
Az OTKA F47203 azonośıtójú,

Komplex hálózatok vizsgálata
ćımű pályázat szakmai zárójelentése

1. Bevezetés

Az élővilág (beleértve az emberek világát is) számos komplex alrendszere sike-
resen reprezentálható a rendszert alkotó elemek közti kölcsönhatások hálóza-
tának seǵıtségével. Az ilyen komplex hálózatoknak megfelelő gráfok általában
már a topológia szintjén is számos nem triviális jelenséget produkálnak, úgy
mint skála független fokszámeloszlás megjelenése, fürtösödés, anomális átmérő,
érdekes fokszám korrelációk, stb. [1, 2, 3, 4, 5].

Ezen tágabb témakörön belül a pályázathoz kapcsolódó kutatások két terü-
letre koncentráltak. A pályázat résztvevőinek korábbi eredményei a hálózatok
statisztikus fizikájához kötődnek, ı́gy 2004-ben ezen korábbi kutatások foly-
tatásaként hálózati Hamilton-függvények visszafejtésével foglalkoztunk. 2005-
től viszont egy másik nagyon dinamikusan fejlődő részterület felé fordultunk,
mely a hálózatok moduláris szerkezetét, a hálózatokban található csoporto-
sulásokat, klasztereket, modulokat vizsgálja.

2. Hálózati Hamilton-függvények visszafejtése

A komplex hálózatok témakörének egyik fontos kutatási területét a hálózatok
topológiai változásainak statisztikus fizikai tárgyalása teszi ki. Elsőként Burda
és munkatársai ı́rtak fel a statisztikus fizikában megszokott állapotösszeget egy
hálózat lehetséges állapotainak seǵıtségével [6, 7], nem sokkal később Berg és
Lässig ezen formalizmus seǵıtségével azt vizsgálták, hogy különböző Hamilton-
függvények milyen korrelációkra vezetnek a hálózatban [8]. Az emĺıtett, a
gráf szerkezetétől függő Hamilton-függvény megválasztására több lehetőség
ḱınálkozik [8, 9], a pályázat résztvevőinek korábbi kutatásai ezen különböző
Hamilton-függvényeknek a gráf struktúrájára gyakorolt hatásait vizsgálták
[10, 11, 12]. Ebben a megközeĺıtésben a hőmérséklet az átrendeződések zaj-
szintjének felel meg, a Hamilton-függvény pedig egy (bizonyos szempontból)
optimális konfigurációt kódol. Az eredmények szerint több olyan egyszerű
Hamilton-függvény is adható, melynél a hőmérséklet (zajszint) csökkentésével
a hálózat olyan strukturális átrendeződésen megy át, mely analóg a statisztikus
fizikában megszokott fázisátalakulásokkal.
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A pályázathoz kapcsolódó kutatások során elsőként (a topologikus fázisáta-
lakulásokkal foglalkozó vizsgálatok folytatásaként) kidolgoztunk egy módszert,
mely lehetővé teszi a valós hálózatok átrendeződéseinek elemzéséből a hálózat
időfejlődését (dinamikáját) meghatározó Hamilton-függvény visszakövetkez-
tetését [13]. Eljárásunkkal olyan hálózatok vizsgálhatóak, ahol az átrendeződé-
si folyamatok kieléǵıtik a részletes egyensúly feltételeit, valamint az időegységre
jutó él-átrendeződések száma mellett eltörpül a megjelenő új csúcsok és élek
száma. Módszerünk továbbá feltételezi, hogy a visszafejtendő energiafüggvény
előálĺıtható az egyes csúcsok fokszámától függő tagok összegeként. Megvizs-
gálva több nagyméretű valós hálózatot arra az eredményre jutottunk, hogy
az átrendeződéseket iránýıtó empirikus Hamilton-függvényeket egy olyan uni-
verzális (az egyes csúcsok fokszámától függő) függvénnyel lehet megadni, mely-
nél az egyes csúcsok járuléka a teljes energiához a csúcs fokszámának és a
fokszám logaritmusának szorzatával arányos [13]. Megmutattuk, hogy ez az
energia alak konzisztens a természetben található növekvő hálózatoknál ta-
pasztalt preferenciális kapcsolódási szabállyal. (A preferenciális csatolási sza-
bálynak engedelmeskedő hálózatok esetén egy új csúcs bekötésénél a már létező
csúcsok a fokszámukkal arányos valósźınűséggel válnak az új csúcs szomszéda-
ivá, ezáltal nyerve egy új élt.)

Összeségében a hálózatok statisztikus fizikájával kapcsolatos eredményeink
egy új nézőpontot ḱınálnak a szerkezetileg különböző hálózatok összehason-
ĺıtásához, rendszerezéséhez és tovább mélýıtik a kapcsolatot a hagyományos
statisztikus fizika és a komplex hálózatokelmélete között.

3. Hálózatok moduláris szerkezete

3.1. Hálózati csoportok, modulok, klasztererk

A komplex hálózatok témakörének egy másik nagyon fontos új területe az
ún. csoportosulásokkal (más néven hálózati klaszterekkel , modulokkal, vagy
kohéźıv csoportokkal) foglalkozik. Ezek a szerkezeti egységek az átlagosnál
sűrűbben összekapcsolt részgráfoknak felelnek meg, és egyelőre nincs általáno-
san elfogadott, egységes defińıciójuk [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26]. Az ilyen alapegységek (pl. hasonló funkciójú proteinek [27, 28], gaz-
dasági szektorok [29], szociális csoportok [22, 30], kooperat́ıv játékosok [31, 32],
stb.) nagyon fontos szerepet játszhatnak a hálózat szerkezeti és funkcionális
feléṕıtésében, működésében.

A legtöbb hálózati csoportosulás kereső módszer a hálózat egyre kisebb
részekre történő darabolásán alapszik. Ennek legnagyobb hátránya az, hogy
az ı́gy kapott csoportosulások nem fedhetnek át egymással. Ezzel ellentétben
számos komplex rendszer esetén a csoportosulások nem izoláltak, egy-egy csúcs
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egyszerre akár több csoporthoz is tartozhat, pl. egy protein egyszerre több
funkciót is elláthat [33], vagy egyes emberek egyszerre több szociális csoportnak
is tagjai lehetnek [34].

3.2. A klikk perkolációs módszer (CPM)

2005-ben jelentős eredményeket értünk el a hálózati csoportosulás keresés fent
emĺıtett hiányosságának kiküszöbölésében [35, 36]. Az általunk javasolt új
csoportosulás kereső módszer a k-klikk perkoláció jelenségén alapszik, és meg-
engedi a csoportok közti átfedéseket. Maguk a k-klikkek olyan k csúcsból álló
részgráfoknak felelnek meg, melyekben minden csúcs minden másik csúccsal
össze van kötve. Két k-klikket szomszédosnak mondunk, ha k − 1 csúcsuk
közös, és a k-klikk perkolációs klaszter pedig olyan k-klikkek uniójaként áll elő,
melyben barmely két k-klikkből eljuthatunk a másikba szomszédos k-klikkek
sorozatán keresztül. A mi megközeĺıtésünkben a csoportosulások mind egy-
egy k-klikk perkolációs klaszternek felelnek meg [35, 36]. Ezek átfedhetnek
egymással, hiszen a rendszerben találhatunk olyan k-klikk párokat, melyek
ugyan különböző k-klikk perkolációs klaszterhez tartoznak, viszont átfednek
egymással néhány (k − 1-nél kevesebb) csúcsban. Az ilyen átfedésekben ta-
lálható csúcsok mindkét csoportosulásnak tagjai lesznek. Az átfedések révén
természetes módon származtathatjuk a csoportosulások hálózatát is: benne
a csúcsok az egyes csoportosulásoknak felelnek meg, és két csúcs akkor van
összekötve, ha az adott két csoportosulás közt van átfedés. Az ı́gy beveze-
tett hálózat seǵıtségével a rendszer szerveződését, hierarchiáját egy magasabb
szinten tanulmányozhatjuk (1.ábra).

A k-klikk perkoláció jelensége az általa ḱınált csoportosulás defińıció mel-
lett már pusztán matematikai szempontból is igen érdekes. Régóta ismert,
hogy az Erdős-Rényi-féle véletlen gráfban a csúcsok kapcsolódási valósźınű-
ségének változtatásával, egy (a perkolációval analóg) fázisátalakulást figyel-
hetünk meg [37, 38]. Amennyiben az összekötési valósźınűség olyan kicsi, hogy
a csúcsok átlagos fokszáma nem éri el az egyet, a hálózat sok kisméretű izolált
komponensre esik szét. Ellenben ha az összekötési valósźınűség növelésével a
csúcsok átlagos fokszáma meghaladja az egyet, a hálózatban megjelenik egy
óriás (összefüggő) komponens, melynek mérete összemérhető a rendszermé-
rettel. A k-klikk perkoláció tekinthető ezen folyamat általánośıtásának, hi-
szen k = 2 -re visszakapjuk az imént ismertetett él-perkolációt. Az Erdős-
Rényi-féle véletlen gráf esetén sikerült általánosan meghatároztuk a k-klikk
perkoláció kritikus pontját egy egyszerű elméleti becsléssel [36], illetve egy
közeĺıtő analitikus módszerrel [39], az eredmény helyességét numerikus szi-
mulációkkal támasztottuk alá [36].
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1. ábra. Az élesztő baktérium fehérje kölcsönhatási hálózatából nyert cso-
portosuláshálózat. A csúcsok mérete illetve az élek vastagsága a csoporto-
sulások méretével illetve az átfedésekben lévő csúcsok számával arányos. A
kép jobb oldalán néhány csoportosulás belső szerkezetét mutatjuk kinagýıtva,
itt a csoportosulásokat a sźınek különböztetik meg egymástól, az átfedéseket
pirossal jelöltük. Az egyes csoportosulások jól megfeletethetők egy-egy fehérje
funkciónak.

3.3. Optimális csoportfelosztás

Az imént emĺıtett kritikus pont, (ahol előszőr megjelenik az óriás kompo-
nens), fontos szerepet játszik a valós hálózatok csoportanaĺızise során is. Az
ilyen vizsgálatok során általános esetben összesen egy szabad paraméterünk
van, a k-klikk méret. Ezen felül súlyozott hálózatok esetén az él-súlyokat
oly módon vehetjük figyelembe, hogy bevezetvén egy w súlyküszöböt a w-nél
gyengébb éleket elhanyagoljuk. A súlyküszöb növelésével a csoportosulások
mérete csökken és csak a legerősebben összekapcsolt részek maradnak meg.
Hasonló effektust okoz k növelése is, a nagyobb k-hoz tartozó csoportosulások
kisebbek, de ugyanakkor kohéźıvebbek is. A w és k paraméterek változtatása
hasonĺıt egy mikroszkóp felbontásának beálĺıtásához. Ha egy konkrét csúcshoz
tartozó csoportosulások érdekelnek minket, akkor azokat érdemes egy szélesebb
w és k tartományban megvizsgálni. Ilyenkor csúcsról csúcsra más és más pa-
raméter értékeknél fogjuk a legérdekesebb képet látni. Ugyanakkor a globális
csoportosulás szerkezet vizsgálatához valamilyen kritérium szerint fixálni kell
a súlyküszöböt és k-t. Az általunk használt kritériumot az imént tárgyalt per-
koláció ihlette és azon alapszik, hogy lehetőleg a legtöbb információt hordozó
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csoportosulás szerkezetet nyerjük ki [35]. Amennyiben túl alacsony w és k

paramétereket választunk, a rendszer ”perkolál”, azaz megjelenik egy óriás-
csoportosulás, mely magába foglalja a hálózat túlnyomó részét, elfedvén a cso-
portosulás szerkezet lokális részleteit. Ezzel szemben túl magas paraméter
értékeknél csak elszórtan találunk néhány kisméretű csoportosulást, hiszen
csak a legerősebben összekapcsolt, legkohéźıvebb részek maradnak meg. Az
ideális paraméterválasztás a két véglet között található: adott k értékhez w-t
úgy kell beálĺıtani, hogy még éppen ne jelenjen meg egy óriás-csoportosulás.

Az optimális csoportfelosztás problémájához kapcsolódik a hálózatok spek-
trális tulajdonságait vizsgáló munkánk is [40]. A jelenleg igen népszerű, az
élek rekurźıv kivágásán alapuló (a hálózatot diszjunkt részekre osztó) Girvan-
Newman-féle klaszterező módszert vizsgálva egy tőlünk független kutatócso-
port arra következtetésre jutott, hogy az optimális csoportfelbontás elérésekor
a gráf spektrumának statisztikai jellemzői egy érdekes átalakuláson mennek
keresztül [41]. Az Erdős-Rényi-féle véletlen gráfon és több valós hálózaton
végzett vizsgálataink ezzel szemben azt mutatták ki, hogy az emĺıtett átala-
kulás nem az optimális csoportfelosztás elérését jelzi, hanem általánosan egy
összefüggő óriás komponens megjelenésével/eltűnésével van szoros kapcsolat-
ban [40].

3.4. Valós hálózatok vizsgálata a CPM seǵıtségével

A bevezetett új csoportosulás kereső módszerünkkel nagyméretű (egy esetben
több mint százezer élt tartalmazó) fehérje-fehérje kölcsönhatási, szóasszociá-
ciós és tudományos társszerzőségi hálózatok csoportosulásait tanulmányoztuk
[35, 42, 43]. Eredményeink szerint a talált csoportosulások jelentős mértékben
átfedtek egymással. Módszerünk jól adta vissza, hogy pl. azonos alakú sza-
vak esetén az adott szó több, a különböző jelentéseknek megfelelő csoporto-
sulásoknak mind tagja kell legyen, hasonlóan ahhoz, hogy egy egyszerre több
témán is akt́ıvan dolgozó kutatónak, vagy egy több funkcióval b́ıró fehérjének
is több csoportosulása kell legyen (2.ábra). A fehérje-fehérje kölcsönhatási
hálózatát esetén a feltárt csoportosulások összetételét fehérje annotációs adat-
bázisok seǵıtségével vizsgálva azt az eredményt kaptuk, hogy a csoportok je-
lentős része egy-egy jól beazonośıtható fehérje funkciónak feleltethető meg [42,
43]. Ezen tulajdonság alapján módszerünk lehetővé teszi a sejtműködésben
eddig ismeretlen szerepű fehérjék funkciójának jóslását a feltárt csoportokhoz
való tartozás alapján.

A csoportosulások lokális vizsgálata mellett a tanulmányozott rendszerek
globális statisztikai jellemzőit is vizsgáltuk. Eredményeink szerint a csopor-
tosulások méreteloszlása valamint a csoport-hálózat fokszámeloszlása is hat-
ványszerűen cseng le, a csoportokat alkotó csúcsok hálózatához hasonlóan.
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2. ábra. Példák lokális csoportosulás szerkezetre. A csoportosulásokat a
sźınek különböztetik meg, az átfedések sźıne piros, a csúcsok mérete (az
élek vastagsága) a csúcs (él) csoportjainak számával arányos. a) G. Pa-
risi csoportosulásai egy társszerzőségi hálózatban, a csoportosulások a szerző
különféle érdeklődési területeinek felelnek meg. b) a ”bright” szó csoporto-
sulásai egy szóasszociációs hálózatban, a csoportosulások a ”bright” különböző
jelentéseivel kapcsolatosak c) a ZDS1 fehérje csoportosulásai egy fehérje
kölcsönhatási hálózatban, a csoportosulások a ZDS1 különböző funkcióinak
felelnek meg.

Egy érdekes eltérés viszont a csúcsok hálózata és a csoportok hálózata közt
az, hogy utóbbiban a fokszámeloszlás exponenciálisan indul alacsony fokszám
értékekre [35].

3.5. Csoportosulások hálózata

A csoportosuláshálózat fokszámeloszlásának imént ismertetett hatványszerű
lecsengése egy igen érdekes kérdést vet fel. Ismert, hogy a természetben
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található hálózatok döntő többségénél szintén ilyen a fokszámeloszlás lecsengé-
se, és számos esetben ez az effektus a hálózat növekedését vezérlő preferenciális
csatolási szabály miatt lép fel. Ezek alapján joggal kérdezhetjük, hogy vajon a
csoportosuláshálózat fejlődésénél is fellép-e a preferenciális csatolási szabály?

A csoportosuláshálózat általában sokkal kevesebb számú csúcsot tartalmaz
mint az eredeti hálózat (hiszen benne egy csúcs az eredeti hálózatban csúcsok
csoportjának felel meg). Ennélfogva egy csoportosuláshálózat esetén kevesebb
számú esemény (él bekötés) alapján kell eldönteni, hogy az új csúcsok pre-
fernciálisan csatolódnak-e vagy sem, mint pl. a neki megfelelő eredeti hálózat
esetén. Ezért előszőr egy olyan módszert dolgoztunk ki, mellyel megb́ızhatóan
lehet kimutatni a preferenciális csatolás jelenlétét vagy hiányát a csoportosulás
hálózatok mérettartományába eső rendszerek esetén is [44]. Ezzel a módszerrel
egy társszerzőségi hálózat csoportosulásainak időfejlődését vizsgáltuk, és ered-
ményeink igazolták azt a sejtést, hogy preferenciális csatolási mechanizmu-
sok formálják a rendszert a csoportosulások szintjén is. Egyrészt a csopor-
tosuláshálózat növekedése során egy, még kapcsolatok nélküli csúcs (csopor-
tosulás) a csoportosulásmérettel és csoportosulás fokszámmal preferenciálisan
kapcsolódik be a csoportosuláshálózatba. Ezen felül az eredeti hálózatban
egy csúcs, mely még egyetlen egy csoportosulásnak sem tagja, a csoporto-
sulásmérettel és csoportosulás fokszámmal preferenciálisan fog egy csoporto-
suláshoz csatlakozni [44].

Eredményeink szerint tehát a társzerzőségi hálózat időfejlődését hasonló
mechanizmusok vezérlik mind a csúcsok, mind a csoportosulások szintjén. A
csoportosulások hálózatának növekedése a preferenciális csatolódási szabály
szerint történik, teljesen analóg módon az alapul szolgáló hálózat növekedésé-
vel. Ez a jelenség egy további megerőśıtése a rendszer különböző szerveződési
szintjei közt tapasztalható hasonlóságnak.

3.6. Kapcsolódó programcsomag

A fenti eredmények mellett kifejlesztettünk egy programcsomagot is, mely a
CPM használatával csoportosulásokat keres és - több más elemzéssel együtt -
a talált csoportosulások hálózatát bemutatja [43, 45]. Ez a szoftver CFin-
der (Clique and Community Finder) néven a ingyenesen letölthető, és tu-
dományterülettől függetlenül alkalmazható minden olyan adatrendszer elemzé-
sére, amely hálózatként ábrázolható. A program Windows, Linux és Macintosh
számı́tógépeken egyaránt használható.
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