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a b s t r a c t

Van Zuylen et al. (2014) introduced the notion of a popular ranking in a voting context,
where each voter submits a strict ranking of all candidates. A popular ranking π of
the candidates is at least as good as any other ranking σ in the following sense: if we
compare π to σ , at least half of all voters will always weakly prefer π . Whether a voter
prefers one ranking to another is calculated based on the Kendall distance.

A more traditional definition of popularity—as applied to popular matchings, a well-
established topic in computational social choice—is stricter, because it requires at least
half of the voters who are not indifferent between π and σ to prefer π . In this paper,
we derive structural and algorithmic results in both settings, also improving upon the
results in Van Zuylen et al. (2014). We also point out connections to the famous open
problem of finding a Kemeny consensus with three voters.
©2023 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A fundamental question in preference aggregation is the following: given a number of voters who rank candidates
rom most-preferred to least-preferred, can we construct a ranking that expresses the preferences of the entire set of
oters as a whole? A common way of evaluating how close the constructed ranking is to a voter’s preferences is the
endall distance [28], which measures the pairwise disagreements between two rankings. Among others, a well-known
ank aggregation method is the Kemeny ranking method [27], in which the winning ranking minimises the sum of its
endall distances to the voters’ rankings.
For the preference aggregation problem, van Zuylen et al. [35] introduce a new rank aggregation method called popular

anking, which is also based on the Kendall distance. Each voter can compare two given rankings π and σ , and prefers the
ne that is closer to her submitted ranking in terms of the Kendall distance. Van Zuylen et al. define π to be a winning
anking for a given set of voters’ rankings if for any ranking σ , at least half of the voters prefer π to σ or are indifferent
etween them. This implies that there is no ranking σ such that switching to σ from π would benefit a majority of all
oters.
According to the definition of popularity in [35], even in a situation where exactly half of the voters are indifferent

etween rankings π and σ—we call these abstaining voters—whilst the other half of the voters prefer σ to π , the ranking
is not more popular than π . This example demonstrates how challenging it is for the dissatisfied voters to propose a
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ranking that overrules π—the definition requires them to find a profiting set of voters who build an absolute majority,
hat is, a majority of all voters for this endeavour.

A straightforward option would be to require only a simple majority, this is, a majority of the non-abstaining voters,
o profit from switching to σ from π . Excluding the abstaining voters in a pairwise majority voting rule is common
ractice [15]. It is also analogous to the classical popularity notion in the matching literature [1]. In this paper, we propose
n alternative definition of a popular ranking. We define π to be a strongly popular ranking if for every ranking σ , at least
alf of the non-abstaining voters prefer π to σ . This means that switching from π to σ would harm at least as many
oters as it would benefit. The weaker notion of a popular ranking as defined by van Zuylen et al. [35] is then defined
ere as a weakly popular ranking.

.1. Our contribution

We study both the weaker notion of popularity from [35] and the stronger notion of popularity analogous to the one
n the matching literature, which excludes abstaining voters. Our most important results are as follows.

1. We give a sufficient condition for the existence of a weakly popular ranking (Theorem 4.1).
2. We give a sufficient condition for the two popularity notions to be equivalent for a given ranking π (Lemma 3.7).

This condition also implies that at least three abstaining voters between two rankings are needed for the two
popularity notions to differ, which allows us to deduce the following result.

3. For at most five voters, the two popularity notions are equivalent (Theorem 3.14). We provide an example showing
that with six voters this equivalence does not hold anymore (Theorem 3.4).

4. In the case of two or three voters, one can find a popular ranking of either kind and verify the weak or strong
popularity of a given ranking in polynomial time (Lemmas 4.5 and 4.6, Theorem 4.7).

5. The problem of verifying the weak or strong popularity of a given ranking is polynomial-time solvable for four
voters if and only if it is polynomial-time solvable for five voters (Theorem 4.18).

6. Finally, we establish a connection to a central open problem in preference aggregation. We show that if finding a
ranking that is more popular in either sense than a given ranking in a given set of four (or five) voters’ rankings
were polynomial-time solvable, then the famously open Kemeny consensus problem for three voters would also
be polynomial-time solvable (Corollary 5.5). The path to this result leads through an even stronger observation:
If finding a ranking preferred to a given ranking by all the three voters were polynomial-time solvable, then the
Kemeny consensus problem for three voters would also be polynomial-time solvable (Theorems 5.2 and 5.1).

1.2. Related literature

Aggregating voters’ preferences given as rankings of candidates has been challenging researchers for decades. The
most common approach to this problem is to search for a ranking that minimises the sum of the distances to the voters’
rankings. If the Kendall distance [28] is used as the metric on rankings, then this optimality concept corresponds to the
Kemeny consensus [27]. Characteristic properties and computational aspects of the Kemeny consensus have been studied
in a number of papers [2,6,7,14,23]. The problem setting with a small number of voters received special interest. Deciding
whether a given ranking is a Kemeny consensus is coNP-complete [18], and calculating a Kemeny consensus is NP-hard [6]
even if there is a fixed number of voters k, where k = 7 [3], or where k is even and k ≥ 4 [16]. The complexity of the
problem for three and five voters is pointed out as an interesting open problem in [3,8]. Milosz et al. [32] focus on the case
of three voters, and establish a link with the 3-Hitting Set problem [25] by considering 3-cycles in the majority graph.

Majority voting rules offer another natural way of aggregating voters’ preferences. The earliest reference for this might
be from Condorcet [10], who uses pairwise comparisons to calculate the winning candidate, establishing his famous
paradox on the smallest set of voters’ rankings not admitting any majority winner.

In some settings, handling abstaining voters plays a crucial role. The absolute and simple majority voting rules have
both been extensively discussed in the setting where the goal is to choose the winning candidate [4,5]. Vermeule [36]
focuses on strategic minorities and demonstrates the effect of the simple majority rule compared to the absolute majority
rule based on data from decisions made by the United States Congress. By undertaking a probabilistic analysis, Dougherty
and Edward [15] discuss the differences between the two rules. Felsenthal and Machover [30] generalise simple voting
games to ternary voting games by adding the possibility to abstain.

The concept of majority voting readily translates to other scenarios, where voters submit preference lists. One such field
is the area of matchings under preferences, where popular matchings ([1,21], [31, Chapter 7], [11]) serve as a voting-based
alternative concept to the well-known notion of stable matchings [20] in two-sided markets. In short, a popular matching
M is a simple majority winner among all matchings, because it guarantees that no matter what alternative matching is
offered on the market, at least half of the non-abstaining voters will opt for M .

Besides two-sided matchings, majority voting has also been defined for the house allocation problem [1,33], the
roommates problem [17,22], spanning trees [12], permutations [35], the ordinal group activity selection problem [13],
and very recently, for branchings [26]. The notion of popularity is aligned with simple majority in all these papers, with
one exception, namely [35], which defines popularity based on the absolute majority rule.
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Fig. 1. A profile P = (πv1 . . . , πv6 ) over {1, 2, . . . , 9}.

A part of this work revisits the paper from van Zuylen et al. [35]. They show that a popular ranking—according to their
efinition of popularity—need not necessarily exist. More precisely, they show that the acyclicity of a structure known
s the majority graph is a necessary, but not sufficient condition for the existence of a popular ranking. They also prove
hat if the majority graph is acyclic, then we can efficiently compute a ranking (corresponding to a topological sort of
he majority graph), which may or may not be popular, but for which the voters have to solve an NP-hard problem to
ompute a ranking that a majority of them prefer.

.3. Structure of the paper

In Section 2 we introduce the necessary definitions and notations used in the following sections. Section 3 deals with
he relationship between the two different popularity notions. In Section 4 we study the complexity of the problems
f deciding whether a given ranking is weakly or strongly popular with a small number of voters. We demonstrate the
trong connection to the Kemeny consensus problem in Section 5. Finally, we lay out some problems that still remain to
e answered in Section 6. Throughout this paper, we use the example instance depicted in Fig. 1 to illustrate concepts
hat we will define.

. Preliminaries

We start this section with the formal definitions of various standard notions in voting theory in Section 2.1. Then, in
ection 2.2, we introduce weakly and strongly popular rankings and the decision problems we will later analyse.

.1. Rankings and Kendall distance

We are given a set C = {1, . . . ,m} of candidates and a set V = {v1, . . . , vn} of n voters. A (preference) ranking π is a
total order over C . When exhibiting a specific ranking, we will often enclose parts of it in square brackets, e.g. we may
write [1, 2], [3, 4] instead of 1, 2, 3, 4. These brackets can be ignored and are simply used for better readability in sets
of rankings with specific structural properties. The rank of candidate a in ranking π is the position (counting from 1) it
ppears at in π , and it is denoted by rankπ [a]. A profile P = (πv1 , . . . , πvn ) over C is a list of rankings, where πvi is the
anking associated with voter vi ∈ V . An example is depicted in Fig. 1. We say that voter v prefers candidate a to candidate
if rankπv [a] < rankπv [b]. In Fig. 1, voter v1 prefers candidate 1 to candidate 2, and rankπv1

[5] = 6. For candidates a and
, {a, b} denotes the unordered pair of them, while (a, b) denotes an ordered pair.
We say that voter v1 (or ranking πv1 ) agrees with voter v2 (or with ranking πv2 ) in the order of two distinct candidates

and b if v1 and v2 either both prefer a to b or they both prefer b to a. Otherwise they disagree in the order of a and b.
he similarity between two rankings can be measured by various metrics defined on permutations. Possibly the most
ommon metric, the Kendall distance [28], is defined below.

efinition 2.1. The Kendall distance K (π, σ ) between two rankings π and σ is defined as the number of pairwise
isagreements between π and σ , or, formally as

K (π, σ ) = |{(a, b)∈ C × C : rankπ [a] > rankπ [b] and rankσ [a] < rankσ [b]}|.

Alongside Definition 2.1, the Kendall distance has an interpretation, which we will also use, in terms of the bubble
sort algorithm [19]. Given a sequence ⟨σ1, σ2, . . . , σm⟩, bubble sort proceeds inductively by considering the ith element σi
(i = 1, 2, . . . ,m), and assuming that ⟨σ1, σ2, . . . σi−1⟩ are already in the correct order, σi is swapped with its predecessor
in ⟨σ1, σ2, . . . , σi−1, σi⟩ as long as σi is larger than its predecessor in this subsequence. The Kendall distance is also called
the bubble sort distance because it corresponds to the number of swaps that bubble sort executes when converting ranking
π to ranking σ . To be more precise, let us first define a total order on 1, . . . , n such that, under this order, ranking σ is
sorted in increasing order. We define the bubble swap path from a ranking π to σ as the sequence π := π, π , . . . , π := σ
0 1 k
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Fig. 2. The majority graph of the profile from Fig. 1. Each grey set of three candidates denotes a specific subgraph that satisfies the same property
as a component in a tournament [29]. Arcs between these components symbolise the complete set of 9 arcs, between any two vertices from different
components.

of intermediate rankings obtained when sorting π using the bubble sort algorithm. Note that K (π, σ ) = k. We call the
hange πi → πi+1 a swap. Alternatively we denote the swap by the consecutive candidates a and b it interchanges:
b, a) → (a, b). We say that a swap (b, a) → (a, b) is good for voter v if v prefers a to b, otherwise this swap is bad for v.
ote that if the swap πi → πi+1 is good for v, then K (πi+1, πv) = K (πi, πv) − 1 and, analogously, if the swap is bad for
, then K (πi+1, πv) = K (πi, πv) + 1.
For example, with respect to the profile shown in Fig. 1, K (πv1 , πv2 ) = 6, since it takes two swaps to insert each of 1,
and 8 into the correct order relative to [2, 3, 1], [4, 5, 6] and [9, 7, 8], respectively, in the bubble swap path from πv1

o πv2 .
Let V (a, b) ⊆ V be the set of voters who prefer candidate a to b, i.e. V (a, b) = {v ∈ V : rankπv (a) < rankπv (b)}. The

majority graph belonging to a profile is defined as the directed graph which has as vertices the candidates and an arc
from candidate a to candidate b if a majority of the voters prefer a to b, i.e. |V (a, b)| > |V (b, a)|. As mentioned in the
introduction, Condorcet observed that the majority graph may contain a directed cycle. This has come to be known as the
Condorcet paradox [10]. A tournament is a majority graph that is complete, or, in other words, for every a and b either
|V (a, b)| > |V (b, a)| or |V (a, b)| < |V (b, a)| holds. The majority graph of our profile in Fig. 1 is depicted in Fig. 2. As the
edges form no cycle, it is an acyclic majority graph, but since it is not a complete graph, it is not a tournament.

Ranking π is a topologically sorted ranking of profile P if rankπ [a] < rankπ [b] holds for each pair of candidates a
and b with |V (a, b)| > |V (b, a)|. Topologically sorted rankings correspond to the graph-theoretical topological sort of
the vertices in the majority graph, and thus only exist if the majority graph is acyclic. Acyclic tournaments trivially
have a unique topologically sorted ranking. A topologically sorted ranking for the profile in Fig. 1 with 9 candidates is
σ = [1, 2, 3], [4, 5, 6], [7, 8, 9], as can be checked easily.

The Kemeny rank of a ranking π for a given profile with voters v1, . . . , vn is defined as
∑n

i=1 K (π, πvi ). If ranking σ has
minimum Kemeny rank over all rankings, then σ is a Kemeny consensus [27]. The following well-known observation [14]
will be useful in our proofs.

Observation 2.2. Each topologically sorted ranking is a Kemeny consensus. For acyclic majority graphs, the set of topologically
sorted rankings coincides with the set of Kemeny consensuses.

2.2. Popularity and problem definitions

Preferences over rankings. Voters prefer rankings that are similar to their submitted ranking. More precisely, voter v prefers
ranking σ to ranking π if K (σ , πv) < K (π, πv). Analogously, voter v abstains between π and σ if K (σ , πv) = K (π, πv).
We will simply call v an abstaining voter if π and σ are clear from the context.

For example, let σ1 = [1, 2, 3], [5, 6, 4], [9, 7, 8] and σ2 = [1, 2, 3], [4, 5, 6], [7, 8, 9]. Looking back at Fig. 1, clearly v4
prefers σ2 to σ1, since πv4 = σ2 and πv4 ̸= σ1, that is, K (πv4 , σ2) = 0 < K (πv4 , σ1). Voter v1 in the same profile is an
abstaining voter since K (πv1 , σ2) = 4 = K (πv1 , σ1). For more details regarding these calculations, the reader is referred
to Appendix A.

Majority concepts. We now formally define the two majority concepts we rely on in this paper. A set V ′
⊆ V of voters

forms an absolute majority of the voters if |V ′
| > n/2. For the more intricate majority concept, two rankings π and σ must

be given. Let Vabs(π, σ ) be the set of voters who abstain in the vote between rankings π and σ , that is, v ∈ Vabs(π, σ )
if and only if K (πv, π ) = K (πv, σ ). In Fig. 1, Vabs(σ1, σ2) = {v1, v2, v3}, where σ1 and σ2 are as defined in the previous
paragraph. A set V ′

⊆ V of voters forms a simple majority of the voters if |V ′
| > |V \ Vabs(π, σ )|/2. A simple majority

therefore always depends on the rankings that are being compared.
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Popularity concepts. We now define the two different notions of popularity. The first notion of a weakly popular ranking
orresponds to the popular ranking as defined in [35]. Let C be a set of candidates and let P be a profile over C of voters
.

efinition 2.3. Ranking π ′ is more popular than ranking π in the absolute sense if K (π ′, πv) < K (π, πv) for an absolute
ajority of all voters v ∈ V . Ranking π is weakly popular for P if no ranking π ′ is more popular than π in the absolute
ense, in other words, if there is no ranking π ′ such that K (π ′, πv) < K (π, πv) for an absolute majority of all voters in
∈ V .

If we consider σ3 = [2, 1, 3], [4, 5, 6], [7, 8, 9], then in the profile in Fig. 1, σ2 = [1, 2, 3], [4, 5, 6], [7, 8, 9] is more
popular than σ3 in the absolute sense. Notice that σ3 and σ2 only differ in their ordering of the pair of candidates {1, 2}.
So since five out of six voters prefer candidate 1 to candidate 2, they form an absolute majority of all voters who prefer
σ2 to σ3.

This definition requires more than half of the n voters to prefer π ′ to π in order to declare π ′ to be more popular
than π . Abstaining voters make it hard to beat π in such a pairwise comparison. However, if π ′ only needs to receive
more votes than π among the voters not abstaining between these two rankings, then it can beat π . This leads to the
notion of strong popularity.

Definition 2.4. Ranking π ′ is more popular than ranking π in the simple sense if K (π ′, πv) < K (π, πv) for an absolute
majority of the non-abstaining voters v ∈ V \ Vabs(π, π ′). Ranking π is strongly popular for P if no ranking π ′ is more
popular than π in the simple sense, in other words, if there is no ranking π ′ such that K (π ′, πv) < K (π, πv) for an absolute
majority of the non-abstaining voters v ∈ V \ Vabs(π, π ′).

It follows directly from the two definitions above that strongly popular rankings are weakly popular as well, but
weakly popular rankings are not necessarily strongly popular. In the profile in Fig. 1, σ1 = [1, 2, 3], [5, 6, 4], [9, 7, 8]
is more popular than σ2 = [1, 2, 3], [4, 5, 6], [7, 8, 9] in the simple sense, since v5 and v6 prefer σ1 to σ2, while v1, v2,
and v3 abstain. Notice that σ1 is not more popular than σ2 in the absolute sense, because two voters do not constitute an
absolute majority of all six voters, only an absolute majority of the non-abstaining three voters. Again, we provide more
explanation for these calculations in Appendix A.

Problem definitions. We now define two natural verification problems arising from the notions of weakly and strongly
popular rankings.

k-WEAKLY-UNPOPULAR-RANKING-VERIFY (k-WURV)
Input: A set C , a profile P over C of size k and a ranking π over C .
Question: Does there exist a ranking σ that is preferred to π by an absolute majority of all voters?

k-STRONGLY-UNPOPULAR-RANKING-VERIFY (k-SURV)
Input: A set C , a profile P over C of size k and a ranking π over C .
Question: Does there exist a ranking σ that is preferred to π by a simple majority of all voters?

In other words, k-WURV (respectively k-SURV) asks whether π is not weakly popular (respectively not strongly popular).
We derive the voters’ preferences over rankings from their preferences over candidates using the notion of Kendall

distance. Providing the voters’ preferences over rankings explicitly as part of the input, as a list of all rankings, would
increase the number of ranking list entries from nm to n ·m!. Our problems k-WURV and k-SURV can be solved by iterating
through every possible ranking σ and comparing σ to the given ranking π . Therefore, with an input model that involves
explicit preferences over rankings, the problems addressed in the paper would be trivially solvable in polynomial time
relative to the significantly increased input size.

3. Relationships involving weakly and strongly popular rankings

In this section, we study connections between weakly and strongly popular rankings, and between other concepts
involving rankings. We first place weakly and strongly popular rankings in the context of Kemeny consensuses in
Section 3.1. Then in Section 3.2 we show that for as few as six voters, the two notions of popularity are not equivalent
and that at the heart of this lies Condorcet’s paradox. Building upon our six-voter example from Fig. 1, in Section 3.3 we
derive a sufficient, but not necessary condition for a weakly popular ranking to be strongly popular as well. This condition
opens a way to prove in Section 3.4 that for up to five voters the two notions are equivalent.
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Fig. 3. The hierarchy of various optimality notions for rankings as a Venn diagram. A Kemeny consensus always exists, but its subset of topologically
orted rankings might be empty.

.1. Relationships with other properties

We first revisit two results from [35], established for weak popularity, and translate them for the notion of strong
opularity in Lemma 3.1.

emma 3.1. If a profile P has a majority graph with a directed cycle, then there does not exist a strongly popular ranking. If
has an acyclic majority graph, then a topologically sorted ranking is not necessarily strongly popular.

roof. These two statements hold for weak popularity [35, Lemmas 2 and 3] and hence also for strong popularity, because
trongly popular rankings are also weakly popular by definition. □

Each weakly popular ranking must be topologically sorted, as shown by the proof of [35, Lemma 2]. In short, if the
majority graph has a directed cycle, for an arbitrary ranking ≻ of the candidates, there will be two candidates a, b ∈ C
such that a ≻ b but an absolute majority of voters prefers b to a. One can show that the ranking ≻

′ obtained by swapping
a and b in ≻ is preferred to ≻ by every voter v satisfying b ≻v a, which is an absolute majority of all voters. This result
together with Lemma 3.1 and Observation 2.2 leads to the following set inclusion relationships involving weakly popular,
strongly popular and topologically sorted rankings, and Kemeny consensuses.

Observation 3.2. Strongly popular rankings form a subset of weakly popular rankings, weakly popular rankings form a subset
of topologically sorted rankings, and finally, topologically sorted rankings form a subset of Kemeny consensuses. In profiles with
an acyclic majority graph, topologically sorted rankings coincide with Kemeny consensuses.

Fig. 3 illustrates these relations. In profiles with a cyclic majority graph, Kemeny consensuses offer a preference
aggregation method by relaxing the definition of topologically sorted rankings. Weakly and strongly popular rankings
do exactly the opposite: they restrict the set of topologically sorted rankings in profiles with an acyclic majority graph,
in order to serve the welfare of the majority to an even larger degree than topologically sorted rankings do. Weak and
strong popularity are desirable robustness properties of a ranking. However, the set of weakly popular rankings may be
empty even if a topologically sorted ranking exists [35].

This is reminiscent of single-winner elections in which being a Condorcet winner is a strong property. However, due to
Condorcet’s paradox, such a winner may not exist. The Condorcet Criterion, an axiom for voting rules, thus states that the
winner of an election should be a Condorcet winner if one exists. Most single-winner voting rules, such as Kemeny–Young,
Black, Copeland, Dodgson’s method, Minimax, Nanson’s method, Ranked pairs, Schulze, Smith/IRV, Smith/minimax and
CPO-STV satisfy the Condorcet Criterion—for more details on those methods, we refer the reader to [9]. Analogously, we
envision a ‘‘Popularity criterion’’ for rank aggregation rules, such that a strongly popular ranking should always be chosen
if one exists, and failing that, a weakly popular ranking if it exists.

3.2. Difference for six voters

Before presenting our example with n = 6, we present a useful technical lemma. Let (C1, . . . , Ck) be an ordered partition
of C into k sets. We say that a ranking π preserves (C1, . . . , Ck) if it holds that rankπ [a] <rankπ [b] whenever a ∈ Ci and
b ∈ Cj for some i < j.

Lemma 3.3. Let (C1, . . . , Ck) be an ordered partition of C such that, for each v ∈ V , πv preserves (C1, . . . , Ck). Then for any
ranking σ , there exists a ranking ζ such that, for each v ∈ V , ζ preserves (C1, . . . , Ck) and v prefers ζ to σ or abstains in the
vote between them.
139



S. Kraiczy, Á. Cseh and D. Manlove Discrete Applied Mathematics 340 (2023) 134–152

r
r
p

b
f

T

P

C

P
t
t
P

C

P
a
t

t
σ

e
p

3

s
t

L
t

P
L
m
o
v
s
t

o

C
o

P
π

v
h

Proof. Let τi be a ranking of the candidates in Ci. We denote by τ1τ2 . . . τk the ranking of the candidates ∪
k
i=1Ci = C ,

in which each candidate in Ci is preferred to each candidate in Cj whenever i < j, and candidates within a set Ci are
anked according to τi. Let ζi be the ranking on Ci that orders candidates in Ci according to their rank in σ , that is,
ankζi [a] < rankζi [b] if rankσ [a] < rankσ [b]. Let ζ := ζ1ζ2 . . . ζk. So ζ preserves (C1, . . . , Ck). Consider voter v ∈ V . If v

refers a to b, and ζ orders b before a, then since by assumption πv preserves (C1, . . . , Ck), it follows that a, b ∈ Ci for
some 1 ≤ i ≤ m. Since the relative order of candidates in Ci is the same in ζ and σ by construction, σ also orders b
efore a. In particular, every pair of candidates that contributes 1 to K (ζ , πv) also contributes 1 to K (σ , πv). We conclude
or any v ∈ V , it holds that K (ζ , πv) ≤ K (σ , πv), as desired. □

heorem 3.4. There exists a profile with six voters that has a weakly popular ranking which is not strongly popular.

roof. We prove this statement for the profile P from Fig. 1.

laim 3.5. σ2 = [1, 2, 3], [4, 5, 6], [7, 8, 9] is weakly popular.

roof. Let C1 = {1, 2, 3}, C2 = {4, 5, 6}, C3 = {7, 8, 9}. Note that all voters preserve (C1, C2, C3). By Lemma 3.3, in order
o check if σ2 is weakly popular it suffices to generate the 63 rankings that preserve (C1, C2, C3), and compare each of
hem to σ2. We checked all of these rankings using program code, which is available from https://github.com/SonjaKrai/
opularRankingsExampleCheck. ■

laim 3.6. σ2 = [1, 2, 3], [4, 5, 6], [7, 8, 9] is not strongly popular.

roof. Ranking σ1 = [1, 2, 3], [5, 6, 4], [9, 7, 8] is more popular than σ2 in the simple sense, because voters v1, v2, v3
bstain, voter v4 prefers σ2 to σ1, and finally, voters v5 and v6 prefer σ1 to σ2. Appendix A contains the detailed calculations
hat justify the preferences of each voter between σ1 and σ2. ■

This finishes the proof of our theorem. □

We remark that Theorem 3.4 can be easily extended to k > 6 voters, for even values of k, by adding k − 6 voters to
he profile P from Fig. 1, where half of the new voters have σ1 as their ranking, and the other half of the new voters have
2 as their ranking.
For the sake of completeness, we also remark that the profile P from Fig. 1 has four further weakly popular rankings,

ach of which is strongly popular as well. For a profile that admits a weakly popular ranking but does not admit a strongly
opular ranking, we refer to reader to Appendix B.

.3. When are weakly and strongly popular rankings equivalent?

We now present a sufficient condition under which strong popularity follows from weak popularity. We start by
howing that for a ranking π that is not strongly popular, there is a condition under which we can compute a ranking
hat is also more popular than π in the absolute sense.

emma 3.7. If σ1 is more popular than π in the simple sense and the majority graph of the voters in Vabs(σ1, π ) is acyclic,
hen there is a ranking σ2 that is more popular than π in the absolute sense. Such a σ2 can be computed in polynomial time.

roof. If π is not a topologically sorted ranking then π cannot be weakly popular by Observation 3.2. As in the proof of
emma 2 in [35], we may construct a ranking σ2 that is more popular than π in the absolute sense. In particular, there
ust be a, b such that rankπ [b] < rankπ [a] and an absolute majority of voters in V prefer a to b. Let σ2 be the ranking
btained by swapping a and b. The proof of Lemma 2 in [35] shows that σ2 is preferred to π by an absolute majority of
oters who prefer a to b. This shows that σ2 is more popular in the absolute sense. Hence suppose that π is a topologically
orted ranking. Furthermore, if Vabs(σ1, π ) = ∅, then σ1 is preferred to π by an absolute majority of all voters, and thus
he theorem is proved by taking σ2 := σ1.

From here on we therefore assume that π is topologically sorted and that Vabs(σ1, π ) ̸= ∅. Let D(σ1, π ) ̸= ∅ be the set
f pairs of candidates that are ordered differently in σ1 and π .

laim 3.8. If v ∈ Vabs(σ1, π ), then v agrees with π on the order of exactly half of the pairs in D(σ1, π ), and disagrees on the
ther half. In particular, |D(σ1, π )| is even.

roof. Any pair of candidates {a, b} such that σ1 and π agree on the order (a, b), adds 1 to both K (πv, σ1) and K (πv, π ) if
v has them in the relative order (b, a), and adds 0 to both otherwise. So to be impartial, i.e. to have K (πv, σ1) = K (πv, π ),
oter v ∈ Vabs(σ1, π ) must agree with σ1 on the order of exactly half of the pairs in D(σ1, π ), and disagree on the other

alf. So |D(σ1, π )| must be even. ■
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Claim 3.9. There exist consecutive candidates (a∗, b∗) in σ1 such that at least half of the voters in Vabs(σ1, π ) prefer b∗ to a∗.

Proof. Assume the contrary, i.e. that for any two consecutive candidates in σ1, an absolute majority of voters in Vabs(σ1, π )
agree with σ1. For an arbitrary pair of candidates {a, b}, at least half of the voters in Vabs(σ1, π ) must then also agree with
their order in σ1, as otherwise this would imply a directed cycle in their majority graph, which is acyclic by assumption.

Since σ1 ̸= π , there is some ordered pair (a∗, b∗) that is consecutive in σ1 and b∗ is ordered somewhere before a∗

in π , that is rankπ [b∗
] < rankπ [a∗

]. Note that (a∗, b∗) ∈ D(σ1, π ). In particular, by our starting assumption, an absolute
majority of voters in Vabs(σ1, π ) agrees with σ1 on the order (a∗, b∗) and hence disagrees with π .

We now introduce the indicator variable Iv,π,{a,b}, which is set to 1 if πv and π disagree on the order of candidates a
nd b, and it is set to 0 otherwise. We sum up the disagreements of voters in Vabs(σ1, π ) with π over pairs in D(σ1, π )
nd obtain a contradiction.

|Vabs(σ1, π )|
|D(σ1, π )|

2
=

∑
{a,b}∈D(σ1,π )

∑
v∈Vabs(σ1,π )

Iv,π,{a,b} (1)

>
∑

{a,b}∈D(σ1,π )

|Vabs(σ1, π )|
2

(2)

= |Vabs(σ1, π )|
|D(σ1, π )|

2
(3)

The right-hand side of Line (1) is a formulation of disagreements in terms of the indicator variable. Due to Claim 3.8, the
number of disagreements that abstaining voters have with π is exactly half of |D(σ1, π )|, expressed on the left-hand side
of Line (1). The inequality in Line (2) follows because for all pairs in D(σ1, π ), at least half of the abstaining voters disagree
ith π , and, additionally, there exists a pair {a∗, b∗

} such that an absolute majority of voters in Vabs(σ1, π ) disagree with π ,
s we proved above. Finally, reordering the terms as in Line (3) leads back to the same formula as on the left-hand side
n Line (1), creating a contradiction. ■

The pair of candidates (a∗, b∗) in Claim 3.9 leads us to a suitable ranking σ2. Let σ2 be the ranking we get from σ1 by
he swap (a∗, b∗) → (b∗, a∗). We now prove Claims 3.10 and 3.11, which we will use to show that two groups of voters
refer σ2 to π , and that these two groups constitute an absolute majority of all voters.

laim 3.10. All voters v ∈ Vabs(σ1, π ) who prefer b∗ to a∗ also prefer σ2 to π .

roof. If v ∈ Vabs(σ1, π ) prefers b∗ to a∗, then the following holds.

K (πv, σ2) = K (πv, σ1) − 1 (4)
< K (πv, σ1) (5)
= K (πv, π ) (6)

Line (4) is true, because σ2 is obtained from σ1 by performing a swap that is good for voter v. The equality in Line (5)
holds since v abstains between σ1 and π . The inequality in Line (6) proves the claim. ■

The second group of voters we investigate consists of voters who prefer σ1 to π . This group by assumption makes up
an absolute majority of the non-abstaining voters V \ Vabs(σ1, π ). Let voter v belong to this group.

laim 3.11. If K (πv, σ1) < K (πv, π ) for voter v ∈ V \ Vabs(σ1, π ), then K (πv, σ1) + 2 ≤ K (πv, π ).

Proof. Only the pairs in D(σ1, π ) contribute differently to K (πv, σ1) and to K (πv, π ). In particular, a pair in D(σ1, π ) adds
to either K (πv, σ1) or K (πv, π ), and 0 to the other. Using this we can see that if k is the number of pairs on whose

order σ1 and π agree, but πv disagrees, then K (πv, σ1) + K (πv, π ) = |D(σ1, π )| + 2k, which is even by Claim 3.8. Since
K (πv, σ1) < K (πv, π ) by assumption and their sum |D(σ1, π )| + 2k is even, K (πv, σ1) + 2 ≤ K (πv, π ) must hold. ■

Since a swap of consecutive candidates in a ranking can increase the distance to any other ranking by at most one,
laim 3.11 implies that for any voter v who prefers σ1 to π , the following holds.

K (πv, σ2) ≤ K (πv, σ1) + 1 < K (πv, π )

We conclude that voters who prefer σ1 to π also prefer σ2 to π .
Claims 3.9 and 3.10 imply that at least half of the voters in Vabs(σ1, π ) prefer σ2 to π , and Claim 3.11 proves that more

han half of the voters outside of Vabs(σ1, π ) prefer σ2 to π . The two sets of voters thus constitute an absolute majority
of all voters who prefer σ2 to π . □

By rephrasing Lemma 3.7, we obtain the following.
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Theorem 3.12. If ranking π is weakly popular, and for any ranking σ , Vabs(σ , π ) has an acyclic majority graph, then π is also
strongly popular. Furthermore, if Vabs(σ , π ) has an acyclic majority graph for each weakly popular ranking π and any ranking
σ for a profile P, then weakly and strongly popular rankings for P coincide.

Observation 3.13. The acyclicity condition for the majority graph of the abstaining voters in Lemma 3.7 and Theorem 3.12
is necessary.

Proof. We construct an example to demonstrate that there is a profile and rankings σ1, σ2 such that the majority graph
of the voters in Vabs(σ1, σ2) is cyclic (contradicting our assumption in Lemma 3.7 and Theorem 3.12), and σ2 is weakly
popular but not strongly popular.

Consider the profile described in Fig. 1 with σ1 = [1, 2, 3], [5, 6, 4], [9, 7, 8] and σ2 = [1, 2, 3], [4, 5, 6], [7, 8, 9], as in
the proof of Theorem 3.4. Notice that there are three directed cycles in the majority graph of the three abstaining voters
v1, v2, v3: one for candidates 1, 2, 3, one for candidates 4, 5, 6 and one for candidates 7, 8, 9. So the abstaining voters
have a cyclic majority graph.

As shown by Claims 3.5 and 3.6 in the proof of Theorem 3.4, σ2 is weakly popular but not strongly popular, since σ1
is more popular than σ2 in the simple sense. Therefore, this example justifies the necessity of the acyclicity condition for
the majority graph of the abstaining voters in Lemma 3.7 and Theorem 3.12. □

3.4. At most five voters

From Lemma 3.7 we can deduce that for a small number of voters, the two notions of popularity are equivalent. This
is due to the fact that we need at least three abstaining voters in order for Vabs(σ , π ) to have a cyclic majority graph.

Theorem 3.14. A ranking σ is weakly popular for a profile P with at most five voters if and only if it is strongly popular for P.

Proof. From Observation 3.2 we know that strongly popular rankings are also weakly popular, which allows us to
concentrate only on one direction of the statement, namely that if a ranking is not strongly popular, then it also cannot
be weakly popular. Let us assume that ranking π is not strongly popular. By definition there exists a ranking σ that is
preferred to π by an absolute majority of non-abstaining voters V \ Vabs(σ , π ) ̸= ∅.

If at least one voter prefers π to σ , then at least two voters must prefer σ to π , and the remaining at most two
abstaining voters can only form an acyclic majority graph. From this it follows by Lemma 3.7 that π is not weakly
popular.

On the other hand, if no voter prefers π to σ , then K (πv, σ ) ≤ K (πv, π ) holds for all voters. For V \ Vabs(σ , π ) ̸= ∅,
by assumption there is a voter v∗ who prefers σ to π , that is, for whom K (πv∗ , σ ) < K (πv∗ , π ). We thus have∑n

i=1 K (πvi , σ ) <
∑n

i=1 K (πvi , π ). This means that π is not a Kemeny consensus and by Observation 3.2, π is not weakly
popular. □

4. On the complexity of k-wurv and k-surv

In this section, we analyse the complexity of the verification problems for the two popularity notions. We prepare for
this by giving a sufficient condition for weak popularity in Section 4.1. This condition will then be used in Section 4.2,
where we prove the polynomial solvability of both problems in the case of k ≤ 3. For 4 ≤ k ≤ 5, we reach the same
conclusion in Section 4.3, however, only for special profiles. Then, in Section 4.4, NP-hardness is proved for k = 6.

4.1. A sufficient condition for wurv

We call a ranking π c-sorted for 0 < c ≤ 1 if for all pairs of candidates {a, b} with rankπ [a] < rankπ [b], at least a
c-fraction of the voters prefers a to b. A ranking π is topologically sorted if and only if it is 1

2 -sorted. In [35], van Zuylen
t al. show that even a topologically sorted ranking is not necessarily weakly popular. Here we ask for which constant

1
2 < c ≤ 1 does this negative result change to a positive result, guaranteeing a no answer for k-wurv. (Note that we
do not consider the case where c < 1

2 , since any c-popular ranking cannot be topologically sorted and hence cannot be
eakly popular by Observation 3.2.)

heorem 4.1. c =
3
4 is the smallest constant ( 12 < c ≤ 1) for which the following holds: If a profile P admits a c-sorted

ranking π , then π is weakly popular.

Proof. We first show that any 3
4 -sorted ranking is weakly popular.

laim 4.2. Let P be a profile and π be a 3 -sorted ranking for P. Then π is weakly popular.
4
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Fig. 4. The rankings of the voters V2 , as described in the proof of Claim 4.3, for the special case where j = 3. The decreasing blocks are highlighted.

roof. Let σ be any ranking different from π . We will show that there is no voter set of cardinality ⌊
n
2⌋ + 1, in which

every voter prefers σ to π . Let V ′ be an arbitrary set of ⌊
n
2⌋ + 1 voters. On the bubble swap path π0 := π, π1, . . . πk := σ

from π to σ , each swap πi → πi+1 is bad for at least a 3
4 -fraction of voters in V . So it must be bad for at least⌊n

2

⌋
+ 1 −

n
4

≥
|V ′

|

2
oters in V ′. Hence for a swap πi → πi+1, we have that

∑
v∈V ′ (K (πi+1, πv) − K (πi, πv)) ≥ 0. Summing over all swaps we

et a telescoping sum that reduces to∑
v∈V ′

(K (σ , πv) − K (π, πv)) ≥ 0.

n particular, not every v ∈ V ′ can prefer σ to π . Since V ′ was an arbitrary set of size ⌊
n
2⌋+ 1, no voter set of at least this

ize can prefer σ to π , and thus, π must be weakly popular. ■

We now show that in fact c =
3
4 is tight, meaning that for any 1

2 < c < 3
4 , we can construct a profile P and a c-sorted

ranking π such that π is not weakly popular for P .

Claim 4.3. For arbitrary 1
2 ≤ c < 3

4 there exists a profile P and a c-sorted ranking π that is not weakly popular.

roof. Let c =
3
4 − ε for some 1

4 ≥ ε > 0. Next, choose j such that j ≥
1
4ε . We will create profile P with 4j voters and

4j + 2 candidates. Then it holds that ( 14 + ε)|V | ≥ j + 1.
Each voter’s ranking involves 2j + 1 blocks, where block i comprises candidates {2i − 1, 2i} (1 ≤ i ≤ 2j + 1). We say

that block i is increasing if it is in the form [2i − 1, 2i] and it is decreasing if it is in the form [2i, 2i − 1].
We firstly create a set V1 of 2j − 1 voters, and each voter in V1 has only increasing blocks, meaning that their ranking

is π = [1, 2], [3, 4], . . ., [4j+1, 4j+2]. The set V2 comprises the 2j + 1 remaining voters, and their set of rankings is
constructed as follows. The ith voter in V2 (1 ≤ i ≤ 2j + 1) has blocks i mod (2j + 1) to (i + j) mod (2j + 1) decreasing,
whilst all other blocks are increasing. This construction is illustrated in Fig. 4 for the case that j = 3. This construction is
similar to the one in [35, Lemma 3].

For each {2i − 1, 2i} for 1 ≤ i ≤ 2j + 1, every v ∈ V1 agrees with this pair and also exactly j of the voters in V2 agree
with it. In total, 3j − 1 voters thus agree with this pair. This gives the following fraction of all voters:

3j − 1
4j

=
3
4

−
1
4j

≥
3
4

− ε.

It is trivial to see for all other pairs of voters {a, b} that if a < b then all voters prefer a to b. Hence in particular π is( 3
4 − ε

)
-sorted.

We now show that ranking σ = [2, 1], [4, 3], . . . [4j+ 2, 4j+ 1] is preferred to π by an absolute majority of all voters,
amely by all 2j+1 voters in V2. Each voter in V2 has exactly j+1 blocks with decreasing order and j blocks with increasing
rder. Therefore, each of them would rather have all pairs in decreasing order than all pairs in increasing order. ■

Theorem 4.1 is thus established. □

As an aside, following on from Theorem 4.1, it is natural to ask about the existence of c-popular rankings: rankings that
are preferred to all other rankings by some c-fraction of voters.

Theorem 4.4. There is a profile that does not admit a c-popular ranking for any c > 0.

Proof. Let n = ⌈
1
c ⌉ + 1. We exhibit a profile of n voters over n candidates, such that for any ranking π , there exists

nother ranking σ such that n − 1 voters prefer σ to π and only one voter prefers π to σ . This implies that π cannot be
referred to any other ranking by a c-fraction of the voters, since 1 < c.
n
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Consider the extended Condorcet paradox, i.e. n voters with rankings of n candidates as follows:

πv1 = 1, 2, . . . , n − 1, n
πv2 = 2, 3, . . . , n, 1

...

πvn = n, 1, . . . , n − 2, n − 1

Let π be an arbitrary ranking of the n candidates. For each ordered pair (a, b) in the set A := {(1, 2), (2, 3), . . . (n −

1, n), (n, 1)}, exactly n − 1 voters of the above instance agree with (a, b). We also know that there must be at least one
ordered pair in A with which the ranking π disagrees. Let (a, b) be such a pair, so π prefers b to a, but n− 1 voters prefer
a to b.

Let σ be the ranking obtained from π by swapping b and a. Let d be a candidate ranked between b and a in π . Each
voter v who prefers a to b must also prefer a to d or prefer d to b. So since rankπ [b] < rankπ [d] < rankπ [a] together
the pairs (a, d) and (d, b) add at least 1 to K (πv, π ). Since rankσ [a] < rankσ [d] < rankσ [b], at most one of the pairs (a, d)
and (d, b) adds 1 to K (πv, σ ). Pair (a, b) adds 1 to K (πv, π ) and 0 to K (πv, σ ). From the definition of σ , it follows that
K (πv, σ ) < K (πv, π ) for each voter who prefers a to b and there are n − 1 such voters v. □

4.2. Polynomial-time solvability for k ≤ 3

Since we have shown in Theorem 3.14 that weak and strong popularity are equivalent notions for k ≤ 5, we will refer
to them as popularity if k ≤ 5.

We first show that for k ≤ 3, the problems k-wurv and k-surv are polynomial-time solvable. We establish this by
proving that for at most three voters, the set of topologically sorted rankings coincides with the set of popular rankings.
Since verifying whether a given ranking is topologically sorted can be carried out in polynomial time, k-wurv and k-surv
turn out to be polynomial-time solvable for k = 2, 3.

Lemma 4.5. Given a profile of two voters, a ranking is popular if and only if it is topologically sorted.

Proof. From Observation 3.2 we know that all popular rankings must be topologically sorted. Let D(πv1 , πv2 ) be the set
of pairs of candidates {a, b} that πv1 and πv2 order differently. Consider any ranking π . Each pair {a, b} ∈ D(πv1 , πv2 ) adds
1 to either K (πv1 , π ) or K (πv2 , π ). From this follows that

|D(πv1 , πv2 )| ≤ K (πv1 , π ) + K (πv2 , π ).

If σ is a topologically sorted ranking, then by definition there is no pair of candidates {a, b} that adds 1 to both K (πv1 , σ )
and K (πv2 , σ ). Thus, K (πv1 , σ )+K (πv2 , σ ) = |D(πv1 , πv2 )|. If π is preferred to σ by an absolute majority, then both voters
prefer π to σ , which leads to

|D(πv1 , πv2 )| ≤ K (πv1 , π ) + K (πv2 , π )
< K (πv1 , σ ) + K (πv2 , σ )
= |D(πv1 , πv2 )|.

Since this is a contradiction, σ must be weakly popular. By Theorem 3.14, σ is also strongly popular. □

Lemma 4.6. Given a profile P of three voters, a ranking is popular if and only if it is topologically sorted.

Proof. Just as for the k = 2 case, Observation 3.2 implies here as well that all popular rankings must be topologically
sorted. Let π be a topologically sorted ranking for P . Note that whenever rankπ [a] < rankπ [b] holds for candidates a and
b, at least half of the voters, that is, at least two voters prefer a to b. So for any two voters, at least one of them prefers a
to b, implying that π is also topologically sorted for any two of the three voters. In particular, π is weakly popular for any
two voters by Lemma 4.5, showing that there is no ranking that they both prefer to π . Hence π must be weakly popular
for P and by Theorem 3.14, also strongly popular. □

Lemmas 4.5 and 4.6 lead to the following result regarding the complexity of k-wurv and k-surv for k ≤ 3, and the
complexity of finding a popular ranking or reporting that none exists in the case that k ≤ 3.

Theorem 4.7. For k ≤ 3, k-wurv and k-surv are solvable in O(m2n) time. Moreover for k ≤ 3, we can find a popular ranking
or report that none exists in O(m2n) time.

Proof. Let D denote the majority graph for the given profile P . Lemmas 4.5 and 4.6 state that a given ranking is popular
if and only if it is topologically sorted for P . Moreover a topologically sorted ranking exists if and only if D is acyclic.

To establish the time complexity, clearly it is trivial to construct in O(m) time for each voter vi a data structure that
allows us to check in O(1) time whether vi prefers a to b, for any pair of candidates a, b. Thus the m×m matrix N , where
N(a, b) gives the number of voters who prefer candidate a to candidate b (i.e. N(a, b) = |V (a, b)|), can be constructed in
O(m2n) time.
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4.3. Equivalence of the cases k = 4 and k = 5

If we have four or five voters, it turns out a topologically sorted ranking may not be popular anymore. In the case of
an acyclic tournament as the majority graph, finding and verifying a popular ranking are both polynomial-time solvable.
We further show that 4-wurv (4-surv) in general is polynomial-time solvable if and only if 5-wurv (5-surv) is.

Lemma 4.8. If a profile P of four voters has an acyclic tournament as its majority graph, then the unique topologically sorted
ranking is the unique popular ranking.

Proof. Since the majority graph of P is a tournament, the unique topologically sorted ranking π is 3
4 -sorted. The lemma

hen follows from Theorem 4.1 and Observation 3.2. □

emma 4.9. Let P be a profile of four voters with an acyclic majority graph, and let π be a ranking for P that is popular for
t least one of the profiles formed by three of the voters. Then π is popular for P.

roof. Let π be popular for the profile (πv1 , πv2 , πv3 ). Then by definition there exists no ranking σ that is preferred by
wo of v1, v2, v3, as this would contradict the fact that π is weakly popular for the profile (πv1 , πv2 , πv3 ) by Theorem 3.14.
n particular, there does not exist a ranking σ preferred by an absolute majority of v1, v2, v3, v4, as this would require at
east three voters and hence at least 2 of v1, v2, v3. We conclude that π is weakly popular and hence popular for P . □

We now present an example in which there is ranking π that is not topologically sorted such that π is more popular
han a topologically sorted ranking.

bservation 4.10. Given a profile of four voters with an acyclic majority graph, a ranking that is not topologically sorted can
e more popular than a topologically sorted ranking.

roof. Consider the following profile with n = 4 and m = 10.

πv1 = [1, 2], [3, 4], [5, 6], [7, 8], [9, 10]
πv2 = [1, 2], [4, 3], [6, 5], [7, 8], [10, 9]
πv3 = [1, 2], [4, 3], [6, 5], [8, 7], [9, 10]
πv4 = [2, 1], [3, 4], [5, 6], [8, 7], [10, 9]

It is easy to verify that πv1 is a topologically sorted ranking of P . However, σ = [2, 1], [4, 3], [6, 5], [8, 7], [10, 9] is
preferred by v2, v3, and v4 to πv1 , since K (πvi , πv1 ) = 3 and K (πvi , σ ) = 2 for 2 ≤ i ≤ 4. Since an absolute majority of
voters prefer candidate 1 to candidate 2, σ is not topologically sorted. For the sake of completeness, we remark that the
topologically sorted ranking [1, 2], [4, 3], [6, 5], [8, 7], [10, 9] is popular. □

We now discuss a family of strongly related decision problems called k-all-closer-ranking, which will come useful
when establishing results for the cases k = 4 and k = 5. For a profile with k voters and a given ranking π , we ask whether
there is a ranking that all the voters prefer to π .

k-ALL-CLOSER-RANKING
Input: A set C , a profile P = (πv1 , . . . , πvk ) over C and a ranking π over C .
Question: Does there exist a ranking σ that is preferred to π by each of the k voters?

The next theorem reveals some features of this problem.

Theorem 4.11. Given a profile P = (πv1 , πv2 , πv3 ) with an acyclic majority graph, we can decide in polynomial time if there
exists a ranking preferred by all voters to a given ranking π and if it does, output it.

Proof. We start with two technical observations that will come in handy later in our proof.

Observation 4.12. If K (σ , πvi ) > 0—for a voter vi, 1 ≤ i ≤ 3 and a ranking σ , then there exists a swap in σ that is good
or vi.

roof. Suppose there is no swap in σ that is good for vi. So σ is a topologically sorted ranking for vi, and for one voter
his means πvi = σ , i.e. K (σ , πvi ) = 0. ■

bservation 4.13. Let π be a ranking such that there is no swap in π that is good for both vi and vj, where 1 ≤ i, j ≤ 3.
hen there is no ranking σ preferred to π by both v and v .
i j
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Proof. Since there is no swap in π that is good for both vi and vj, π is a topologically sorted ranking for vi and vj.
y Lemma 4.5 this means that π is weakly popular for the sub-profile comprising vi and vj, so there exists no ranking
referred by an absolute majority, that is, preferred by both voters. ■

We are now ready to proceed to the main part of the proof. First, note that we can check in polynomial time whether
is topologically sorted for any two of the voters and hence by Lemma 4.5 whether there is a ranking that they both

refer. Clearly if there is a pair of voters such that no ranking exists that is preferred to π by both voters, then there is
no ranking preferred to π by all three voters. So we may assume that for any two of the three voters there is a ranking
they both prefer to π .

Second, note that since the number of voters is odd, the majority graph is a tournament. First we compute the unique
topologically sorted ranking σ of P in polynomial time [24]. We distinguish four cases, based on how many of the three
voters prefer σ to π , which can be checked in polynomial time.

Case 1: If σ is preferred to π by all three voters, then we are done.
Case 2: Suppose that two of the voters, without loss of generality v1 and v2, prefer σ to π . Let di = K (π, πvi )−K (σ , πvi )

or i ∈ {1, 2}. Then di ≥ 1 for i ∈ {1, 2}. Without loss of generality assume that d1 ≤ d2. Also let d3 = K (σ , πv3 )−K (π, πv3 ).
hen d3 ≥ 0. Let π0 := π, . . . , πk := σ be the bubble sort swap path from π to σ .

laim 4.14. For the above defined distances, d1 − d3 ≥ 2 and similarly, d2 − d3 ≥ 2 hold.

roof. Firstly, no swap in the bubble sort path is bad for both v1 and v3, since every swap πi → πi+1 that is bad for v3
ust be good for both v2 and v1, because σ is the topologically sorted ranking of P . If there is no swap that is good for
oth v1 and v3, then there cannot exist a ranking preferred to π by all voters, since there cannot exist a ranking preferred
y both v1 and v3 by Observation 4.13. So there is at least one swap in the bubble sort path that is good for both v1
nd v3. This swap adds 1 to d1 and subtracts 1 from d3, i.e. it adds 1 to −d3. By the previous argument, any other swap
s good for at least one of v1 and v3, adding at least 0 to d1 − d3. It follows that d1 − d3 ≥ 2 and since d2 ≥ d1, it follows
hat the same argument also implies d2 − d3 ≥ 2. ■

We now show how to transform σ to a ranking that is preferred by all three voters to π if and only if such a ranking
xists.

rocedure
Let σ0 = σ . In the ith round we search for a swap in σi−1 that is good for v3 and if found, perform the swap to obtain

i for i ≥ 1. Otherwise we output an error message. We stop the procedure in round i = d3 + 1 and output σd3+1.

laim 4.15. If the procedure terminates outputting σd3+1, then v1, v2, and v3 prefer σd3+1 to π . Otherwise, there does not exist
ranking preferred by all voters to π .

roof. The procedure terminates before reaching σd3+1 if and only if K (σj, πv3 ) = 0 for some integer j < d3+1, otherwise
by Observation 4.12, we can find a swap that is good for v3.

If the procedure terminates before reaching σd3+1, necessarily K (πv3 , σ ) ≤ d3. Since K (πv3 , σ ) − K (πv3 , π ) = d3,
(πv3 , π ) = 0 i.e. πv3 = π . So clearly there cannot exist a ranking preferred by all voters, including v3, to π . If we
uccessfully obtain σd3+1, it will be at most d3 + 1 swaps away from σ . So σd3+1 is closer to πv1 than π by

d′

1 := K (π, πv1 ) − K (σd3+1, πv1 )
≥ K (π, πv1 ) − K (σ , πv1 ) − (d3 + 1)
= d1 − d3 − 1
> 0, (7)

here the inequality in Line 7 follows from Claim 4.14. Similarly

d′

2 := K (π, πv2 ) − K (σd3+1, πv2 ) > 0,

hat is, πv2 is closer to σd3+1 than to π .
Also, by construction

d′

3 := K (π, πv3 ) − K (σd3+1, πv3 )
= K (π, πv3 ) − K (σ , πv3 ) + K (σ , πv3 ) − K (σd3+1, πv3 )
= −d3 + d3 + 1
= 1.

So π is closer to σ than to π . That is, all of v , v and v prefer to σ to π . ■
v3 d3+1 1 2 3 d3+1
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Case 3: Suppose that only one voter, without loss of generality v1, prefers σ to π . We show that this case cannot occur.
here exists a bubble sort swap on the path from π to σ that is good for both v2 and v3, else there cannot be a ranking
referred by all voters by Observation 4.13. Since every bubble sort swap is good for at least one of v2 and v3, without
oss of generality, let v2 be the voter for whom at least half of the bubble sort swaps are good. This means that v2 has
more good swaps on the path than bad swaps, i.e. v2 also prefers σ to π , a contradiction to v1 being the only voter who
refers σ to π .
Case 4: Finally, suppose that no voter prefers σ to π , i.e. K (πvi , σ ) ≥ K (πvi , π ) for all 1 ≤ i ≤ 3. Since σ is topologically

orted and hence a Kemeny consensus (see Observation 2.2),
∑3

i=1 K (πvi , σ ) ≤
∑3

i=1 K (πvi , π ) holds. From these two
nequalities follows that K (πvi , σ ) = K (πvi , π ) for all 1 ≤ i ≤ 3. That is, π is also a Kemeny consensus, hence there does
ot exist a ranking preferred to π by all voters.
Having discussed all four cases, we now can output a ranking preferred by all the voters to a given ranking π or report

hat no such ranking exists in polynomial time. □

emma 4.16. For k ≥ 3, if at least one of (2k − 1)-surv, (2k − 1)-wurv, and (2k − 2)-wurv is polynomial-time solvable,
hen k-all-closer-ranking is polynomial-time solvable.

roof. Assume first that (2k− 2)-wurv is polynomial-time solvable. Consider an instance of k-all-closer-ranking with
nput ranking π and profile (πv1 , . . . , πvk ) over C . From this instance of k-all-closer-ranking we construct the following
nstance of (2k − 2)-wurv. We copy π as the given input ranking and create 2k − 2 voters, k − 2 of them with ranking
and the other k voters corresponding to v1, . . . , vk. Since voters with ranking π clearly prefer π to any other ranking,

f there exists a ranking preferred by an absolute majority (at least k) of the 2k − 2 voters to π , then these k voters
ust be v1, . . . , vk. If a ranking is preferred by an absolute majority of the 2k − 2 voters to π , then it is a solution to
-all-closer-ranking. Hence there is a ranking σ preferred by an absolute majority of the 2k − 2 voters if and only if σ

s a solution to k-all-closer-ranking. For (2k − 1)-wurv and (2k − 1)-surv we simply add another voter with ranking
, and otherwise keep the proof intact. □

emma 4.17. Let k ≥ 3 be a constant. If k-all-closer-ranking is polynomial-time solvable, then (2k − 1)-wurv and
2k − 2)-wurv are both polynomial-time solvable.

roof. If k-all-closer-ranking has a polynomial-time algorithm A, then we can solve (2k − 2)-wurv by applying A to
ach of the

(2k−2
k

)
voter groups of size k, which itself is a polynomial-time procedure if k is a constant. If one of the calls

o A returns yes, return yes, else return no. It is easy to see that this procedure returns yes if and only if there is some
roup of k voters that prefers another ranking, i.e. if and only if there is an absolute majority that prefers another ranking.
similar argument can be applied for (2k − 1)-wurv. □

An immediate consequence of Lemmas 4.16 and 4.17 is the following result.

heorem 4.18. All of 4-wurv, 4-surv, 5-wurv and 5-surv are polynomial-time solvable if and only if any one of them is
olynomial-time solvable.

roof. With k = 3 in Lemma 4.16, if 5-wurv is polynomial-time solvable, then 3-all-closer-ranking is also polynomial-
ime solvable. Due to Lemma 4.17, the polynomial-time solvability of 3-all-closer-ranking implies the polynomial-time
olvability of 4-wurv. By a similar argument, the polynomial-time solvability of 4-wurv implies the polynomial-time
olvability of 5-wurv By Theorem 3.14, an analogous result holds for 4-surv and 5-surv. □

.4. NP-hardness for k = 6

We now improve upon the NP-hardness result of [35, Theorem 4] on the search version of 7-wurv from seven voters
o six voters, and also extend it to strongly popular rankings with six or seven voters.

heorem 4.19. The search versions of 6-wurv, 6-surv, and 7-surv are all NP-hard.

roof. To prove the claim we modify the proof from [35, Theorem 4], which shows that the search version of 7-wurv is
P-hard. In that proof, four of the seven voters have rankings π1, π2, π3, π4, respectively, and the remaining three voters
ave ranking L(σ ). The authors (implicitly) prove that it is NP-hard to construct a ranking ζ that all the four voters with
ankings π1, π2, π3, π4 prefer to L(σ ). We use this to show the NP-hardness of 6-wurv and 7-surv.

We start with 7-surv. For any ranking ζ ̸= L(σ ), the three voters with lists L(σ ) must prefer L(σ ) to ζ . In order for ζ

o be more popular than L(σ ) in the simple sense, ranking ζ must be preferred to L(σ ) by more than three voters. This
appens if and only if all four voters with rankings π1, π2, π3, π4 prefer ζ to L(σ ).
For 6-wurv, we have two voters with lists L(σ ) instead of three. The same reduction holds as for 7-surv, since an
bsolute majority of all six voters, that is, the four voters with rankings π1, π2, π3, π4, must prefer ζ to L(σ ).
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To show the NP-hardness of 6-surv, we keep the same instance as for 6-surv. Now only two voters prefer L(σ ) to ζ ,
nd thus ζ is more popular than L(σ ) in the simple sense if and only if at least three of the remaining four voters prefer
to L(σ ), and none of these four voters prefer L(σ ) to ζ . Even though it is not directly observed by van Zuylen et al. their
P-hardness proof carries over to this case without modification. □

. The relationship with the kemeny consensus

We next draw attention to connections with the complexity of the famous Kemeny consensus problem. We show that
f either of 4-wurv, 5-wurv, 4-surv, and 5-surv is polynomial-time solvable, then one can find a Kemeny consensus for
hree voters in polynomial time. This explains why we only succeeded to prove polynomial-time solvability for special
ases of k-wurv and k-surv for k ∈ {4, 5} in Lemmas 4.8 and 4.9.
Consider the following problem: we are given a ranking π as well as three voters’ rankings πv1 , πv2 , πv3 . Our task is

o output a ranking σ that has smaller Kemeny rank than π , or report that none exists. In general, with k voters, we call
this search problem k-smaller-Kemeny-rank.

k-SMALLER-KEMENY-RANK
Input: A set C , a profile P = (πv1 , . . . , πvk ) over C and a ranking π over C .
Output: A ranking σ with smaller Kemeny rank than π , that is,

∑k
i=1 K (σ , πvi ) <

∑k
i=1 K (π, πvi ) or a statement

that no such ranking exists.

Theorem 5.1. A Kemeny consensus for k voters can be computed in polynomial time if and only if k-smaller-Kemeny-rank
s polynomial-time solvable.

roof. Assume that k-smaller-Kemeny-rank has a polynomial-time algorithm A. We simply choose an arbitrary ranking
π1 for the Kemeny consensus problem and apply A to find π2 with smaller Kemeny rank than π1, and continue this way
until we have found a Kemeny consensus. The number of calls to A can be naively bounded by km(m−1)

2 , which is the
maximum Kemeny rank of a ranking. Similarly, if we can find a Kemeny consensus for k voters in polynomial time, then
we can check if it has smaller Kemeny rank than π in the input of the k-smaller-Kemeny-rank problem. □

By an argument similar to the one in [35, Theorem 5], we prove the following result on the complexity of 3-smaller-
Kemeny-rank.

Theorem 5.2. If the search version of 3-all-closer-ranking is polynomial-time solvable then 3-smaller-Kemeny-rank is
polynomial-time solvable.

Proof. Given an instance I of 3-smaller-Kemeny-rank with profile P = (πv1 , πv2 , πv3 ) over C = {c1, . . . , cm} and a
anking π over C , we create an instance I ′ of 3-all-closer-ranking as follows. We create a set of 3m candidates as
′
= C1

∪ C2
∪ C3, where C j

= {c jr : 1 ≤ r ≤ m} for each 1 ≤ j ≤ 3 and C1
= C with c1r = cr for 1 ≤ r ≤ m. Intuitively, C ′

onsists of three distinguishable copies of C . Given any ranking σ of the m candidates in I, let σ j be the ranking obtained
rom σ by replacing each candidate cr by c jr , preserving the original order in σ . Let π i be a preference ranking of C i. We
enote by π1π2π3 the ranking of C ′, in which each candidate in C i is preferred to each candidate in C j whenever i < j,
nd candidates within a set C i are ranked according to π i. Now the profile P ′

= (πv′
1
, πv′

2
, πv′

3
) in I ′ is defined as follows.

πv′
1

= π1
v1

π2
v2

π3
v3

πv′
2

= π1
v2

π2
v3

π3
v1

πv′
3

= π1
v3

π2
v1

π3
v2

Finally we create ranking π ′
= π1π2π3 for the input to 3-all-closer-ranking.

laim 5.3. Ranking σ in I has a smaller Kemeny rank than π if and only if there exists a ranking σ ′ in I ′ preferred by all of
′

1, v
′

2, and v′

3 to π ′.

roof. Suppose first that σ has a smaller Kemeny rank than π in I, that is,
3∑

j=1

K (πvj , σ ) <

3∑
j=1

K (πvj , π ).

et σ ′
= σ 1σ 2σ 3. Note that for each 1 ≤ i ≤ 3,

K (πv′
i
, σ ′) =

3∑
K (πvj , σ ) <

3∑
K (πvj , π ) = K (πv′

i
, π ′).
j=1 j=1
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So indeed each v′

i for 1 ≤ i ≤ 3 prefers σ ′ to π ′.
For the converse direction, we first informally summarise the argument. We will argue that if there is a ranking σ ′

n I ′ preferred to π ′ by all voters, then we can extract a ranking σ in I with smaller Kemeny rank than π in two steps.
irst of all we can break up σ ′ into three different rankings, each defined on a different candidate set. Secondly, one of
hese rankings translated back to our instance I will be a ranking with a smaller Kemeny rank than π , as we will argue
sing the averaging principle. This argument relies on every πvi , 1 ≤ i ≤ 3, appearing once in each ‘‘column’’ of I ′, hence
ustifying the cyclic shift used in I ′.

Suppose that σ ′ is preferred to π ′ by all three voters v′

1, v
′

2, v
′

3. By Lemma 3.3 we can assume that σ ′ preserves
C1, C2, C3). So we can also assume that σ ′

= ζ 1
1 ζ 2

2 ζ 3
3 , where ζ

j
j is a ranking of the candidates in C j for 1 ≤ j ≤ 3,

hat is, these are three different rankings. We let ζ l
j be the ranking that is obtained from ζ

j
j by replacing candidate c jr with

andidate c lr for 1 ≤ j, l ≤ 3 and 1 ≤ r ≤ m, preserving the original order in ζ
j
j . Let τj = ζ 1

j ζ 2
j ζ 3

j , so that intuitively, we
copy the same ranking three times, on different candidate sets. We will show that for some 1 ≤ j ≤ 3, τj is also preferred
o π ′ by v′

1.
Notice that

∑3
i=1 K (σ

′, πv′
i
) =

∑3
j=1 K (τj, πv′

1
). Since K (σ ′, πv′

i
) < K (π ′, πv′

i
) for all 1 ≤ i ≤ 3 and K (π ′, πv′

1
) =

(π ′, πv′
2
) = K (π ′, πv′

3
), it follows that

3∑
j=1

K (τj, πv′
1
) =

3∑
i=1

K (σ ′, πv′
i
) <

3∑
i=1

K (π ′, πv′
i
) = 3K (π ′, πv′

1
). (8)

o there must exist an index j, 1 ≤ j ≤ 3, such that K (τj, πv′
1
) < K (π ′, πv′

1
). But then

3∑
i=1

K (ζ 1
j , πvi ) =

3∑
i=1

K (ζ i
j , π

i
vi
) = K (τj, πv′

1
) < K (π ′, πv′

1
) =

3∑
i=1

K (π, πvi ),

hich means that ζ 1
j has smaller Kemeny rank than π , as desired. ■

This finishes the proof of our theorem. □

We observe that a slight tweak to the above proofs lets us show NP-hardness for four problems related to 3-all-
loser-ranking.

bservation 5.4. If finding a ranking with a smaller Kemeny rank than a given ranking π for three voters is NP-hard, then
inding a ranking ζ that exactly one/at least one/exactly two/at least two of the three voters prefer π , while no voter prefers π

o ζ is also NP-hard.

roof. We only need to argue why the converse direction still holds with the weaker assumption in Theorem 5.2. Note
hat in the proof of Theorem 5.2, Inequality (8) still holds if only one/at least one/exactly two/at least two of the three
oters is non-abstaining and prefers σ ′ to π ′, while the other voters abstain. □

orollary 5.5. If any of 4-wurv, 4-surv, 5-wurv, or 5-surv are polynomial-time solvable, then we can find a Kemeny
onsensus for three voters in polynomial time.

roof. This proof is illustrated in Fig. 5. By Lemma 4.16, if the search version of 4-wurv or 5-wurv is polynomial-time
olvable, then the search version of 3-all-closer-ranking is also polynomial-time solvable. Now, if the latter is true,
hen by Theorem 5.2, 3-smaller-Kemeny-rank is also polynomial-time solvable. This would finally imply that finding a
emeny consensus for three voters is polynomial-time solvable, by Theorem 5.1. An analogous result holds for 4-surv
nd 5-surv by Theorem 3.14. □

. Summary and open questions

We studied weakly popular rankings, defined in [35], and also introduced the notion of strongly popular rankings
nalogous to the concept of popularity found in the matching literature, which ignores abstaining voters. Then we showed
hat a ranking π is weakly popular if and only if it is strongly popular assuming that the majority graph of the abstaining
oters between π and any other ranking σ is acyclic. Using this result we also proved that the two notions of popularity
re equivalent for profiles with at most five voters. For profiles with six voters, however, we showed that this equivalence
oes not hold anymore.
We found the smallest constant c for which any c-sorted ranking of a profile is weakly popular. For two or three voters,

topologically sorted ranking turned out always to be popular with respect to both of the popularity notions. For four
oters this also holds as long as the majority graph of the voters is a tournament, but it does not hold in general. We
xplained that the problem of deciding whether there exists a ranking σ that is preferred to a given ranking π by a simple
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Fig. 5. If any of 4-wurv, 5-wurv, 4-surv, and 5-surv is polynomial-time solvable, then via the depicted implications, finding a Kemeny consensus
for three voters is polynomial-time solvable.

or absolute majority of voters for profiles with four of five voters boils down to the problem of deciding for three voters
whether there is a ranking σ that they all prefer to π . This problem, as we showed, is polynomial-time solvable if the
ajority graph of the three voters is acyclic, but its complexity is open in general. Importantly, if it were polynomial-time
olvable, this would imply the polynomial-time solvability of the well-known Kemeny consensus problem for three voters,
hose complexity is currently open.
The study of popular rankings can be extended into various directions. We now list some open problems that our work

oses, starting with a question already raised by van Zuylen et al. [35], which we made some progress on.

1. Determine the complexity of deciding whether a popular ranking exists for an instance with arbitrary n. Our
Lemmas 4.5, 4.6, and 4.8 show that for at most three voters and for four voters with an acyclic tournament as
the majority graph, the existence of weakly/strongly popular rankings can be checked efficiently. Besides this,
Theorem 4.1 gives a sufficient condition for the existence of a weakly popular ranking for instances with arbitrary n.

2. Determine the complexity of 3-all-closer-ranking.
3. Construct an example showing that for any n > 5, the two notions of popularity are not equivalent. Theorem 4.1

might prove to be helpful here.

Finally, popular rankings can be defined and studied in instances where ties in the rankings are allowed, or the rankings
re not necessarily complete. Also, besides the Kendall distance, other metrics on rankings can also be applied, such as
he Spearman distance [34].
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ppendix A. Calculations relating to Fig. 1 and the proof of Theorem 3.4

We remind the reader that the voters’ rankings are as follows.

πv1 = [1, 2, 3], [6, 4, 5], [8, 9, 7]
πv2 = [2, 3, 1], [4, 5, 6], [9, 7, 8]
π = [3, 1, 2], [5, 6, 4], [7, 8, 9]
v3
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C

πv4 = [1, 2, 3], [4, 5, 6], [7, 8, 9] = σ2

πv5 = [1, 2, 3], [5, 4, 6], [9, 7, 8]
πv6 = [1, 2, 3], [5, 6, 4], [7, 9, 8]

onsider the two rankings of the candidates σ1 = [1, 2, 3], [5, 6, 4], [9, 7, 8] and σ2 = [1, 2, 3], [4, 5, 6], [7, 8, 9]. Below
we discuss the roles of the voters and we justify them with calculations and observations. Trivially, v4 prefers σ2 to σ1.

Voters v1, v2, v3 abstain in the vote between σ1 and σ2. We first discuss the three impartial voters and justify why they
indeed are impartial between σ1 and σ2. Note that each of v1, v2, v3 agrees with σ1 on one triple, and agrees with σ2 on one
triple. For the remaining two triples in each case, each of these three voters agrees with neither the corresponding triples in
σ1, nor the ones in σ2, but instead has distance 2 to each of these. For example, voter v1 agrees with both σ1 and σ2 on the
first triple, but agrees with neither of them on the other two triples, and K ([6, 4, 5], [5, 6, 4]) = K ([6, 4, 5], [4, 5, 6]) = 2
and K ([8, 9, 7], [9, 7, 8]) = K ([8, 9, 7], [7, 8, 9]) = 2. Hence K (πv1 , σ1) = K (πv1 , σ2) = 4. Voter v2 agrees with σ2 on
the second triple, and agrees with σ1 on the third triple, while the distances to those triples she disagrees with are
K ([2, 3, 1], [1, 2, 3])= K ([4, 5, 6], [5, 6, 4]) = K ([9, 7, 8], [7, 8, 9]) = 2. Hence K (πv2 , σ1) = K (πv2 , σ2) = 4. This can be
checked similarly for voter v3.

Voters v5 and v6 each prefer σ1 to σ2. Each of v5 and v6 agrees with each of σ1 and σ2 on the first triple. Further, each
of v5 and v6 agrees with σ1 on one other triple, but is two swaps away from σ2 with respect to the same triple. For the
remaining triple, each of v5 and v6 is one swap away from each of σ1 and σ2. Hence K (πv5 , σ1) = K (πv6 , σ1) = 1 < 3 =

K (πv5 , σ2) = K (πv6 , σ2).

Appendix B. An instance admitting a weakly popular ranking, but no strongly popular ranking

Consider the following profile involving 9 candidates and 8 voters:

πv1 = [1, 2, 3], [6, 4, 5], [8, 9, 7]
πv2 = [2, 3, 1], [4, 5, 6], [9, 7, 8]
πv3 = [3, 1, 2], [5, 6, 4], [7, 8, 9]
πv4 = [1, 2, 3], [4, 5, 6], [8, 9, 7]
πv5 = [1, 2, 3], [5, 6, 4], [7, 8, 9]
πv6 = [2, 3, 1], [4, 5, 6], [7, 8, 9]
πv7 = [2, 3, 1], [5, 6, 4], [8, 9, 7]
πv8 = [2, 3, 1], [5, 6, 4], [8, 9, 7] = πv7

Our computer simulations (the program code is available from https://github.com/SonjaKrai/PopularRankingsExam
pleCheck) confirmed that the unique weakly popular ranking is π := [2, 3, 1], [5, 6, 4], [8, 9, 7](= πv7 = πv8 ). Let
σ = [1, 2, 3], [4, 5, 6], [7, 8, 9]. Note that K (πvi , σ ) = K (πvi , π ) = 4 for 1 ≤ i ≤ 3, 2 = K (πvi , σ ) < K (πvi , π ) = 4
for 4 ≤ i ≤ 6 and 6 = K (πvi , σ ) > K (πvi , π ) = 0 for 7 ≤ i ≤ 8. Hence three voters prefer σ to π , two voters prefer π to
σ , and four voters abstain. It follows that σ is more popular than π in the simple sense.
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