (Color online) Layer resolved phonon DOS of 15 layers Nb slab for bcc(100) (left panel)

and bcc(110) (right panel). The first layer is the surface layer, second layer is the subsurface layer,

... 8th layer is the bulk-like center of the slab.

Once knowing the electron-phonon interaction parameters for all layers, we can proceed

and solve the KSBdG equations self-consistently for various temperatures. In the case of
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FIG. 2. (Color online) ηI = DI(EF )
〈

g2I
〉

/MI ,
〈

ω2
I

〉

, λI – normalized with the Nb bulk value – are

shown in the stacked bar charts (the actual value is always added to the sum of the other data

sets), respectively in each bar, for different lengths of Nb(100) (top panel), Nb(110) (middle panel)

and Nb/Au (bottom panel) slabs, where 1,2 and 3 layers of Au were added on 3 Nb layers.
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T = 0 K we find that the superconducting gap has a layer dependence (not shown), which

follows the layer dependence of the λI electron-phonon coupling parameter. However, when

the KSBdG equations are solved for finite temperatures, it is found that in all layers the

superconducting gaps disappear at the same critical temperature. This means that a layer,

which has a larger electron-phonon coupling parameter, strengthens the superconducting

properties of the other layers with smaller electron-phonon coupling via the proximity ef-

fect [31]. Formally, this is very similar to the case of MgB2’s two bands system [32] where the

two superconducting gaps have the same critical temperature only if there is an interband

coupling.

In Fig. 4 (top left panel) it can be seen that the critical temperature of the Nb(100) slab

is well above the bulk critical temperature (with a maximum at the 6 layers thick Nb slab),

which is clearly due to the larger electron-phonon coupling on the surface. Not surprisingly,

the Nb(110) slab’s critical temperature is always lower than in the case of Nb(100) slab.

In order to gain deeper understanding of the changes in the critical temperature due to

the thickness, it is interesting to look at other properties of superconducting slabs, such

as µ∗, the effective Coulomb repulsion. The µ∗ is a fundamental quantity in the theory of

superconductivity, related to the correlation effects due to the Coulomb repulsion. Usually,

it is treated as an adjustable parameter, but based on the previous results, it is possible

to estimate it thin film systems. For a strong-coupling superconductor like Nb, Tc is given

by the McMillan formula [22], which depends on the Debye temperature ΘD, the effective

electron-phonon coupling λeff and the µ∗. If the values of λI are known, it is possible to

calculate λeff as [33]:

λeff =

∑

I λIDI(EF )
∑

I DI(EF )
, (4)

where I is a layer index. ΘD can be obtained from the phonon spectrum. Thus the µ∗ can

also be calculated by equating the value of Tc obtained previously to the McMillan formula.

The results are shown in Fig. 4 (left panels), where one can see that the effective Coulomb

repulsion is decreasing as a function of the niobium thickness. This is probably due to

the fact that for thicker slabs the electrons have more degrees of freedom. It is also worth

mentioning that as it can be seen in Fig. 4, the superconducting transition temperature has

a rather similar dependence on the thickness of the slab as the above defined λeff .

The more important and more studied systems are the superconducting thin film het-

erostructures. Due to the scarcity of experimental studies of such systems, we choose to
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FIG. 3. (Color online) Layer resolved phonon DOS for the following heterostuctures: 1 Au layer

(left panel) and 2 Au layers (right panel) on 3 Nb layers.

investigate the Nb/Au heterostructure, mostly because the thick film version was investi-

gated in Refs. [14–16]. Here 1,2 and 3 layers of gold were added to 3 layers of Nb. We have

assumed bcc epitaxial growth for the gold overlayers, thus the bcc(100) lattice structure is

investigated. The layer resolved phonon DOS is shown for one and two gold overlayers in

Fig. 3. It can be seen that in the case of a single gold overlayer the phonon spectrum is

dominated by low frequencies both in the case of the Au overlayer and the top niobium layer

(which is on the other side of the slab), therefore, the 〈ω2
I 〉 becomes smaller on these layers.

This effect tends to increase the electron-phonon coupling. However, the McMillan-Hopfield

parameter is also smaller for the gold layers as it can be seen in Fig. 2 (bottom panel), since

the electronic DOS at the Fermi-level is smaller and also the mass of a gold atom is almost

twice as large as the mass of a niobium atom. Together these later factors would act to

reduce the electron-phonon coupling in the gold layers. However, for the 3 Nb/1 Au layers

heterostructure, the electron-phonon coupling in the Nb surface layer is much larger than

the one for all other presently investigated heterostructures or slabs. The net result is an

increased overall electron-phonon coupling and (as we will see further down) an increased Tc

in the case of single Au covered Nb thin film. The results for the different heterostructures

are summarized in Fig. 2 (bottom panel).

Again, knowing the electron-phonon interaction parameters, similar calculations were

performed as in the case of the niobium slab to obtain the critical temperature, the effective
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FIG. 4. (Color online) The critical temperature (Tc), effective electron-phonon coupling (λeff )

and Coulomb repulsion (µ∗) as function of the thickness of Nb(100) (blue line, full symbol) and

Nb(110) (red line, open symbol) slab (left panels) and Nb/Au slabs (right panels).

electron-phonon coupling, and the effective Coulomb repulsion as a function of the thickness

of the gold overlayers. In Fig. 4 (right panel) we can observe the inverse proximity effect

similarly as it was found in the Pb/Ag heterostructure in Ref. [6] or in a similar Nb/Au/Nb

junction in Ref. [34]. The superconducting transition temperature Tc increases by adding

only one gold overlayer to the niobium, however, adding two layers of gold does decrease the

Tc. This result is now well understood based on the previous result regarding the electron-

phonon interaction. Bourgeois et al. [6] suggested that there is a competition between the

Coulomb effects and the classical proximity effect. Indeed, in Fig. 4 (right panel) it can be

seen that with increasing the number of the gold overlayers the effective Coulomb repulsion

decreases, which can cause an increase in the critical temperature. Nevertheless, based

on Fig. 4 (right panel) we would rather conclude, that the main effect which creates the

inverse proximity effect is due to the enhanced electron-phonon coupling in the overlayer.

The behavior of the electron-phonon interaction appears to primarily influence Tc in other

thicknesses as well, overriding the changes coming from the Coulomb repulsion.

In this paper a first-principles approach was presented to investigate superconducting
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slabs, and S/N heterostructures. In essence, the scheme of calculation presented here re-

quires the solution of two separate problems: solving the KSBdG equations and constructing

exchange functionals. In Ref. [20] the SKKR method was generalized for the superconduct-

ing state and now a simple scheme was constructed to obtain a simple approximation for

the exchange functional. The method was applied to niobium and niobium–gold slabs. In

the case of free standing Nb bcc(100) slabs we have found that the McMillan-Hopfield pa-

rameter is larger, and the 〈ω2
I 〉 frequency is smaller on the surface of the Nb, which results

in large electron-phonon coupling for the surface. As a consequence, the critical tempera-

ture is above the bulk value. For the Nb(110) slab the McMillan-Hopfield parameters are

almost constant, and the 〈ω2
I 〉 frequencies show a behavior similar to that of the Nb(100)

surface facet. Therefore, the critical temperature is oscillating around the bulk value. While

presently there is no first-principles way to calculate the effective Coulomb repulsion param-

eter (µ∗) directly, a procedure was developed to estimate this parameter via the McMillan

formula. We also studied the properties of thin Nb/Au heterostructures where we could

observe the inverse proximity effect for which a first-principles based explanation was found.
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