Az OTKA F47203 azonositdju,
Komplex halézatok vizsgalata

cimii palyazat szakmai zardjelentése

1. Bevezetés

Az élévilag (beleértve az emberek vildgét is) szamos komplex alrendszere sike-
resen reprezentalhaté a rendszert alkotd elemek kozti kolesonhatasok héldza-
tanak segitségével. Az ilyen komplex halézatoknak megfelel$ grafok altalaban
mar a topoldgia szintjén is szamos nem trividlis jelenséget produkalnak, tgy
mint skala fiiggetlen fokszdmeloszlas megjelenése, fiirtosodés, anomélis atméro,
érdekes fokszam korreldcidk, stb. [1, 2, 3, 4, 5].

Ezen tagabb témakoron beliil a palyazathoz kapcsoldédé kutatasok két terii-
letre koncentréaltak. A pélyazat résztvevoinek korabbi eredményei a hélézatok
statisztikus fizikdjahoz kotédnek, igy 2004-ben ezen korabbi kutatasok foly-
tatasaként hélézati Hamilton-fliggvények visszafejtésével foglalkoztunk. 2005-
t0l viszont egy masik nagyon dinamikusan fejlédo részteriilet felé fordultunk,
mely a halézatok moduléris szerkezetét, a hélézatokban talalhaté csoporto-
sulasokat, klasztereket, modulokat vizsgalja.

2. Halézati Hamilton-fuggvények visszafejtése

A komplex héalézatok témakorének egyik fontos kutatasi teriiletét a halézatok
topoldgiai valtozasainak statisztikus fizikai targyalasa teszi ki. Elscként Burda
és munkatarsai irtak fel a statisztikus fizikdban megszokott allapotosszeget egy
hélézat lehetséges dllapotainak segitségével [6, 7], nem sokkal késébb Berg és
Lassig ezen formalizmus segitségével azt vizsgaltdk, hogy kiillonb6z6 Hamilton-
fliggvények milyen korrelaciékra vezetnek a hélézatban [8]. Az emlitett, a
graf szerkezetétol fiiggd Hamilton-fiiggvény megvalasztasara tobb lehetdség
kinalkozik [8, 9], a pélyazat résztvevéinek kordbbi kutatdsai ezen kiilonboz6
Hamilton-fiiggvényeknek a graf struktirdjara gyakorolt hatasait vizsgdltak
[10, 11, 12]. Ebben a megkozelitésben a homérséklet az atrendezédések zaj-
szintjének felel meg, a Hamilton-fliggvény pedig egy (bizonyos szempontbdl)
optimalis konfiguraciét kodol. Az eredmények szerint tobb olyan egyszerii
Hamilton-fiiggvény is adhat6, melynél a hdmérséklet (zajszint) csokkentésével
a halozat olyan strukturalis atrendezodésen megy at, mely analdg a statisztikus
fizikdban megszokott fazisatalakulasokkal.
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A pélyéazathoz kapcsoldédé kutatdsok sordn els6ként (a topologikus fazisata-
lakuldsokkal foglalkozo6 vizsgélatok folytatdsaként) kidolgoztunk egy mdédszert,
mely lehet6vé teszi a valds halézatok atrendezddéseinek elemzésébdl a haldzat
id6fejlédését (dinamikajat) meghatdrozé Hamilton-fliggvény visszakovetkez-
tetését [13]. Eljarasunkkal olyan halézatok vizsgalhatéak, ahol az atrendez6dé-
si folyamatok kielégitik a részletes egyensiily feltételeit, valamint az idéegységre
juté él-atrendezodések szama mellett eltorpiil a megjelend 1j csicsok és élek
szama. Mddszeriink tovabba feltételezi, hogy a visszafejtendo energiafiiggvény
el6allithatd az egyes csicsok fokszamatol fliggd tagok Osszegeként. Megvizs-
galva tobb nagyméreti valés halozatot arra az eredményre jutottunk, hogy
az atrendezodéseket iranyité empirikus Hamilton-fliggvényeket egy olyan uni-
verzalis (az egyes cstcsok fokszamatol fliggd) fliggvénnyel lehet megadni, mely-
nél az egyes csucsok jaruléka a teljes energidhoz a csics fokszaménak és a
fokszam logaritmusdnak szorzataval ardanyos [13]. Megmutattuk, hogy ez az
energia alak konzisztens a természetben talalhatéo novekvo halézatoknal ta-
pasztalt preferencidlis kapcsolddasi szaballyal. (A preferencidlis csatolési sza-
balynak engedelmesked6 haldzatok esetén egy 1j csiics bekotésénél a mar 1étezo
csucsok a fokszamukkal aranyos valdszintiséggel valnak az 1j cstcs szomszéda-
iva, ezéltal nyerve egy 1j élt.)

Osszeségében a hélézatok statisztikus fizikdjaval kapcsolatos eredményeink
egy 1j nézépontot kinalnak a szerkezetileg kiillonboz6é halézatok osszehason-
litasahoz, rendszerezéséhez és tovabb mélyitik a kapcsolatot a hagyomanyos
statisztikus fizika és a komplex halézatokelmélete kozott.

3. Halozatok modularis szerkezete

3.1. Halézati csoportok, modulok, klasztererk

A komplex halézatok témakorének egy masik nagyon fontos 1j teriilete az
un. csoportosuldsokkal (més néven halézati klaszterekkel , modulokkal, vagy
kohéziv csoportokkal) foglalkozik. Ezek a szerkezeti egységek az atlagosnél
stiribben Osszekapcsolt részgrafoknak felelnek meg, és egyelére nincs altalano-
san elfogadott, egységes definiciéjuk [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26]. Az ilyen alapegységek (pl. hasonl6 funkcidju proteinek [27, 28], gaz-
daségi szektorok [29], szocidlis csoportok [22, 30], kooperativ jatékosok [31, 32],
stb.) nagyon fontos szerepet jatszhatnak a hélozat szerkezeti és funkciondlis
felépitésében, miikodésében.

A legtobb hélézati csoportosulas keres6 médszer a halozat egyre kisebb
részekre torténo darabolasan alapszik. Ennek legnagyobb hatranya az, hogy
az igy kapott csoportosulasok nem fedhetnek at egymaéssal. Ezzel ellentétben
szamos komplex rendszer esetén a csoportosuldsok nem izolaltak, egy-egy cstcs



egyszerre akar tobb csoporthoz is tartozhat, pl. egy protein egyszerre tobb
funkcidt is ellathat [33], vagy egyes emberek egyszerre t6bb szocidlis csoportnak
is tagjai lehetnek [34].

3.2. A klikk perkoliciés médszer (CPM)

2005-ben jelentos eredményeket értiink el a halozati csoportosulds keresés fent
emlitett hidnyossdgdnak kikiiszobolésében [35, 36]. Az éltalunk javasolt 1j
csoportosulas keresé modszer a k-klikk perkolécié jelenségén alapszik, és meg-
engedi a csoportok kozti atfedéseket. Maguk a k-klikkek olyan k csticsbol allo
részgrafoknak felelnek meg, melyekben minden cstics minden maésik cstccesal
ossze van kotve. Két k-klikket szomszédosnak mondunk, ha k£ — 1 cstcsuk
kozos, és a k-klikk perkolacios klaszter pedig olyan k-klikkek unidjaként all elo,
melyben barmely két k-klikkbdl eljuthatunk a masikba szomszédos k-klikkek
sorozatan keresztiil. A mi megkozelitésiinkben a csoportosuldsok mind egy-
egy k-klikk perkoldciés klaszternek felelnek meg [35, 36]. Ezek &tfedhetnek
egymassal, hiszen a rendszerben taldlhatunk olyan k-klikk parokat, melyek
ugyan kiilonboz6 k-klikk perkolacios klaszterhez tartoznak, viszont atfednek
egyméssal néhany (k — 1-nél kevesebb) csticsban. Az ilyen atfedésekben ta-
lalhato csuicsok mindkét csoportosulasnak tagjai lesznek. Az atfedések révén
természetes mdédon szarmaztathatjuk a csoportosulasok halézatat is: benne
a csucsok az egyes csoportosulasoknak felelnek meg, és két csiucs akkor van
Osszekotve, ha az adott két csoportosulas kozt van atfedés. Az igy beveze-
tett halozat segitségével a rendszer szervezddését, hierarchidjat egy magasabb
szinten tanulmanyozhatjuk (1.4bra).

A k-klikk perkolacié jelensége az altala kindlt csoportosulds definicié mel-
lett méar pusztdn matematikai szempontbdl is igen érdekes. Régota ismert,
hogy az Erdos-Rényi-féle véletlen grafban a cstcsok kapcsolédési valdszint-
ségének viltoztatdsdval, egy (a perkolaciéval analég) fézisatalakuldst figyel-
hetiink meg [37, 38]. Amennyiben az 6sszekotési valdszintliség olyan kicsi, hogy
a csucsok atlagos fokszama nem éri el az egyet, a halézat sok kisméretii izolalt
komponensre esik szét. Ellenben ha az 0sszekotési valoszintiség novelésével a
csucsok atlagos fokszama meghaladja az egyet, a hélézatban megjelenik egy
érids (Gsszefliggl) komponens, melynek mérete Gsszemérheté a rendszermé-
rettel. A k-klikk perkolacio tekintheto ezen folyamat altalanositdsanak, hi-
szen k = 2 -re visszakapjuk az imént ismertetett él-perkolaciot. Az Erdos-
Rényi-féle véletlen graf esetén sikeriilt altalanosan meghataroztuk a k-klikk
perkoldcié kritikus pontjat egy egyszerti elméleti becsléssel [36], illetve egy
kozelité analitikus médszerrel [39], az eredmény helyességét numerikus szi-
muldciokkal tdmasztottuk ald [36].
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1. abra. Az éleszté baktérium fehérje kolcsonhatasi halozatabdl nyert cso-
portosulashalozat. A cstucsok mérete illetve az élek vastagsaga a csoporto-
sulasok méretével illetve az atfedésekben 1év6 cstcsok szamaval ardnyos. A
kép jobb oldalan néhény csoportosulas belsé szerkezetét mutatjuk kinagyitva,
itt a csoportosuldsokat a szinek kiilonboztetik meg egymastél, az atfedéseket
pirossal jeloltiik. Az egyes csoportosuldsok jol megfeletetheték egy-egy fehérje
funkcionak.

3.3. Optimalis csoportfelosztas

Az imént emlitett kritikus pont, (ahol el6szor megjelenik az 6rids kompo-
nens), fontos szerepet jatszik a val6s halézatok csoportanalizise soran is. Az
ilyen vizsgalatok soran altalanos esetben Osszesen egy szabad paramétertink
van, a k-klikk méret. Ezen feliil sulyozott halézatok esetén az él-sulyokat
oly moédon vehetjiik figyelembe, hogy bevezetvén egy w silykiiszobot a w-nél
gyengébb éleket elhanyagoljuk. A sulykiiszob novelésével a csoportosulasok
mérete csokken és csak a legerdsebben Osszekapcsolt részek maradnak meg.
Hasonlé effektust okoz k& novelése is, a nagyobb k-hoz tartozé csoportosuldsok
kisebbek, de ugyanakkor kohézivebbek is. A w és k paraméterek valtoztatasa
hasonlit egy mikroszkép felbontasanak beéllitasahoz. Ha egy konkrét csicshoz
tartozo csoportosulasok érdekelnek minket, akkor azokat érdemes egy szélesebb
w és k tartomanyban megvizsgalni. Ilyenkor csticsrol csiicsra més és mas pa-
raméter értékeknél fogjuk a legérdekesebb képet latni. Ugyanakkor a globalis
csoportosulés szerkezet vizsgalatahoz valamilyen kritérium szerint fixalni kell
a stlykiiszobot és k-t. Az altalunk hasznalt kritériumot az imént targyalt per-
kolacié ihlette és azon alapszik, hogy lehetdleg a legtobb informaciét hordozo



csoportosulds szerkezetet nyerjik ki [35]. Amennyiben tul alacsony w és k
paramétereket valasztunk, a rendszer "perkolal”, azaz megjelenik egy orias-
csoportosulds, mely magaba foglalja a halézat tilnyomo részét, elfedvén a cso-
portosulas szerkezet lokalis részleteit. Ezzel szemben tul magas paraméter
értékeknél csak elszortan taldlunk néhany kisméreti csoportosulast, hiszen
csak a legerdsebben Osszekapcsolt, legkohézivebb részek maradnak meg. Az
idealis paramétervélasztas a két véglet kozott talalhaté: adott k értékhez w-t
ugy kell beallitani, hogy még éppen ne jelenjen meg egy orids-csoportosulas.

Az optimalis csoportfelosztas probléméjahoz kapcsolodik a halézatok spek-
tralis tulajdonsigait vizsgalé munkank is [40]. A jelenleg igen népszerti, az
élek rekurziv kivagdsan alapulé (a halézatot diszjunkt részekre oszté) Girvan-
Newman-féle klaszterez6 modszert vizsgalva egy téliink fiiggetlen kutatocso-
port arra kovetkeztetésre jutott, hogy az optimaélis csoportfelbontas elérésekor
a graf spektrumdanak statisztikai jellemzdi egy érdekes atalakuldson mennek
keresztiil [41]. Az Erdés-Rényi-féle véletlen grafon és tobb valds halézaton
végzett vizsgalataink ezzel szemben azt mutattak ki, hogy az emlitett atala-
kulds nem az optimalis csoportfelosztas elérését jelzi, hanem altalanosan egy
Osszefiiggd orids komponens megjelenésével /elttinésével van szoros kapcsolat-
ban [40].

3.4. Valés halézatok vizsgalata a CPM segitségével

A bevezetett 1j csoportosulds keresé modszeriinkkel nagyméretii (egy esetben
tobb mint szdzezer élt tartalmazd) fehérje-fehérje kolesonhatési, szdasszocia-
ciés és tudomanyos tarsszerzoségi halozatok csoportosuldsait tanulmanyoztuk
(35, 42, 43]. Eredményeink szerint a talélt csoportosuldsok jelentés mértékben
atfedtek egymassal. Modszeriink jol adta vissza, hogy pl. azonos alaku sza-
vak esetén az adott szd tobb, a kiillonbozo jelentéseknek megfelelé csoporto-
sulasoknak mind tagja kell legyen, hasonléan ahhoz, hogy egy egyszerre tobb
téman is aktivan dolgozé kutatonak, vagy egy tobb funkciéval biré fehérjének
is tobb csoportosuldsa kell legyen (2.4bra). A fehérje-fehérje kolcsonhatasi
hélézatat esetén a feltart csoportosulasok osszetételét fehérje annotacios adat-
béazisok segitségével vizsgalva azt az eredményt kaptuk, hogy a csoportok je-
lent6s része egy-egy jol beazonosithaté fehérje funkciénak feleltetheté meg [42,
43]. Ezen tulajdonsig alapjan mdédszeriink lehetévé teszi a sejtmiikodésben
eddig ismeretlen szerepii fehérjék funkciéjanak joslasat a feltart csoportokhoz
val6 tartozas alapjan.

A csoportosulasok lokalis vizsgédlata mellett a tanulmanyozott rendszerek
globalis statisztikai jellemzoit is vizsgaltuk. Eredményeink szerint a csopor-
tosulasok meéreteloszlasa valamint a csoport-halézat fokszameloszlasa is hat-
vanyszerlien cseng le, a csoportokat alkoté csicsok hélézatahoz hasonléan.



Scientist Science Earth
.
—— ______Aiyonomy 0 -

Space

Q \
As\ s

i

) Protein Phosphatase
\Rts3Type 2A Complex

2. abra. Példak lokdlis csoportosulds szerkezetre. A csoportosulasokat a
szinek kiillonboztetik meg, az dtfedések szine piros, a csticsok mérete (az
élek vastagsdga) a csics (él) csoportjainak szamdval aranyos. a) G. Pa-
risi csoportosulasai egy tarsszerzoségi halézatban, a csoportosulasok a szerzo
kiilonféle érdeklodési teriileteinek felelnek meg. b) a ”bright” szé csoporto-
suldsai egy szoasszociacios halézatban, a csoportosuldsok a ”bright” kiillonb6zé
jelentéseivel kapcsolatosak c¢) a ZDS1 fehérje csoportosuldsai egy fehérje
kolesonhatasi halézatban, a csoportosulasok a ZDS1 kiilonbozé funkcidinak
felelnek meg.

Egy érdekes eltérés viszont a csucsok halézata és a csoportok halozata kozt
az, hogy utobbiban a fokszameloszlas exponencidlisan indul alacsony fokszam
értékekre [35].

3.5. Csoportosulasok halézata

A csoportosulashalézat fokszameloszlasanak imént ismertetett hatvanyszert
lecsengése egy igen érdekes kérdést vet fel. Ismert, hogy a természetben



talalhatd halézatok donto tobbségénél szintén ilyen a fokszameloszlas lecsengé-
se, és szamos esetben ez az effektus a hélézat novekedését vezérlo preferencialis
csatolasi szabély miatt 1ép fel. Ezek alapjan joggal kérdezhetjiik, hogy vajon a
csoportosuldashalozat fejlodésénél is fellép-e a preferencidlis csatolasi szabaly?

A csoportosulashalézat altalaban sokkal kevesebb szamu csucsot tartalmaz
mint az eredeti hél6zat (hiszen benne egy csics az eredeti halézatban csicsok
csoportjanak felel meg). Ennélfogva egy csoportosulashalézat esetén kevesebb
szadmu esemény (él bekotés) alapjan kell eldonteni, hogy az 1j csticsok pre-
ferncidlisan csatolodnak-e vagy sem, mint pl. a neki megfelel6 eredeti hélézat
esetén. Ezért el6szor egy olyan modszert dolgoztunk ki, mellyel megbizhatoan
lehet kimutatni a preferencialis csatolas jelenlétét vagy hianyat a csoportosulas
hél6zatok mérettartomanyéba es6 rendszerek esetén is [44]. Ezzel a médszerrel
egy tarsszerzoségi halozat csoportosulasainak idofejlodését vizsgaltuk, és ered-
ményeink igazoltak azt a sejtést, hogy preferencialis csatolasi mechanizmu-
sok forméljak a rendszert a csoportosulasok szintjén is. Egyrészt a csopor-
tosuldshalézat novekedése sordn egy, még kapcsolatok nélkiili cstics (csopor-
tosulds) a csoportosuldsmérettel és csoportosulds fokszammal preferencidlisan
kapcsolodik be a csoportosulashalézatba. FEzen feliil az eredeti halézatban
egy csucs, mely még egyetlen egy csoportosuldsnak sem tagja, a csoporto-
sulasmérettel és csoportosulas fokszammal preferencidlisan fog egy csoporto-
suldshoz csatlakozni [44].

Eredményeink szerint tehat a tarszerzoségi halézat idofejlodését hasonld
mechanizmusok vezérlik mind a csticsok, mind a csoportosuldsok szintjén. A
csoportosuldsok halézatanak novekedése a preferencidlis csatolodasi szabdly
szerint torténik, teljesen analég modon az alapul szolgalé halézat novekedésé-
vel. Ez a jelenség egy tovabbi megerdsitése a rendszer kiillonboz6 szervezodési
szintjei kozt tapasztalhaté hasonlésagnak.

3.6. Kapcsolédo programcsomag

A fenti eredmények mellett kifejlesztettiink egy programcsomagot is, mely a
CPM hasznalataval csoportosuldsokat keres és - tobb mas elemzéssel egyiitt -
a taldlt csoportosuldsok hélézatat bemutatja [43, 45]. Ez a szoftver CFin-
der (Clique and Community Finder) néven a ingyenesen letolthetd, és tu-
domanyteriilettdl fiiggetleniil alkalmazhaté minden olyan adatrendszer elemzé-
sére, amely halozatként abrazolhat6. A program Windows, Linux és Macintosh
szamitogépeken egyarant hasznéalhaté.
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