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Abstract. We prove isometric rigidity for p-Wasserstein spaces over finite-dimensional
tori and spheres for all p. We present a unified approach to proving rigidity that relies
on the robust method of recovering measures from their Wasserstein potentials.

1. Introduction

Given a metric space (X, r) and a subset S ⊆ P(X) of all probability measures, one
can endow S with various metrics, depending on what kind of measurement is suitable
for the problem under consideration. Here we mention three examples.

- The Kolmogorov-Smirnov metric dKS on S = P(R) is frequently used in statis-
tics to compare a sample with a reference probability distribution.

- The Lévy-Prokhorov metric dLP plays an important theoretical role in several
limit theorems in probability theory. In this case (X, %) is a complete separable
metric space and S = P(X).

- The quadratic Wasserstein metric dW2 turned out to be very effective in a wide
range of AI applications including pattern recognition and image processing
problems. In these applications (X, r) is typically the n-dimensional Euclidean
space and S is the collection of all Borel probability measures with finite second
moment.

In recent years, there has been a considerable interest in the characterization of the above
mentioned (and many other) metric spaces of measures, see e.g. [1,3,4,6–12,15,17,19].
In most cases, it turned out that isometries of S are strongly related to self-maps of
the underlying space X. Concerning the Kolmogorov-Smirnov distance, Dolinar and
Molnár showed in [4] that there is a one-to-one correspondence between all isometries of
(P(X), dKS) and all homeomorphisms of the real line. Concerning the Lévy-Prokhorov
metric, the first and the second author showed in [7] that P(X) endowed with dLP is
more rigid, assuming that X is real separable Banach space: a self-map of X induces an
isometry on (P(X), dLP ) if and only if it is itself an isometry. In fact, the isometry group
of (X, ‖ · ‖) and the isometry group of (P(X), dLP ) are isomorphic. This phenomenon
is called isometric rigidity. The third example above is even more peculiar. Kloeckner
showed in [12] that the isometry group of the quadratic Wasserstein space over Rn
is much larger than the isometry group of Rn. For further results of Bertrand and
Kloeckner concerning geometry of Wasserstein spaces we refer the reader to [1,2,13,14].
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The most recent results which are related to our studies have been presented in [17]:
Santos-Rodŕıguez proved isometric rigidity for a very broad class of manifolds. More
precisely, he showed that the isometry group of a quadratic Wasserstein space over a
closed Riemannian manifold with strictly positive sectional curvature is isomorphic to
the isometry group of the underlying manifold. Furthermore, for compact rank one
symmetric spaces (CROSSes), Santos-Rodŕıguez was able to prove isometric rigidity
not only for the quadratic case, but for general p-Wasserstein spaces with 1 < p <∞.

As the results of [12] and [17] already indicate, isometric rigidity of p-Wasserstein
spaces depends in an interesting way both on some characteristics of the underlying
space X and on the value of p. To stress this phenomenon, we briefly mention one more
special case, for more details see [9]: the p-Wasserstein space over R is isometrically
rigid if and only if p 6= 2, while the p-Wasserstein space over [0, 1] is isometrically rigid
if and only if p 6= 1.

This paper aims to offer a unified approach for two compact manifolds as underlying
space: the n-dimensional torus and the n-dimensional sphere, regardless of what the
value of p is. The key idea – which could be applicable in other settings as well – is
that all measures can be fully recovered from a function, which we call Wasserstein
potential. The main results are Theorem 3.2 and Theorem 4.2, where we prove for
all p ≥ 1 that the isometry group of the p-Wasserstein space on the n-dimensional torus
is isomorphic to the isometry group of the torus, and similarly, the isometry group of
the p-Wasserstein space over the n-dimensional sphere is isomorphic to the isometry
group of the sphere. The latter result has been partially covered by Santos-Rodŕıguez
in [17], as the sphere is a compact rank one symmetric space. However, the method
presented in [17] cannot be extended to the case p = 1, as 1-Wasserstein spaces have a
more flexible structure: the optimal transport plan between measures is not unique, let
alone the geodesic curve.

2. The Wasserstein potential of measures

In this section, we collect all notions which are necessary to our investigations. We
also demonstrate via a simple example how useful the Wasserstein potential can be to
identify measures and to prove isometric rigidity.

Let (X, r) be a complete and separable metric space. We denote by P(X) the collec-
tion of all Borel probability measures on X, and by F(X) the set of all finitely supported
measures. Given a measure µ ∈ P(X), the support S(µ) is the set of all points x ∈ X
for which every open neighbourhood of x has positive measure with respect to µ. A
Borel probability measure π on X ×X is said to be a coupling for µ, ν ∈ P(X) if

π (A×X) = µ(A) and π (X ×B) = ν(B) (2.1)

for all Borel sets A,B ⊆ X. We denote set of all couplings by Π(µ, ν). For any
1 ≤ p < ∞ one can define the p-Wasserstein space Wp(X) as the set of all µ ∈ P(X)
that satisfy ∫

X
r(x, x̂)p dµ(x) <∞ (2.2)

for all x̂ ∈ X, endowed with the p-Wasserstein distance

dWp (µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
X×X

r(x, y)p dπ(x, y)

)1/p

. (2.3)
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This distance measures the minimal effort required to transport one probability measure
into another, when the cost of moving mass is the p-th power of the distance. For
more details on optimal transport and Wasserstein spaces we refer the reader to the
comprehensive textbooks of Santambrogio and Villani [16,18].

It is one of the important features of p-Wasserstein spaces that Wp(X) contains
an isometric copy of X, as the distance between any two Dirac measures equals to
the distance of their supporting points, i.e. Wp(δx, δy) = r(x, y). Furthermore, every
measure belonging to Wp(X) can be approximated by convex combinations of Dirac
measures, that is, F(X) is dense in Wp(X). (For more details see e.g. Example 6.3 and
Theorem 6.16 in [18].)

In this paper we are interested in the structure of isometries, that is, distance pre-
serving bijections. The symbol Isom(·) will always refer to the isometry group of the
metric space in question. We denote the push-forward map of an isometry ψ : X → X
by ψ# : Wp(X)→Wp(X): (

ψ#(µ)
)
(A) = µ(ψ−1[A]) (2.4)

for all A ⊆ X and µ ∈ Wp(X), where ψ−1[A] = {x ∈ X | g(x) ∈ A}. If p ≥ 1, the
push-forward operation

# : Isom(X)→ Isom(Wp(X)); ψ 7→ ψ# (2.5)

is an embedding (in fact, a group homomorphism). Those isometries which belong to
the image of # are called trivial isometries. We say thatWp(X) is isometrically rigid if
# is surjective. Now we introduce our key tool: for a given µ ∈ Wp(X) the one variable
function T pµ : X → R defined by

T pµ (x) := dpWp
(µ, δx) =

∫
Tn

r(x, y)p dµ(y). (2.6)

is called the Wasserstein potential of µ. We expect that µ can be fully recovered from
this function, and in particular that T pµ = T pν implies µ = ν.

In this paper we are going to consider the torus and the sphere as underlying spaces.
The symbol Tn stands for the n-dimensional torus, that is, the set Rn/Zn ' [−1/2, 1/2)n

equipped with the usual metric

% (x, y) =

(
n∑
k=1

|(xk − yk)mod 1|
2

) 1
2

, (2.7)

where x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn. The antipodal of a point
(x1, . . . , xn) in the torus is (x1 + 1/2, . . . , xn + 1/2). We denote the unit sphere of Rn+1

by the symbol Sn, that is, Sn := {x ∈ Rn+1 : ||x|| = 1}. We equip the unit sphere with
the angular (or geodesic) distance: for x, y ∈ Sn the distance of x and y is

^(x, y) := arccos 〈x, y〉 . (2.8)

We say that two points x and y are antipodal in the sphere if y = −x. Adapting
Gangbo’s and Tudorascu’s terminology in [5], we will shortly refer to the p-Wasserstein
spaces over (Tn, %) and (Sn,^) as the p-Wasserstein torus and the p-Wasserstein sphere,
respectively.

To conclude this chapter, we present one possible way of using Wasserstein potentials.
This example will shed some light also on the difficulties that need to be overcome to
obtain the desired result for all possible values of p. First of all, when working with the
torus, it is a natural idea to borrow techniques from the theory of Fourier analysis.
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Given a measure µ ∈ Wp(Tn), the potential function T pµ can be written for all x ∈ Tn
as

T pµ (x) =

∫
Tn

%p(x, y) dµ(y) =

∫
Tn

cp(x− y) dµ(y) = (cp ∗ µ) (x), (2.9)

where cp(x) =
(∑n

k=1 x
2
k

) p
2 . Since the characters of Tn

ϕj(x) = e2πij·x (j = (j1, j2, . . . , jn) ∈ Zn)

form an orthonormal basis of L2 (Tn), we have

T̂ pµ (j) =
〈
T pµ , ϕj

〉
=

∫
Tn

T pµ (x)e−2πij·xdx

=

∫
Tn

(∫
Tn

cp(x− y) dµ(y)
)
e−2πij·x dx

=

∫
Tn

(∫
Tn

cp(x− y)e−2πij·(x−y)dx
)
e−2πij·y dµ(y)

= 〈cp, ϕj〉 〈µ, ϕj〉 = ĉp(j)µ̂(j).

In particular, if ĉp(j) 6= 0 for every j ∈ Zn, then the measure can be recovered from
the potential function. If n = 1 and p = 2 then the Fourier series of c2(x) = x2 does

not vanish anywhere. More precisely, ĉ2(j) = (−1)j

2j2π2 for j 6= 0 and ĉ2(0) = 1
12 . This

means that T pµ ≡ T pν implies µ = ν in this case. As we will see later, this implication
automatically ensures that the Wasserstein space in question is isometrically rigid.

Based on numerical computations, it seems that the Fourier transform ĉp does not
vanish anywhere if n = 1 and p > 1. However, this is not the case for n = 1 and p = 1.
Indeed, ĉ1(j) = 0 for non-zero even j’s, ĉ1(0) = 1

4 , and ĉ1(j) = − 1
j2π2 for odd j’s. This

does not mean that W1 (T) is not isometrically rigid, but we cannot prove it in such
a simple way. For n > 1, the same holds true for W2 (Tn). The reason is that the
summands of the quadratic cost function c2(x) =

∑n
k=1 x

2
k depend on only one variable,

and hence ĉ2(j) = 0 whenever jk 6= 0 for at least two indices. For example, for n = 2,

we have ĉ2(0, 0) = 1
6 , ĉ2(0, j) = ĉ2(j, 0) = (−1)j

2j2π2 for j 6= 0, and ĉ2(j1, j2) = 0 for j1, j2 6= 0.

In what follows we develop a method that works for all p ≥ 1 and is suitable to
prove that Wp(Tn) and Wp(Sn) are isometrically rigid. In fact, this method works in
the 0 < p < 1 case as well, but we decided to not include it in the main body. On the
one hand, we have already proved in [10] that p-Wasserstein spaces are all isometrically
rigid if 0 < p < 1, regardless of what the underlying space is. On the other hand, as
the definition of the p-Wasserstein distance is slightly different in the 0 < p < 1 case,
we should add one more branch to all proofs, without any serious novelty.

3. Isometric rigidity of the Wasserstein torus

We start with a simple observation: the diameter of Wp(Tn) is
√
n/2 if p ≥ 1, and

this maximal distance is achieved if and only if the two measures are Dirac masses
concentrated on antipodal points. This automatically implies that if Φ ∈ Isom(Wp(Tn)
then the Φ-image of a Dirac measure is again a Dirac measure, in fact, Dirac measures
concentrated on antipodal points are mapped to Dirac measures which are concentrated
on antipodal points. Since dWp(δx, δy) = %(x, y), this implies that the map ψ : Tn → Tn
defined by Φ(δx) = δψ(x) is an isometry of Tn. It is a known that any isometry ψ of Tn
can be written in the following form:

ψ((x1, x2, . . . , xn)) = (ε1xσ(1), ε2xσ(2), . . . , εnxσ(n)) + (u1, u2, . . . , un) (3.1)

with a permutation σ, numbers ε1, . . . , εn ∈ {−1, 1} and point (u1, u2, . . . , un) ∈ Tn.
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By the above observation, we have T pΦ(µ)(ψ(x)) = T pµ (x) for all x ∈ Sn which suggests

that those properties of µ which are encoded in its potential function, will be carried
over to Φ(µ).

Before continuing, we need some new notations. Let x ∈ Tn, n ≥ 2, j ∈ {1, . . . , n}.
We introduce the set H(x, j) := {(y1, . . . , yn) ∈ Tn : yj = xj}, and we denote by ej the
vector (δj,1, . . . , δj,n), where δj,j = 1 and δi,j = 0 if i 6= j. The symbol x̌j ∈ Tn−1 stands
for the point obtained by dropping the jth coordinate of x ∈ Tn, and λn−1 denotes the
normalised Haar measure of Tn−1. We remark that Tn−1 can be identified with H(x, j)
for any point x ∈ Tn and j ∈ {1, . . . , n}. For two points x, y ∈ Tn we denote by B(x, y)
the bisector of x and y, i.e., B(x, y) = {z ∈ Tn | %(x, z) = %(z, y)}. The following lemma
is of key importance. We will use it later to estimate the measure of certain (carefully
chosen) sets and points by means of the Wasserstein potential.

Lemma 3.1. Let n ∈ N, n ≥ 2, p ≥ 1, x ∈ Tn, j ∈ {1, . . . , n}, and µ ∈ Wp(Tn). Then
the following assertions hold:

(a) If p = 1, and %n−1 denotes the distance of Tn−1 then

lim
s→0+

T 1
µ (x+ s · ej)− 2T 1

µ (x) + T 1
µ (x− s · ej)

s

= 2µ({x})−
∫
H(x+ 1

2
ej ,j)

(
1

4
+ %n−1 (x̌j , y̌j)

2

)− 1
2

dµ(y). (3.2)

(b) If either 1 < p < 2 or p > 2, then

lim
s→0+

T pµ (x+ s · ej)− 2T pµ (x) + T pµ (x− s · ej)
s

= −p
∫
H(x+ 1

2
ej ,j)

(
1

4
+ %n−1 (x̌j , y̌j)

2

) p−2
2

dµ(y). (3.3)

(c) If p = 2, then

lim
s→0+

T 2
µ (x+ s · ej)− 2T 2

µ (x) + T 2
µ (x− s · ej)

s
= −2 · µ

(
H

(
x+

1

2
ej , j

))
. (3.4)

Proof. Since p ≥ 1, we have the following:

lim
s→0+

T pµ (x+ s · ej)− 2T pµ (x) + T pµ (x− s · ej)
s

= lim
s→0+

(∫
Tn\{x}\H(x+ 1

2
ej ,j)

%(x+ s · ej , y)p − 2%(x, y)p + %(x− s · ej , y)p

s
dµ(y)

+ 2µ({x})s
p

s
+ 2

∫
H(x+ 1

2
ej ,j)

%(x+ s · ej , y)p − %(x, y)p

s
dµ(y)

)
.

First we obtain that the above two integrands are bounded. On the one hand, since
s 7→ %(x + s · ej , y)p is differentiable at s = 0 if y ∈ Tn \ {x} \H(x + 1

2e
j , j), the first

integral converges to 0 by Lebesgue’s dominant convergence theorem. On the other
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hand, if y ∈ H(x+ 1
2e
j , j), then by elementary calculus we obtain

lim
s→0+

%(x+ s · ej , y)p − %(x, y)p

s
=

d

ds


(1

2
− s
)2

+
n∑
k=1
k 6=j

(xk − yk)2


p/2

∣∣∣∣∣∣∣∣∣
s=0

= −p
2

(1

2

)2

+

n∑
k=1
k 6=j

(xk − yk)2


p−2
2

= −p
2

(
1

4
+ %n−1 (x̌j , y̌j)

2

) p−2
2

.

An application of Lebesgue’s dominant convergence theorem completes the proof. �

Now we are ready to state and prove the main theorem of this section. We assume
that n ≥ 2, the n = 1 case will be proved in Theorem 4.2.

Theorem 3.2. Let n ≥ 2 and p ≥ 1. Then the p-Wasserstein torus Wp(Tn) is iso-
metrically rigid, that is, the push-forward operation # : Isom(Tn) → Isom(Wp(Tn)) is
surjective.

Proof. Assume that Φ: Wp(Tn)→Wp(Tn) is an isometry. We have to show that there
exists an isometry ψ : Tn → Tn such that

Φ(µ) = ψ#µ (µ ∈ Wp(Sn)). (3.5)

We already know that (3.5) holds for Dirac masses with some ψ ∈ Isom(Tn), which
implies that

(
ψ−1

)
#
◦Φ fixes all Dirac measures. Since Φ = ψ# if and only if

(
ψ−1

)
#
◦Φ

is the identity ofWp(Tn), we can assume without loss of generality that Φ itself fixes all
Dirac measures, and our task now is to prove that Φ(µ) = µ for all µ ∈ Wp(Tn). In fact,
since Φ is continuous, it is enough to show that Φ fixes a dense subset of probability
measures. We consider three different cases, corresponding to Lemma 3.1.

Case (a) – When p = 1 holds. According to the density argument above, it suffices

to prove that measures of the following form are fixed by Φ: µ =
∑N

k=1wkδxk ∈ W1(Tn)

where N ∈ N,
∑N

k=1wk = 1, wk ≥ 0 for all k, and x1, x2, . . . , xN are pair-wise different
points such that for all k ∈ {1, 2, . . . , N} we have

{x1, x2, . . . , xN} ∩

 n⋃
j=1

H

(
xk +

1

2
ej , j

) = ∅.

For such a measure we have the following for every k:

wk = µ({xk}) = lim
s→0+

T pµ (xk + s · ej)− 2T pµ (xk) + T pµ (xk − s · ej)
2s

= lim
s→0+

T pΦ(µ)(x
k + s · ej)− 2T pΦ(µ)(x

k) + T pΦ(µ)(x
k − s · ej)

2s
≤ Φ(µ)({xk}),

where we used (3.2) in the last step. Since 1 =
∑N

k=1 µ({xk}) ≤
∑N

k=1 Φ(µ)({xk}) ≤ 1,
we obtain that Φ(µ) = µ, which completes the proof of the present case.

Case (b) – When either 1 < p < 2 or p > 2 holds. Assume first that 1 < p < 2. By
a density argument we see that it suffices to show that Φ fixes every finitely supported
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measure µ =
∑N

k=1wkδxk ∈ W1(Tn) where x1, x2, . . . , xN ∈ Tn are points whose first
coordinates are pairwise different. By Lemma 3.1 we have for all k that

wk = µ({xk}) = 4
p−2
2

∫
H(xk,1)

(
1

4
+ %n−1 (x̌1, y̌1)2

) p−2
2

dµ(y)

= lim
s→0+

T pµ (xk + 1
2e

1 + s · e1)− 2T pµ (xk + 1
2e

1) + T pµ (xk + 1
2e

1 − s · e1)

−p · 4
2−p
2 · s

= lim
s→0+

T pΦ(µ)(x
k + 1

2e
1 + s · e1)− 2T pΦ(µ)(x

k + 1
2e

1) + T pΦ(µ)(x
k + 1

2e
1 − s · e1)

−p · 4
2−p
2 · s

= 4
p−2
2

∫
H(xk,1)

(
1

4
+ %n−1 (x̌1, y̌1)2

) p−2
2

dΦ(µ)(y) ≤ Φ(µ)(H(xk, 1))

where we have equation if and only if Φ(µ)(H(xk, 1)) = Φ(µ)({xk}). As

1 =
N∑
k=1

wk ≤
N∑
k=1

Φ(µ)(H(xk, 1)) ≤ 1,

we must have Φ(µ)(H(xk, 1)) = Φ(µ)({xk}), and hence Φ(µ) = µ. The very same argu-
ment works if p > 2.

Case (c) – When p = 2 holds. First notice that by Lemma 3.1 we have

Φ(µ) (H(z, j)) = µ (H(z, j)) (z ∈ Tn, j = 1, . . . , n), (3.6)

which implies that Φ preserves the one-dimensional marginals. That is,

(pj)# Φ(µ) = (pj)# µ (j ∈ {1, . . . , n}, µ ∈ W2(Tn)), (3.7)

where pj : Tn → T, pj(x) = xj is the projection map. Indeed, (3.6) implies this if
µ is supported on a finite set, and we obtain (3.7) for general measures by a simple
continuity argument.

We claim that measures supported on two points are left invariant by Φ. Let us
consider a measure µ = αδx + (1 − α)δy where x 6= y and 0 < α < 1. Without
loss of generality we can assume that the representing vectors’ coordinates satisfy the
inequalities −1/2 ≤ yj − xj < 1/2 for all j. Consider the following subset of Tn:

C :=
{
u ∈ Tn | ∀j ∈ {1, . . . , n} : 0 ≤ εj · (uj − xj) ≤ 1/2

}
,

where for each j we choose εj = 1 if xj ≤ yj , and εj = −1 if xj > yj . By definition,
x, y ∈ C. Note that by (3.7), we have

S(Φ(µ)) ⊂
{
z ∈ Tn | ∀ j ∈ {1, . . . , n} : zj ∈ {xj , yj}

}
⊂ C. (3.8)

Furthermore, the subset C as a metric space is isometrically isomorphic to the cube
[0, 1/2]n equipped with the usual Euclidean distance. Therefore the set of all probability
measures supported on C, which we denote by W2(C), can be considered as a subset of
W2(Rn).

Note that (3.7) implies that Φ maps W2(C) onto itself. Denote by ΦC the restricted
isometry Φ|W2(C) : W2(C) → W2(C). Define the centre of mass of any µ ∈ W2(C) as

the unique point m(µ) ∈ C such that dW2

(
δm(µ), µ

)
= dW2 ({δz : z ∈ C}, µ), and the

standard deviation of µ as the distance σ(µ) := dW2

(
δm(µ), µ

)
∈ [0,∞). Since ΦC leaves

every Dirac mass invariant, we obtain that ΦC preserves the centre of mass an standard
deviation of measures, that is,

m(ΦC(µ)) = m(µ), σ(ΦC(µ)) = σ(µ) (µ ∈ W2(C)).
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Therefore, according to [12, Lemma 6.2], for all µ, ν ∈ W2(C) the following equivalence
holds: 〈v1− v2, w1−w2〉 = 0 for all v1, v2 ∈ S(µ), w1, w2 ∈ S(µ) if and only if the same
holds for all v1, v2 ∈ S(ΦC(µ)), w1, w2 ∈ S(ΦC(µ)).

On the one hand, if n ≥ 3 and xj 6= yj for all j ∈ {1, . . . , n}, then there exists a
ν := αδz + (1 − α)δu ∈ W2(C) (z 6= u), such that the points x, y, z, u ∈ C satisfy the
following conditions: 〈x− y, z − u〉 = 0, but 〈ξ1 − ξ2, ζ1 − ζ2〉 6= 0 holds for all other

ξ1, ξ2 ∈
{
ξ ∈ [0, 1/2]n | ∀ j ∈ {1, . . . , n} : ξj ∈ {xj , yj}

}
, ξ1 6= ξ2

and
ζ1, ζ2 ∈

{
ζ ∈ [0, 1/2]n | ∀ j ∈ {1, . . . , n} : ζj ∈ {zj , uj}

}
, ζ1 6= ζ2.

Note that then

S(Φ(ν)) ⊆
{
v ∈ Tn | ∀ j ∈ {1 . . . , n} : vj ∈ {zj , uj}

}
⊂ C. (3.9)

Since the supports of µ and ν are perpendicular to each other, so must be the supports of
their images. However, by our assumptions and (3.8)–(3.9) imply Φ(µ) = µ, Φ(ν) = ν.
This, together with a simple continuity argument proves that indeed Φ leaves every
measure fixed that are supported on at most two points, provided that n ≥ 3.

On the other hand, if n = 2, then consider a ν := αδz + (1−α)δu ∈ W2(C) such that
〈x− y, z − u〉 = 0. Elementary geometric observation then gives that either S(Φ(µ)) =
{(x1, x2), (y1, y2)} and S(Φ(ν)) = {(z1, z2), (u1, u2)}, or S(Φ(µ)) = {(x1, y2), (y1, x2)}
and S(Φ(ν)) = {(z1, u2), (u1, z2)}. By (3.7), the latter cannot happen unless α = 1/2.
Therefore, by continuity, Φ leaves every measure fixed that are supported on at most
two points, also in this case.

From here it suffices to show that any finitely supported measure is left fixed by Φ.
Consider a µ =

∑N
k=1wkδxk ∈ W1(Tn) where N ∈ N and x1, x2, . . . , xN are pair-wise

different points. Define the finite set

F :=
{
ξ ∈ Tn | ∀ j ∈ {1, . . . , n} : ξj ∈ {x1

j , x
2
j , . . . , x

N
j }
}
.

By (3.7), we have S(Φ(µ)) ⊆ F . Consider an arbitrary element u ∈ F and observe
that there exists two points x, y ∈ Tn such that B(x, y) ∩ F = {u}. Note that since
µ(B(x, y)) = µ({u}), it is enough to show that Φ(µ)(B(x, y)) = µ(B(x, y)). The latter
is a consequence of the following equivalence which holds for all η ∈ Wp(Tn), α ∈ [0, 1]:

dW2 (η, {aδx + (1− a)δy : 0 ≤ a ≤ 1}) = dW2 (η, αδx + (1− α)δy)

⇐⇒ µ ({z : %(x, z) < %(y, z)}) ≤ α ≤ µ ({z : %(x, z) ≥ %(y, z)}) .
This concludes the proof. �

4. Isometric rigidity of the Wasserstein sphere

Similarly to the case of the torus, we prove first that if Φ is an isometry of Wp(Sn)
then there exists an isometry ψ : Sn → Sn such that

Φ(δx) = ψ#δx = δψ(x) (x ∈ Sn).

The diameter ofWp(Sn) is π and this maximal distance is achieved if and only if the two
measures in question are Dirac masses concentrated on antipodal points. This property
must be preserved by isometries, and therefore the image of every Dirac measure is
a Dirac measure again. Furthermore, since ^(x, y) = dWp(δx, δy), the map ψ defined
via Φ(δx) := δψ(x) is an isometry. Note that every ψ ∈ Isom(Sn) is the restriction of
an orthogonal transformation of the underlying space. Again, we are going to use the
Wasserstein potential of the measure µ ∈ Wp(Sn)

T pµ : Sn → R, x 7→ dpWp
(µ, δx) =

∫
Sn
^(x, y)p dµ(y). (4.1)
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Since Φ(δx) = δψ(x) for all x ∈ Sn, we have T pΦ(µ) ◦ ψ = T pµ . Indeed,

T pΦ(µ)(ψ(x)) = dpWp
(Φ(µ), δψ(x)) = dpWp

(Φ(µ),Φ(δx) = dpWp
(µ, δx) = T pµ (x) (4.2)

for all x ∈ Sn. The following is an analogue of Lemma 3.1.

Lemma 4.1. Let n ∈ N, p ≥ 1, x, z ∈ Sn, ^(x, z) = π/2, and µ ∈ Wp(Sn). We have

lim
s→0+

T pµ (cos s · x+ sin s · z)− 2T pµ (x) + T pµ (cos s · x− sin s · z)
s

=

{
−2 · µ({−x}) + 2 · µ({x}), if p = 1
−2pπp−1 · µ({−x}), if p > 1

. (4.3)

Proof. Since the left hand-side of (4.3) is

lim
s→0+

(
µ({x})2 · sp

s
+ µ({−x})2 · (π − s)p − 2 · πp

s

+

∫
Sn\{−x,x}

^(cos s · x+ sin s · z, y)p − 2^(x, y)p + ^(cos s · x− sin s · z, y)p

s
dµ(y)

)
,

it suffices to show that the limit of the above integral is zero. Note that the function
t 7→ tp is Lipschitz on the interval [0, π] with a constant, say, K > 0. Hence the integrand
is bounded, as can be seen by the following estimation (we use the triangle inequality
in the last step)∣∣∣∣^(cos s · x± sin s · z, y)p − ^(x, y)p

s

∣∣∣∣ ≤ K · ∣∣∣∣^(cos s · x± sin s · z, y)− ^(x, y)

s

∣∣∣∣
= K ·

∣∣∣∣^(cos s · x± sin s · z, y)− ^(x, y)

^(cos s · x± sin s · z, x)

∣∣∣∣ ≤ K.
Observe that for all y ∈ Sn \ {−x, x} the function

s 7→ ^(cos s · x+ sin s · z, y)p = arccosp 〈cos s · x+ sin s · z, y〉 (4.4)

is differentiable at s = 0. Hence the point-wise limit of the integrand is the constant 0
function. Applying the Lebesgue dominant convergence theorem finishes the proof. �

Using Lemma 4.1 we can prove the main result of this section, namely that the p-
Wasserstein sphere is isometrically rigid for all p ≥ 1. Since T can be identified with
S1, this theorem completes the case of the torus as well.

Theorem 4.2. Let n ≥ 1 and p ≥ 1. Then the p-Wasserstein sphere Wp(Sn) is
isometrically rigid, that is, the push-forward operation: # : Isom(Sn)→ Isom(Wp(Sn))
is surjective.

Proof. Assume that Φ: Wp(Sn)→Wp(Sn) is an isometry. We have to show that there
exists an isometry ψ ∈ Isom(Sn) such that

Φ(µ) = ψ#µ (µ ∈ Wp(Sn)). (4.5)

We know that (4.5) holds for all Dirac masses with some isometry ψ. It suffices to
show that (4.5) holds also for measures whose support is a finite set not containing any
pair of antipodal points, as these form a dense subset of Wp(Sn). Consider a measure

µ ∈ Wp(Sn) with such properties, say, µ =
∑N

j=1wjδxj with N ∈ N,
∑N

j=1wj = 1,

{x1, . . . , xN} ∩ {−x1, . . . ,−xN} = ∅ and x1, . . . , xN pair-wise different. From here we
distinguish between three cases.
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First, if p > 1, then by Lemma 4.1 we infer the following for all j ∈ {1, . . . , N}:

wj = µ({xj}) = lim
s→0+

1

−2pπp−1s

(
T pµ (cos s · (−xj) + sin s · zj)

− 2T pµ (−xj) + T pµ (cos s · (−xj)− sin s · zj)
)

= lim
s→0+

1

−2pπp−1s

(
T pΦ(µ)(cos s · (−ψ(xj)) + sin s · ψ(zj))− 2T pΦ(µ)(−ψ(xj))

+ T pΦ(µ)(cos s · (−ψ(xj))− sin s · ψ(zj))

)
= Φ(µ)({ψ(xj)})

where we used (4.2) and that ψ is the restriction of a linear isometry of the underlying
real Hilbert space. This implies (4.5) for µ and completes the proof of this case.

Second, if p = 1, then using the same calculation as above, we arrive at

wj = µ({xj}) = Φ(µ)({ψ(xj)})− Φ(µ)({−ψ(xj)}).

Since 1 =
∑N

j=1wj ≤
∑N

j=1 Φ(µ)({ψ(xj)}) ≤ 1, we must have Φ(µ)({−ψ(xj)}) = 0 for
all j, hence this case is done too. �
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[15] L. Molnár, Lévy isometries of the space of probability distribution functions, J. Math. Anal. Appl.
380 (2011), 847–852.

[16] F. Santambrogio, Optimal Transport for Applied Mathematicians, Progress in Nonlinear Differ-
ential Equations and Their Applications 87, Birkhauser Basel (2015).
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