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ABSTRACT

Background and aims: Impaired value-based decision-making is a feature of substance and behavioral
addictions. Loss aversion is a core of value-based decision-making and its alteration plays an important
role in addiction. However, few studies explored it in internet gaming disorder patients (IGD).Methods:
In this study, IGD patients (PIGD) and healthy controls (Con-PIGD) performed the Iowa gambling task
(IGT), under functional magnetic resonance imaging (fMRI). We investigated group differences in loss
aversion, brain functional networks of node-centric functional connectivity (nFC) and the overlapping
community features of edge-centric functional connectivity (eFC) in IGT. Results: PIGD performed
worse with lower average net score in IGT. The computational model results showed that PIGD
significantly reduced loss aversion. There was no group difference in nFC. However, there were sig-
nificant group differences in the overlapping community features of eFC1. Furthermore, in Con-PIGD,
loss aversion was positively correlated with the edge community profile similarity of the edge2 between
left IFG and right hippocampus at right caudate. This relationship was suppressed by response con-
sistency3 in PIGD. In addition, reduced loss aversion was negatively correlated with the promoted
bottom-to-up neuromodulation from the right hippocampus to the left IFG in PIGD. Discussion and
conclusions: The reduced loss aversion in value-based decision making and their related edge-centric
functional connectivity support that the IGD showed the same value-based decision-making deficit as
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the substance use and other behavioral addictive disorders. These
findings may have important significance for understanding the
definition and mechanism of IGD in the future.
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INTRODUCTION

Playing internet games is a kind of leisure activity in our
daily lives. There has been a substantial increase in playing
internet games and related activities during the coronavirus
(COVID-19) stay-at-home mandates and quarantines (King,
Delfabbro, Billieux, & Potenza, 2020; Kiraly et al., 2020;
Zha, Li, et al., 2022). However, compulsive uncontrolled, and
excessive internet use could lead to problematic internet
use such as the internet gaming disorder (IGD) for some
individuals, particularly adolescents and young adults
(D. King, Koster, & Billieux, 2019).

IGD is a behavioral addiction (Holden, 2001), that refers
to excessive indulgence in online games and leads to con-
sequences, including physical and psychological disorders,
social impairments, and poor work performance (King &
Delfabbro, 2018; Lukavska, 2018; Potenza, 2015). The IGD is
currently in the Appendix of Section III of the 5th edition of
the Diagnostic and Statistical Manual of Mental Disorders
(DSM-5; American Psychiatric Association, 2013) as a non-
substance disorder deserving further research. Recently, IGD
has also been designated as an addictive disorder by the
World Health Organization in the “Clinical Descriptions
and Diagnostic Guidelines for ICD-11 Mental and Behav-
ioral Disorders” (https://icd.who.int/dev11/l-m/en).

Impaired value-based decision-making is a feature of
both substance-related disorders and pathological gambling
(Diekhof, Falkai, & Gruber, 2008; Wiehler & Peters, 2015).
Loss aversion is a central facet of value-based decision-
making (Genauck et al., 2020) and is a concept developed by
prospect theory, one of the most classic behavioral models of
value-based decision-making, which means that people are
more sensitive to the possibility of losing objects or money
than the possibility of gaining the same objects or amounts of
money (Tom, Fox, Trepel, & Poldrack, 2007). The Iowa
Gambling Task (IGT) (Meshi, Elizarova, Bender, & Verdejo-
Garcia, 2019) is one of the most common and popular par-
adigms used to assess value-based decision-making (Ahn
et al., 2014; Ferraro et al., 2012; Fridberg et al., 2010; Vassi-
leva et al., 2013). While there are a few studies have applied
the IGT to investigate the group difference between IGD
and healthy comparison participants and almost focused on
the relative preferences for “advantageous” decks over
“disadvantageous” decks (Lin, Wang, Sun, Ko, & Chiu, 2019;
Metcalf & Pammer, 2014; Yao et al., 2015), this approach
does not leverage the full potential of the IGT. Computa-
tional neuroscientists interested in the IGT have mainly

focused their efforts on the value-based learning and deci-
sion-making components of the task (Ahn et al., 2014; Fer-
raro et al., 2012; Fridberg et al., 2010; Vassileva et al., 2013).
A few previous studies using the PVL-DecayRI (Vassileva
et al., 2013) or the PVL-Delta (Fridberg et al., 2010) models
to study decision-making processes in the IGT in drug
users. Consistent findings, both chronic (current) marijuana
users (Fridberg et al., 2010) and polysubstance (former)
users (Vassileva et al., 2013) showed reduced loss aversion
compared to healthy control in the IGT. Few studies have
investigated loss aversion in value-based decision-making in
the IGD by using the IGT in conjunction with the compu-
tation model like the PVL-DecayRI or the PVL-Delta models.
Recent neuroscientific researches showed that individual
differences in loss aversion in substance use and behavioral
addictive disorders were associated with the reward evalua-
tion and processing network, including regions like the
inferior frontal gyrus (IFG), hippocampus, and caudate
(Genauck et al., 2017; Gianelli, Basso, Manera, Poggi, &
Canessa, 2022; Quester & Romanczuk-Seiferth, 2015; Zha, Li,
et al., 2022). However, it is currently unknown whether the
IGD shows the same decision-making deficit.

Cognition and behavior stem from the interaction of
brain networks, and the interactions between neural units are
central to neurocognitive function research (Reid et al.,
2019). Node-centric functional connectivity (nFC) is the
traditional approach to investigating functional brain net-
works which emphasizes interactivity among pairs of nodes
(Craddock et al., 2013; Rogers, Morgan, Newton, & Gore,
2007) and the nFC construct relies on forcing each brain
node into one and only one community. Although the nFC
has been useful in cognitive and network neuroscience
(Di Martino et al., 2014; Fornito, Zalesky, & Breakspear,
2015), it cannot capture potentially meaningful features or
patterns of inter-relationships among edges. And it divides
brain regions into non-overlapping communities which
conflicts with evidence that cognition and behavior require
contributions from regions that span multiple node-defined
communities and systems (Anderson, Kinnison, & Pessoa,
2013). Recently Faskowitz et al. proposed the edge-centric
functional connectivity (eFC) to investigate functional brain
networks that represent pairwise functional interactions
among a network’s edges (Faskowitz, Esfahlani, Jo, Sporns, &
Betzel, 2020). In the eFC construct, overlapping community
features are inherent and the definition of community comes
closer to matching the brain’s multifunctional nature (Fas-
kowitz et al., 2020; Jo, Faskowitz, Esfahlani, Sporns, & Betzel,
2021; Jo, Zamani Esfahlani, et al., 2021). Therefore, the nFC
and the eFC provide complementary insights into the orga-
nization and function of brain networks.

In this study, we hypothesized that the PIGD would
exhibit worse performance (lower average net score) and
reduce loss aversion in IGT. To better characterize the
behavioral performance of IGT, including loss aversion,
we used computational modeling approaches to disentangle
the distinct neurocognitive processes. Furthermore, to reveal
the possible neural mechanisms of reduced loss aversion in
the PIGD, we examined whether the functional network of
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nFC and eFC altered in the IGT in the PIGD and whether
loss aversion was associated with these functional network
alterations.

METHODS

Participants

Forty-nine participants, including patients with the IGD
(PIGD, n5 27) and their controls (Con-PIGD, n5 22), were
recruited. The PIGD were recruited through the General
Hospital of Beijing Military Region’s Addiction Medicine
Center. The Con-PIGD were recruited through advertise-
ments from the Beijing local community. The PIGD met the
DSM-5 criteria for internet gaming disorder (i.e., meet at least
5 of 9 criteria within a 12-month-period). Structured clinical
interviews were conducted by two experienced psychiatrists
for the diagnoses. See details in Supplemental Methods (SM).

Measures

Demographic variables. The survey assessed the subjects’
age, education, and gender.

Clinical variables. The survey measured symptom severity
of the internet game disorder, including the duration of
internet gaming exposure (years), the longest once internet
gaming exposure (hours), weekly internet gaming exposure
(hours), and frequency of weekly internet gaming exposure.

The settings and the study protocol and procedure

We recruited the PIGD and the Con-PIGD to perform the
IGT under functional magnetic resonance imaging (fMRI)
and to complete some surveys. Behavioral measures included
symptom severity of IGD, net-score and loss aversion ac-
quired from the IGT. We calculated nFC (Luo, Liu,
Jin, Chang, & Peng, 2021; Zha, Li, et al., 2022), eFC and

overlapping community features of eFC. And we used the
generalized mediation analysis and dynamic causal modeling
(DCM) analysis. Finally, we used the machine learning
methods to classify two groups. See details in SM.

The IGT. The IGT was the same as that we used in several
studies (Fig. 1) (Li et al., 2020; Wang et al., 2017; Wei et al.,
2018; Zha, Li, et al., 2022). Four decks labeled with A, B, C,
and D. Decks C and D were the advantageous because they
had a positive payoff in the long run, and decks A and B
were the disadvantageous because they had a negative payoff
in the long run. The performance of IGT was net score,
which calculated by subtracting the total number of selec-
tions on decks AB from the total number of selections on
decks CD (Christakou, Brammer, Giampietro, & Rubia,
2009). See details in SM.

The computational model. Based on the literature, we
compare the most promising the IGT models involving loss
aversion: the Prospect Valence Learning (PVL) model with
delta learning rule (PVL-Delta) (Ahn, Busemeyer, Wagen-
makers, & Stout, 2008), the PVL model with decay rein-
forcement learning rule (PVL-DecayRI) (Ahn, Krawitz, Kim,
Busmeyer, & Brown, 2011). See details in SM.

The fMRI data acquisition and pre-processing. All MRI
data were acquired using 3-T Siemens Magnetom Trio
scanners in the Xuanwu Hospital Capital Medical Univer-
sity, Beijing. Pre-processing was similar to that used in a
study (Zha et al., 2019; Zha et al., 2022) and was processed
with the Analysis of Functional Neuroimages (Version
AFNI_18.2.03) (Cox, 1996). See details in SM.

Functional network of nFC. Following previous studies,
we defined nodes and calculated the nFC Matrix (Luo et al.,
2021; Zha, Li, et al., 2022). Nodes were automatically divided
by anatomical automatic labeling (AAL) parcellation
(Tzourio-Mazoyer et al., 2002). nFC describes the spatio-
temporal correlation between spatially distinct brain regions.

Fig. 1. The Iowa gambling Task. The task contained 180 trials, which were divided into three runs. There were three blocks for each run.
There were 20 trials for each block, and the inter-block interval was a 30 s resting interval. Two phases were performed for each trial.

The first phase was the selection phase in which participants were asked to select one of four decks within 4 s. The second phase was the
outcome phase, in which the outcome was shown for 1 s. The decks were labeled with A, B, C, and D
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Functional network of eFC. Overlapping community struc-
tural features are inherent in the eFC construct. Clustering the
eFC matrix assigns each edge to a community. Each edge is
associated with two brain regions (the nodes it connects).
Thus, edge community assignments can be mapped back
onto individual brain regions and, because every region is
associated with N − 1 edges, allow regions to simultaneously
maintain a plurality of community assignments.

eFC matrix. Following the study, we calculated the eFC
Matrix (Faskowitz et al., 2020). Nodes were the same as
those in the nFC. The first step was to z-score each time
series for all nodes. Next, for all pairs of nodes, we referred
to the product of the elements-wise of their z-scored time
series as ‘edge time series’, representing the magnitude of
time-resolved co-fluctuation between node pairs. The final
step was to calculate the element-wise product between pairs
of edge time series, resulting in a set of co-fluctuation time
series. See details in SM.

Overlapping community feature-Normalized entropy. Fol-
lowing a study (Faskowitz et al., 2020), the recommended
modified k-means (k 5 10, the clustering algorithm repeated
250 times) algorithm was applied to divide the eFC matrix
into non-overlapping communities of co-fluctuating edges
and then map the edge assignments back to a single node,
yielding overlapping regional community assignments.

The normalized entropy indicates the distribution of
edge community assignments and measures the extent to
which region i’s community affiliations are distributed
evenly across all communities or concentrated within a small
number of communities. See details in SM.

Overlapping community features-Edge community profile
similarity. We assigned each edge to a single community.
These edge communities can be rearranged into the upper
triangle of an N3N matrix, X, whose element xi−j denoted
the edge community assignment of the edge between nodes i
and j. The i th column of X, edge community profile of
nodes i, which we denote as xi ¼ ½xi−1;…; xi−N �, encodes the
community labels of all edges in which node i participates.

From the X matrix, we extracted the edge community
profile of nodes i and j and compared the edge community
profile of nodes i and j by calculating the similarity of
vectors xi and xj. Here, the edge community profile simi-
larity of the edge between nodes i and j is the fraction of
elements in both vectors with the same community label.
That is:

Si−j ¼ 1
N � 2

X

u≠i;j

δ
�
xi−u; xj−u

�

Here, δðxi−u; xj−uÞ is the Kronecker delta and takes on a
value of 1 when xi−u and xj−u were co-assigned to the same
community but is 0 otherwise, and u is the third nodes. Note
the normalization of over N − 2 because we ignore the self-
connection xi−i and xj−j. Repeating this comparison for all
pairs of nodes generates the similarity matrix, S ¼ fsi−jg.

To understand which brain regions may be responsible
for the group difference of the edge community profile
similarity of the edge between nodes i and, Si−j. We compared
the edge community profile similarity of the edge between
nodes i and j at each third brain nodes (u) and generated the
edge community assignment similarity of the edge between
nodes i and j at each third brain region (u), Si−u−j.

All data were analyzed using MATLAB v2018a (MAT-
LAB, MathWorks Inc., Natick, MA, PC), the Statistical
Package for Social Science (SPSS v.22, Chicago, Illinois,
PC), the Analysis of Functional Neuroimages (Version
AFNI_18.2.03) (Cox, 1996), and the hBayesDM R package
(Ahn, Haines, & Zhang, 2017) (https://cran.r-project.org/
web/packages/hBayesDM/index.html).

Statistical analysis

We tested whether PIGD showed alterations in average net
score, loss aversion, nFC, overlapping community features of
eFC and effective connectivity. Correlations between loss
aversion and overlapping community features of eFC net-
works were performed. Generalized mediation analysis of
whether response consistency suppressed the association
between loss aversion and overlapping community features
of eFC networks in the PIGD. Calculated the effective con-
nectivity using DCM analysis. Correlations between loss
aversion and effective connectivity were also performed.
Machine learning methods were used to test whether the loss
aversion, overlapping community features of edge-centric
functional networks, and effective connectivity could classify
two groups. See details in SM.

Ethics

This study was approved by the Human Research Ethics
Committee of the University of Science and Technology of
China and the General Hospital of Beijing Military Region.
Written informed consent was obtained from participants or
their parents before the study. The research was conducted
according to the principles of the Declaration of Helsinki.

RESULTS

Demographic results

There were no differences in demographic variables between
groups. However, the PIGD significantly increased the
symptom severity of the IGD (Table 1).

The IGT performance results

The average net score of the PIGD was significantly lower
in the IGT (t47 ¼ 2:375; p ¼ 0:022; ; cohen0s d ¼ 0:680;
95 CI ¼ ½0:102; 1:259�) (Fig. 2).

Computational modeling results

We used the Watanabe-Akaike Information Criterion
(WAIC) (Watanabe, 2010) to compare the post-hoc fits
of models (PVL-DecayRI model: WAICPIGD ¼ 7846:68,
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WAICCon−PIGD ¼ 5288:54; PVL-Delta model: WAICPIGD ¼
10573:7, WAICCon−PIGD ¼ 7510:92). Therefore, we chose
second best-fit model, the PVL_DecayRI, to investigate loss
aversion.

Loss aversion was significantly reduced in the PIGD
ðt47 ¼ 28:70; p<0:0001; cohen0s d ¼ 8:241; 95 CI ¼ ½6:516; 9:968�Þ
(Fig. 3_a). The PIGD also showed reduced outcome sensi-
tivity ðt47 ¼ 14:81; p<0:0001; cohen0s d ¼ 4:253; 95 CI ¼
½3:241; 5:266�Þ (Fig. 3_b). However, the remaining two pa-
rameters, response consistency and decay rate, were not
significantly different between groups (Fig. 3_c, Fig. 3_d).
The estimated loss aversion parameter in PVL-DecayRI
model in our study is reliable, which can be replicated with
PVL-delta model. Specifically, we also found significantly
reduced loss aversion among PIGD compared to Con-PIGD
ðt47 ¼ 37:74; p<0:0001; cohen0s d ¼ 10:841; 95 CI ¼ ½8:621;
13:100�Þ.

Simulations assess the accuracy of a model’s predictions
for the entire selection sequence based on the model pa-
rameters, independent of the subject’s selection history.
A posteriori prediction check can be used to evaluate
whether the model produces valid predictions. The simu-
lated data generated by the PVL-Decay model is similar to
the real data of PIGD and Con-PIGD (Fig. 4_a, Fig. 4_b).

Results of the nFC

To test whether the PIGD altered the nFC network. We
calculated the nFC of all node pairs and compared them
between groups. To correct for the 4,005 independent tests,
an alpha level of 1=4005 ðp<0:0002Þ was used to declare
significance for the local measures (Cocchi et al., 2012). As
results, nFC weren’t significantly different between groups.

Results of the overlapping community features of eFC
networks

Overlap is inherent within the eFC construct. To capture the
potentially meaningful overlapping community features of
the eFC network, we measured the community overlap of
the eFC at the level of individual brain regions (nodes) i.e.,
the normalized entropy.

We compared the normalized community entropy of
each node between groups. To correct for the 90 indepen-
dent tests, an alpha level of 1=90 ðp<0:01Þ was used to
declare significance for the local measures (Cocchi et al.,
2012). We found that the normalized community entropy of
the left triangle IFG was reduced significantly in the PIGD
ðt47 ¼ 2:643; p ¼ 0:011; cohen0s d ¼ 0:759; 95 CI ¼ ½0:177; 1:342�Þ
(Fig. 5_a, Fig. 5_b).

Furthermore, to investigate the internal overlapping
community features of the left IFG at the level of the brain
system, we calculated the average edge community profile
similarity of all edges between the left IFG and all other
nodes. Then compared the average edge community profile
similarity of each edge between groups. To correct for the
89 independent tests, an alpha level of 1=89 ðp<0:01Þ was
used to declare significance for the local measure (Cocchi
et al., 2012). As a result, the average edge community
profile similarity of the edge between the left IFG and
the right hippocampus ðSlef t IFG−right hippocampusÞ was reduced
significantly in the PIGD ðt47 ¼ 2:469; p ¼ 0:011; cohen0s d ¼
0:709; 95 CI ¼ ½0:129; 1:289�Þ (Fig. 5_c, Fig. 5_d).

Table 1. Participants demographics and clinical variables

Demographics and Clinical Variables

Control-for-PIGD
(n 5 22)

PIGD
(n 5 27)

Mean SD Mean SD Test p Value

Age, Years, Mean (SD) 20.500 3.098 19.704 3.244 t47 ¼ 0:872 0.388
Education, Years, Mean (SD) 13.136 1.859 11.889 2.563 t47 ¼ 1:909 0.062
Duration of Internet Gaming Exposure, years 0.511 0.933 2.676 1.827 t47 ¼ 5:041 0.000
The longest Once Internet Gaming Exposure, hours 3.091 4.876 16.148 13.651 t47 ¼ 4:263 0.000
Weekly Internet Gaming Exposure, hours 12.684 20.474 66.815 26.335 t47 ¼ 7:887 0.000
Frequency of Weekly Internet Gaming Exposure 3.046 3.922 7.019 4.360 t47 ¼ 3:317 0.002

Fig. 2. The performance of the IGT. The average net score of the
PIGD was significantly lower than that of the Con-PIGD in the

IGT task. The error bars indicate the SEM. p: p<0:05
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Fig. 3. Behavioral modeling results. a. The loss aversion parameter (λ) was significantly reduced in the PIGD. b. The outcome sensitivity
parameter (α) was significantly reduced in the PIGD. c-d. The response consistency parameter (cons) and decay rate parameter (A),

were not significantly different between the PIGD and the Con-PIGD. The error bars indicate the SEM. p: p<0:05; pp: p<0:01; ppp: p<0:001.
ns: no significance

Fig. 4. Posterior prediction checks (PPC) of the PVL-DecayRI model. a. The posterior prediction checks for the Con-PIGD. b. The
posterior prediction checks for the PIGD. Red dotted lines were simulated data and black lines were the true data. The simulated data were

similar to the real data in both PIGD and Con-PIGD
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To understand which nodes may be responsible for the
group difference of the average edge community profile
similarity of the edge between the left IFG and the right
hippocampus (Slef t IFG−right hippocampusÞ. We compared the
edge community profile similarity of the edge between the
left IFG and the right hippocampus at each third node and
found that the PIGD group showed significantly reduced
edge community profile similarity of the edge between the
left IFG and the right hippocampus at these nodes, including
the right frontal inferior orbital gyrus Sleft IFG-right IFO-right

hippocampus ðt47 ¼ 2:948; p ¼ 0:005; cohen0s d ¼ 0:846; 95 CI ¼
½0:259; 1:433�Þ (Fig. 6_a), the right insular Sleft IFG-right insular-
right hippocampus ðt47 ¼ 2:551; p ¼ 0:004; cohen0s d ¼ 0:869;
95 CI ¼ ½0:281; 1:458�Þ (Fig. 6_b), the right caudate Sleft
IFG-right caudate-right hippocampus ðt47 ¼ 2:558; p ¼ 0:014; cohen0s
d ¼ 0:733; 95 CI ¼ ½0:151; 1:315�Þ (Fig. 6_c), the left amygdala
Sleft IFG-left amygdala-right hippocampus ðt47 ¼ 2:887; p ¼ 0:006;
cohen0s d ¼ 0:827; 95 CI ¼ ½0:240; 1:413�Þ (Fig. 6_d), the
left hippocampus Sleft IFG-left hippocampus-right hippocampus ðt47 ¼

3:016; p ¼ 0:004; cohen0s d ¼ 0:869; 95 CI ¼ ½0:281; 1:458�Þ
(Fig. 6_e) the left frontal superior medial gyrus Sleft IFG-left

MFG-right hippocampus ðt47 ¼ 3:226; p ¼ 0:002; cohen0s d ¼ 0:94;
95 CI ¼ ½0:347; 1:353�Þ (Fig. 6_f).

Relationship between loss aversion and overlapping
community features of edge-centric functional
networks

What overlapping community features of the edge-centric
functional networks are associated with loss aversion in
the IGT? Follow-up correlation analysis indicated that
in the Con-PIGD loss aversion was significantly positively
correlated with Sleft IFG-right caudate-right hippocampus ðr ¼ 0:596;
p ¼ 0:003Þ (Fig. 7). However, there were no significant as-
sociations in the PIGD ðr ¼ −0:016; p ¼ 0:945Þ (Fig. 7).
Fisher r-to-z transformation were used to assess the signif-
icance of the difference between the two correlation co-
efficients. The PIGD and the Con-PIGD had a significantly

a b

c d

X = 43.000[L]

X = -28.000[R]

Fig. 5. The Edge functional connectivity results. a. The left triangle IFG was defined according to automated anatomical labeling (AAL)
template labels. b. At the node level, the normalized community entropy within the left triangle IFG was significantly reduced in the PIGD
compared to the Con-PIGD. c. The right hippocampus was defined according to the automated anatomical labeling (AAL) template labels.

d. At the level of the brain system, the average edge community profile similarity of the edge between the left IFG and the right
hippocampus (Slef t IFG−right hippocampusÞ was significantly reduced in the PIGD compared to the Con-PIGD. The error bars indicate the SEM.

p: p<0:05; pp: p<0:01; ppp: p<0:001; ns: no significance; R: right; L: left

464 Journal of Behavioral Addictions 12 (2023) 2, 458–470

Unauthenticated | Downloaded 09/07/23 03:21 PM UTC



different relationship between the Sleft IFG-right caudate-right

hippocampus and the loss aversion the IGT ðz ¼ 2:290; p ¼
0:022Þ (Fig. 7). Loss aversion was linearly related to response
consistency (Molins, Serrano, & Alacreu-Crespo, 2021).
Response consistency was related to expected value and

impulsivity (Lorains et al., 2014). To investigate whether
response consistency mediated the suppressed association
between loss aversion and the Sleft IFG-right caudate-right

hippocampus, we performed the generalized mediation analysis
proposed by Wen et al. (Wen & Ye, 2014). As a result, the

b

c d

e f

a

X = -27.000[R] X = -35.000[R]

X = 25.000[L]X = -18.000[R]

X = 10.000[L]X = 28.000[L]

Fig. 6. Edge community profile similarity of the edge between the left IFG and the right hippocampus at third nodes. The PIGD group
showed significantly reduced edge community profile similarity of the edge between the left IFG and the right hippocampus compared
to the Con-PIGD at these nodes, including a. the right frontal inferior orbital gyrus (Sleft IFG-right IFO-right hippocampus); b. the right insula
(Sleft IFG-right insular-right hippocampus); c. the right caudate (Sleft IFG-right caudate-right hippocampus); d. the left amygdala (Sleft IFG-left amygdala-right

hippocampus)); e. the left hippocampus (Sleft IFG-left hippocampus-right hippocampus); f. the left frontal superior medial gyrus (Sleft IFG-left MFG-right

hippocampus), which were defined according to the Automated Anatomical Labeling (AAL) template labels. The error bars indicate the SEM.
p: p<0:05; pp: p<0:01; ppp: p<0:001. ns: no significance; R: right; L: left
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response consistency was fully mediated the suppressed as-
sociation between loss aversion and Sleft IFG-right caudate-right

hippocampus in the PIGD ða : 95% CI ½−0:761; − 0:093�; p ¼
0:002; b : 95% CI ½0:023; 0:765�; p ¼ 0:004; ab : 95% CI ½−0:405;
− 0:005�; p ¼ 0:106; c : 95% CI ½−0:263; 0:006�; p ¼ 0:199;
c0 : 95% CI ½−0:129; 0:546�; p ¼ 0:420Þ (Fig. 8).

Result of the DCM

Whether changes in effective connectivity within loss-aver-
sion-correlated overlapping community features of edge-
centric functional networks was associated with loss aversion
in the PIGD? We calculated the effective connectivity within
these nodes 1) the left IFG; 2) the right hippocampus;
and 3) the right caudate using the DCM. The PIGD signif-
icantly increased effective connectivity from the right hip-
pocampus to the left IFG in the outcome phase ðt47 ¼ 2:756;
p ¼ 0:008; cohen0s d ¼ 0:79; 95 CI ¼ ½0:207; 1:376�Þ: Corre-
lation analysis indicated that loss aversion was significantly

positively correlated with it ðr ¼ −0:516; p ¼ 0:006Þ in the
PIGD. However, there was no significant association in the
Con-PIGD ðr ¼ −0:274; p ¼ 0:218Þ: And the Fisher r-to-z
transformation result showed that there was no different
relationship between groups ðz ¼ −0:940; p ¼ 0:347Þ:

Results of machine learning classification

Machine learning methods were used to test whether the loss
aversion, the Sleft IFG-right caudate-right hippocampus, and the
effective connectivity from the right hippocampus to the
left IFG could classify the PIGD from the Con-PIGD.
The area under the receiver operating characteristic curve
(ROC_AUC) for classifying the PIGD versus Con-PIGD
reached 0.85 (Fig. 9_a) and the accuracy of the classification
reached 0.71, suggesting that loss aversion related behavioral
and neuroimaging features provided a way to distinguish
PIGD from Con-PIGD. We also performed a permutation
test (permutation times ¼ 1000) to validate this result and
found that the accuracy of the classification mentioned
above reached the top 1% in the random permutation dis-
tribution ðpermutation tests; 99th cutof f ¼ 0:69; p ¼ 0:006Þ
(Fig. 9_b).

DISCUSSION

The present study results were consistent with our hy-
pothesis. We found that the average net score of the
IGT was significantly lower than that of the Con-PIGD,
indicating that the PIGD group performed worse than the
Con-PIGD in value-based decision-making. The PVL-
DecayRI model was used to disentangle the underlying
psychological processes involved in IGT performance.
Consistent with our hypothesis, we observed a significantly
reduced loss aversion in the PIGD group compared to the
Con-PIGD group, suggesting that the reduced loss aversion
may be a psychological mechanism for poor performance
in value-based decision-making tasks. In addition, a
study on value-based decision-making deficits also observed
that gambling disorder and alcohol dependence exhibited
reduced loss aversion compared to the healthy controls
(Genauck et al., 2017). Therefore, our findings also sug-
gested that the IGD, as a new behavioral addiction, is similar
to other substance and other behavioral addictions, signif-
icantly reduced loss aversion in value-based decision-
making.

Our study provided novel insights into the brain func-
tional networks of the PIGD in the value-based decision-
making from the perspective of the nFC and the eFC. nFC, is
often interpreted as reflecting the time-averaged strength of
“communication” between brain regions. Our findings
demonstrated that reduced loss aversion in the PIGD is
independent of the strength of communication in value-
based decision making. eFC tracks how communication
patterns evolve over time and ultimately assesses whether
similar patterns are occurring in the brain simultaneously.
Our findings showed the potential of the overlapping

Fig. 7. Relationship between the loss aversion and the Sleft
IFG-right caudate-right hippocampus. Loss aversion was significantly

positively correlated with the Sleft IFG-right caudate-right hippocampus in
the Con-PIGD. However, there was no significant association in
the PIGD. The dashed area in the panels shows the 95% confidence

interval in the present study

Fig. 8. Generalized mediation result. In the PIGD, the suppressed
association between loss aversion and overlapping community

features of the edge-centric functional network (Sleft IFG-right caudate-
right hippocampus) in the IGT was fully mediated by the response

consistency. p: p < 0.05, pp: p < 0.01, ppp: p < 0.001
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community features to serve as biomarkers for the PIGD
diagnosis. The edge community profile similarity of the edge
between the left IFG and the right hippocampus at right
caudate was significantly reduced in the PIGD, which sug-
gested that function integration ability and diversity of the
reward evaluation and processing network was reduced. The
IFG mainly involved in the executive control processing of
the sense of control over the gain/loss outcome and the
evaluation of the gain/loss information (Friese, Binder,
Luechinger, Boesiger, & Rasch, 2013; Lee, Chatzisarantis, &
Hagger, 2016; Zhang, Hu, Wang, Wang, & Dong, 2020). The
hippocampus participates in reward processing (Zarrindast,
Nouri, & Ahmadi, 2007). The right caudate mainly involved
in processing the magnitude of received losses (Volkow,
Wang, Fowler, Tomasi, & Telang, 2011). Therefore, the left
IFG, the right hippocampus, and the right caudate were part
of an integral edge network involved in reward evaluation
and processing. A possible mechanism is that response
consistency suppressed the association between loss aversion
and the overlapping community features of edge-centric
reward evaluation and processing functional network.
Response consistency measures the consistency of decision
makers’ choices with value expectations (Molins et al., 2021)
and is related to impulsivity, which is common in IGD
(Lorains et al., 2014; Zha et al., 2019). Furthermore, DCM
result indicated that it may be due to the promoted bottom-
up neuromodulation (right hippocampus to left IFG) in the
PIGD. In other words, the motivation to obtain rewards
represents a central feature of addictions and seems to be
more pronounced with the PIGD. Meanwhile, the PIGD
cannot process the sense of control over the gain/loss
outcome and evaluate the gain/loss information well. This
may be why the PIGD find it easy to indulge in the game and
difficult to withdraw from playing games.

Our study has several theoretical implications. First,
existing theories of IGD largely neglect decreased loss
aversion in value-based decision-making. Reduced loss

aversion in value-based decision-making also seems to be a
general feature of IGD, like other addictive disorders
(Balodis et al., 2012; Ersche et al., 2016; Fauth-Buhler &
Mann, 2017; Yao et al., 2015; Yip et al., 2018). Therefore,
more consideration of loss aversion in value-based decision-
making might be valuable for both neurobiological and
clinical research in IGD. Second, our results proposed an
idea about IGD. IGD may not inhibit a specific cognitive
function of the individual brain region, but by dispersing the
edge network functions, thereby simultaneously processing
multiple functional processes in a complex environment.
Therefore, it is impossible to concentrate more resources on
goal-directed cognitive control, such as value-based deci-
sion-making.

LIMITATIONS

First, the majority of the sample in the present study was
male. Despite the fact that the ratio of female IGD patients
in China is very low (Qi et al., 2016), we still tried to recruit
some female patients. The ratio of female participants in the
PIGD group was comparable with that in the healthy control
groups. Second, loss aversion has not yet been used to
directly compare the IGD to other addiction disorders.
Future work is needed to directly investigate the similarities
and differences in the loss aversion and related brain net-
works between behavioral and substance addiction. Third,
IGT may not be the best paradigm to study loss aversion in
value-based decision making. In order to deepen the
research on loss aversion impairment in value-based deci-
sion-making of IGD, more other loss aversion related task
paradigms and research methods would be adopted in the
future research on loss aversion impairment in value-based
decision-making of IGD. It may be helpful to further un-
derstand the mechanism of IGD and provide more evidence
for the treatment of IGD.

Fig. 9. Machine learning classification results. a. The area under the receiver operating characteristic curve (ROC_AUC) for classifying the
PIGD versus Con-PIGD reached 0.85. Positive label: 1.0 means the result the classification prediction of PIGD and CON-PIGD was PIGD
and counted it as 1. b. The permutation test result show that the accuracy of the classification mentioned above reached the top 1% in the

random permutation distribution
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CONCLUSION

PIGD performed worse in IGT. IGD, as a new behavioral
addiction, is similar to the substance and other behavioral
addictions, with significantly reduced loss aversion in val-
ue-based decision-making. The possible neural mechanism of
reduced loss aversion in the PIGD was the reduction
in communication patterns of the edge-centric reward eval-
uation and processing functional network (the left IFG, the
right hippocampus, and the right caudate). Loss aversion,
overlapping community features of the edge-centric reward
evaluation and processing functional network (left IFG, right
hippocampus, and right caudate), and bottom-up neuro-
modulation (right hippocampus to left IFG) in IGT may
provide consistent and novel behavioral and neuroimaging
evidence supporting loss aversion as a specific factor for
distinguishing of PIGD from Con-PIGD. These findings
may have important significance for understanding the
definition and mechanism of IGD in the future.
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